Skip to main content

2019 | OriginalPaper | Buchkapitel

Geometry Modelling of Regular Scaffolds for Bone Tissue Engineering: A Computational Mechanobiological Approach

verfasst von : A. Boccaccio, M. Fiorentino, M. Gattullo, V. M. Manghisi, G. Monno, A. E. Uva

Erschienen in: Advances on Mechanics, Design Engineering and Manufacturing II

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Scaffolds are porous biomaterials that serve to replace missing portions of bone. Scaffolds must possess a proper geometry and hence have to be adequately designed to correctly undergo to the load and to favor the differentiation of the mesenchymal stem cells invading it, into osteoblasts. It is commonly known that scaffold geometry affects the quality of the regenerated bone creating within the scaffold pores. Scaffold properly designed trigger favorable values of biophysical stimuli that are responsible for the reactions cascade leading to the bone formation. In this paper an optimization algorithm is proposed that, based on mechano-regulation criteria, identifies the optimal geometry of scaffolds, i.e. the geometry that favors the formation of the largest amounts of bone in the shortest time. In detail, the algorithm, written in the Matlab environment, incorporates parametric finite element models of different scaffold types, a computational mechanobiological model and structural optimization routines. The scaffold geometry is iteratively perturbed by the algorithm until the optimal geometry is computed, i.e. the geometry that triggers the most favorable values of the biophysical stimulus which lead to the formation of mature bone. Mesenchymal stem cells were hypothesized to spread within the fracture domain and uniformly occupy the scaffold pores.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sanz-Herrera J, Garca-Aznar J, Doblaré M (2009) A mathematical approach to bone tissue engineering. Philos Trans Roy Soc Lond A: Math Phys Eng Sci 367:2055–2078MathSciNetCrossRef Sanz-Herrera J, Garca-Aznar J, Doblaré M (2009) A mathematical approach to bone tissue engineering. Philos Trans Roy Soc Lond A: Math Phys Eng Sci 367:2055–2078MathSciNetCrossRef
2.
Zurück zum Zitat Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491CrossRef Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491CrossRef
3.
Zurück zum Zitat Sun W, Lal P (2002) Recent development on computer aided tissue engineering—a review. Comput Methods Programs Biomed 67:85–103CrossRef Sun W, Lal P (2002) Recent development on computer aided tissue engineering—a review. Comput Methods Programs Biomed 67:85–103CrossRef
4.
Zurück zum Zitat Sun W, Darling A, Starly B, Nam J (2004) Computer-aided tissue engineering: overview, scope and challenges. Biotechnol Appl Biochem 39:29–47CrossRef Sun W, Darling A, Starly B, Nam J (2004) Computer-aided tissue engineering: overview, scope and challenges. Biotechnol Appl Biochem 39:29–47CrossRef
5.
Zurück zum Zitat Ambu R, Morabito A (2017) Design and analysis of tissue engineering scaffolds based on open porous non-stochastic cells. In: Advances on mechanics, design engineering and manufacturing. Springer, pp 777–787 Ambu R, Morabito A (2017) Design and analysis of tissue engineering scaffolds based on open porous non-stochastic cells. In: Advances on mechanics, design engineering and manufacturing. Springer, pp 777–787
6.
Zurück zum Zitat Carofalo A, De Giorgi M, Morabito A (2013) Geometric modelling of metallic foams. Eng Comput 30:924–935CrossRef Carofalo A, De Giorgi M, Morabito A (2013) Geometric modelling of metallic foams. Eng Comput 30:924–935CrossRef
7.
Zurück zum Zitat Ambu R, Morabito A (2018) Porous scaffold design based on minimal surfaces: development and assessment of variable architectures. Symmetry 10:361CrossRef Ambu R, Morabito A (2018) Porous scaffold design based on minimal surfaces: development and assessment of variable architectures. Symmetry 10:361CrossRef
8.
Zurück zum Zitat Li M, Tian X, Chen X (2009) A brief review of dispensing-based rapid prototyping techniques in tissue scaffold fabrication: role of modeling on scaffold properties prediction. Biofabrication 1:032001CrossRef Li M, Tian X, Chen X (2009) A brief review of dispensing-based rapid prototyping techniques in tissue scaffold fabrication: role of modeling on scaffold properties prediction. Biofabrication 1:032001CrossRef
