Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.04.2018 | Original Article | Ausgabe 7/2018

Environmental Earth Sciences 7/2018

GIS-based landslide susceptibility evaluation using fuzzy-AHP multi-criteria decision-making techniques in the Abha Watershed, Saudi Arabia

Zeitschrift:
Environmental Earth Sciences > Ausgabe 7/2018
Autoren:
Javed Mallick, Ram Karan Singh, Mohammed A. AlAwadh, Saiful Islam, Roohul Abad Khan, Mohamed Noor Qureshi

Abstract

Landslides are natural geological disasters causing massive destructions and loss of lives, as well as severe damage to natural resources, so it is essential to delineate the area that probably will be affected by landslides. Landslide susceptibility mapping (LSM) is making increasing implications for GIS-based spatial analysis in combination with multi-criteria evaluation (MCE) methods. It is considered to be an effective tool to understand natural disasters related to mass movements and carry out an appropriate risk assessment. This study is based on an integrated approach of GIS and statistical modelling including fuzzy analytical hierarchy process (FAHP), weighted linear combination and MCE models. In the modelling process, eleven causative factors include slope aspect, slope, rainfall, geology, geomorphology, distance from lineament, distance from drainage networks, distance from the road, land use/land cover, soil erodibility and vegetation proportion were identified for landslide susceptibility mapping. These factors were identified based on the (1) literature review, (2) the expert knowledge, (3) field observation, (4) geophysical investigation, and (5) multivariate techniques. Initially, analytical hierarchy process linked with the fuzzy set theory is used in pairwise comparisons of LSM criteria for ranking purposes. Thereafter, fuzzy membership functions were carried out to determine the criteria weights used in the development of a landslide susceptibility map. These selected thematic maps were integrated using a weighted linear combination method to create the final landslide susceptibility map. Finally, a validation of the results was carried out using a sensitivity analysis based on receiver operator curves and an overlay method using the landslide inventory map. The study results show that the weighted overlay analysis method using the FAHP and eigenvector method is a reliable technique to map landslide susceptibility areas. The landslide susceptibility areas were classified into five categories, viz. very low susceptibility, low susceptibility, moderate susceptibility, high susceptibility, and very high susceptibility. The very high and high susceptibility zones account for 15.11% area coverage. The results are useful to get an impression of the sustainability of the watershed in terms of landsliding and therefore may help decision makers in future planning and mitigation of landslide impacts.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 7/2018

Environmental Earth Sciences 7/2018 Zur Ausgabe