9.
Zurück zum Zitat Kim GH, Ahn SH, Lee HJ, Lee S, Cho Y, Chun W (2011) A new hybrid scaffold using rapid prototyping and electrohydrodynamic direct writing for bone tissue regeneration. J Mater Chem 21:19138–19143CrossRef Kim GH, Ahn SH, Lee HJ, Lee S, Cho Y, Chun W (2011) A new hybrid scaffold using rapid prototyping and electrohydrodynamic direct writing for bone tissue regeneration. J Mater Chem 21:19138–19143CrossRef
10.
Zurück zum Zitat McKibbin B (1978) The biology of fracture healing in long bones. J Bone Jt Surg British volume. 60:150–162CrossRef McKibbin B (1978) The biology of fracture healing in long bones. J Bone Jt Surg British volume. 60:150–162CrossRef
11.
Zurück zum Zitat Goodship A, Kenwright J (1985) The influence of induced micromovement upon the healing of experimental tibial fractures. Bone Jt J 67:650–655CrossRef Goodship A, Kenwright J (1985) The influence of induced micromovement upon the healing of experimental tibial fractures. Bone Jt J 67:650–655CrossRef
12.
Zurück zum Zitat Roux W (1895) Gesammelte abhandulgen uber entwicklungsmechanics der organismen. Wilhem Engelmann, Leipzig Roux W (1895) Gesammelte abhandulgen uber entwicklungsmechanics der organismen. Wilhem Engelmann, Leipzig
13.
Zurück zum Zitat van der Meulen MC, Huiskes R (2002) Why mechanobiology? A survey article. J Biomech 35:401–414CrossRef van der Meulen MC, Huiskes R (2002) Why mechanobiology? A survey article. J Biomech 35:401–414CrossRef
14.
Zurück zum Zitat Pauwels F (1941) Grundrieb einer Biomechanik der Fracturheiling. In: 34e Kongress der Deutschen Orthopadischen Gesellschaft Stuttgart: Ferdinand Engke, pp 464–508 Pauwels F (1941) Grundrieb einer Biomechanik der Fracturheiling. In: 34e Kongress der Deutschen Orthopadischen Gesellschaft Stuttgart: Ferdinand Engke, pp 464–508
15.
Zurück zum Zitat Prendergast P, Huiskes R, Søballe K (1997) Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech 30:539–548CrossRef Prendergast P, Huiskes R, Søballe K (1997) Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech 30:539–548CrossRef
16.
Zurück zum Zitat Huiskes R, Van Driel W, Prendergast P, Søballe K (1997) A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation. J Mater Sci Mater Med 8:785–788CrossRef Huiskes R, Van Driel W, Prendergast P, Søballe K (1997) A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation. J Mater Sci Mater Med 8:785–788CrossRef
17.
Zurück zum Zitat Lacroix D, Prendergast P (2002) A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J Biomech 35:1163–1171CrossRef Lacroix D, Prendergast P (2002) A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J Biomech 35:1163–1171CrossRef
18.
Zurück zum Zitat Kelly D, Prendergast P (2005) Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. J Biomech 38:1413–1422CrossRef Kelly D, Prendergast P (2005) Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. J Biomech 38:1413–1422CrossRef
19.
Zurück zum Zitat Boccaccio A, Kelly DJ, Pappalettere C (2011) A mechano-regulation model of fracture repair in vertebral bodies. J Orthop Res 29:433–443CrossRef Boccaccio A, Kelly DJ, Pappalettere C (2011) A mechano-regulation model of fracture repair in vertebral bodies. J Orthop Res 29:433–443CrossRef
20.
Zurück zum Zitat Boccaccio A, Pappalettere C, Kelly D (2007) The influence of expansion rates on mandibular distraction osteogenesis: a computational analysis. Ann Biomed Eng 35:1940–1960CrossRef Boccaccio A, Pappalettere C, Kelly D (2007) The influence of expansion rates on mandibular distraction osteogenesis: a computational analysis. Ann Biomed Eng 35:1940–1960CrossRef
21.
Zurück zum Zitat Boccaccio A, Prendergast PJ, Pappalettere C, Kelly DJ (2008) Tissue differentiation and bone regeneration in an osteotomized mandible: a computational analysis of the latency period. Med Biol Eng Compu 46:283–298CrossRef Boccaccio A, Prendergast PJ, Pappalettere C, Kelly DJ (2008) Tissue differentiation and bone regeneration in an osteotomized mandible: a computational analysis of the latency period. Med Biol Eng Compu 46:283–298CrossRef
22.
Zurück zum Zitat Boccaccio A, Lamberti L, Pappalettere C (2008) Effects of aging on the latency period in mandibular distraction osteogenesis: a computational mechanobiological analysis. J Mech Med Biology 8:203–225CrossRef Boccaccio A, Lamberti L, Pappalettere C (2008) Effects of aging on the latency period in mandibular distraction osteogenesis: a computational mechanobiological analysis. J Mech Med Biology 8:203–225CrossRef
23.
Zurück zum Zitat Boccaccio A, Kelly DJ, Pappalettere C (2012) A model of tissue differentiation and bone remodelling in fractured vertebrae treated with minimally invasive percutaneous fixation. Med Biol Eng Compu 50:947–959CrossRef Boccaccio A, Kelly DJ, Pappalettere C (2012) A model of tissue differentiation and bone remodelling in fractured vertebrae treated with minimally invasive percutaneous fixation. Med Biol Eng Compu 50:947–959CrossRef
24.
Zurück zum Zitat Bailon-Plaza A, Van Der Meulen MC (2001) A mathematical framework to study the effects of growth factor influences on fracture healing. J Theor Biol 212:191–209CrossRef Bailon-Plaza A, Van Der Meulen MC (2001) A mathematical framework to study the effects of growth factor influences on fracture healing. J Theor Biol 212:191–209CrossRef
25.
Zurück zum Zitat Geris L, Gerisch A, Vander Sloten J, Weiner R, Van Oosterwyck H (2008) Angiogenesis in bone fracture healing: a bioregulatory model. J Theor Biol 251:137–158 Geris L, Gerisch A, Vander Sloten J, Weiner R, Van Oosterwyck H (2008) Angiogenesis in bone fracture healing: a bioregulatory model. J Theor Biol 251:137–158
26.
Zurück zum Zitat Boccaccio A, Uva AE, Fiorentino M, Lamberti L, Monno G (2016) A mechanobiology-based algorithm to optimize the microstructure geometry of bone tissue scaffolds. Int J Biol Sci 12:1–17CrossRef Boccaccio A, Uva AE, Fiorentino M, Lamberti L, Monno G (2016) A mechanobiology-based algorithm to optimize the microstructure geometry of bone tissue scaffolds. Int J Biol Sci 12:1–17CrossRef
27.
Zurück zum Zitat Byrne DP, Lacroix D, Planell JA, Kelly DJ, Prendergast PJ (2007) Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28:5544–5554CrossRef Byrne DP, Lacroix D, Planell JA, Kelly DJ, Prendergast PJ (2007) Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28:5544–5554CrossRef
28.
Zurück zum Zitat Zadpoor AA (2015) Bone tissue regeneration: the role of scaffold geometry. Biomater Sci 3:231–245CrossRef Zadpoor AA (2015) Bone tissue regeneration: the role of scaffold geometry. Biomater Sci 3:231–245CrossRef
29.
Zurück zum Zitat Boccaccio A, Uva AE, Fiorentino M, Mori G, Monno G (2016) Geometry design optimization of functionally graded scaffolds for bone tissue engineering: a mechanobiological approach. PLoS ONE 11:e0146935CrossRef Boccaccio A, Uva AE, Fiorentino M, Mori G, Monno G (2016) Geometry design optimization of functionally graded scaffolds for bone tissue engineering: a mechanobiological approach. PLoS ONE 11:e0146935CrossRef
30.
Zurück zum Zitat Boccaccio A, Fiorentino M, Uva AE, Laghetti LN, Monno G (2018) Rhombicuboctahedron unit cell based scaffolds for bone regeneration: geometry optimization with a mechanobiology – driven algorithm. Mater Sci Eng, C 83:51–66CrossRef Boccaccio A, Fiorentino M, Uva AE, Laghetti LN, Monno G (2018) Rhombicuboctahedron unit cell based scaffolds for bone regeneration: geometry optimization with a mechanobiology – driven algorithm. Mater Sci Eng, C 83:51–66CrossRef
31.
Zurück zum Zitat Naddeo F, Cappetti N, Naddeo A (2017) Novel “load adaptive algorithm based” procedure for 3D printing of cancellous bone-inspired structures. Compos Part B: Eng 115:60–69CrossRef Naddeo F, Cappetti N, Naddeo A (2017) Novel “load adaptive algorithm based” procedure for 3D printing of cancellous bone-inspired structures. Compos Part B: Eng 115:60–69CrossRef
Metadaten
Titel
Geometry Modelling of Regular Scaffolds for Bone Tissue Engineering: A Computational Mechanobiological Approach
verfasst von
A. Boccaccio
M. Fiorentino
M. Gattullo
V. M. Manghisi
G. Monno
A. E. Uva
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-12346-8_50

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.