Skip to main content

2019 | OriginalPaper | Buchkapitel

42. Glass in Integrated Photonics

verfasst von : Juejun Hu, Lan Yang

Erschienen in: Springer Handbook of Glass

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Integrated photonics, which generically refers to the technology of combining multiple optical components on a chip-scale platform to form a functional photonic circuit, is often hailed as the optical equivalent of electronic integrated circuits, which holds the potential to revolutionize communications, computing, sensing, and imaging. Similar to microelectronic integrated circuits, which assimilate more than half the Mendeleev periodic table into the manufacturing process, integrated photonics necessarily involves many classes of materials to enable different photonic functionalities essential to photonic circuit operation. Glassy materials, with their exceptional optical and structural properties, constitute critical building blocks in state-of-the-art integrated photonic systems. The progress in these materials will help diversify the choices of materials for novel devices and components and will, therefore, push forward the development of integrated photonics with advanced functionalities. This chapter addresses the key facets of glassy materials in the context of integrated photonics, including material characteristics and processing technologies with specific application examples based on different glass composition families.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat K.C. Kao, G.A. Hockham: Dielectric-fibre surface waveguides for optical frequencies, Proc. Inst. Elect. Eng.-Lond. 113, 1151 (1966)CrossRef K.C. Kao, G.A. Hockham: Dielectric-fibre surface waveguides for optical frequencies, Proc. Inst. Elect. Eng.-Lond. 113, 1151 (1966)CrossRef
Zurück zum Zitat S.E. Miller: Integrated Optics—An introduction, Bell Syst. Tech. J. 48, 2059 (1969)CrossRef S.E. Miller: Integrated Optics—An introduction, Bell Syst. Tech. J. 48, 2059 (1969)CrossRef
Zurück zum Zitat D.W. Wilmot, E. Schinell: Optical waveguides formed by proton irradiation of fused silica, J. Opt. Soc. Am. 56, 1434 (1966)CrossRef D.W. Wilmot, E. Schinell: Optical waveguides formed by proton irradiation of fused silica, J. Opt. Soc. Am. 56, 1434 (1966)CrossRef
Zurück zum Zitat J.E. Goell, R.D. Standley: Sputtered glass waveguide for integrated optical circuits, Bell Syst. Tech. J. 48, 3445 (1969)CrossRef J.E. Goell, R.D. Standley: Sputtered glass waveguide for integrated optical circuits, Bell Syst. Tech. J. 48, 3445 (1969)CrossRef
Zurück zum Zitat J.E. Goell, R.D. Standley: Integrated optical circuits, Proc. Inst. Elect. Electron. Eng. 58, 1504 (1970)CrossRef J.E. Goell, R.D. Standley: Integrated optical circuits, Proc. Inst. Elect. Electron. Eng. 58, 1504 (1970)CrossRef
Zurück zum Zitat S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, T. Manabe: Prediction of loss minima in infrared optical fibers, Electron. Lett. 17, 775–777 (1981)CrossRef S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, T. Manabe: Prediction of loss minima in infrared optical fibers, Electron. Lett. 17, 775–777 (1981)CrossRef
Zurück zum Zitat M.E. Lines: Scattering losses in optic fiber materials. 1. A new parametrization, J. Appl. Phys. 55, 4052–4057 (1984)CrossRef M.E. Lines: Scattering losses in optic fiber materials. 1. A new parametrization, J. Appl. Phys. 55, 4052–4057 (1984)CrossRef
Zurück zum Zitat M.E. Lines: Scattering losses in optic fiber materials. 2. Numerical estimates, J. Appl. Phys. 55, 4058–4063 (1984)CrossRef M.E. Lines: Scattering losses in optic fiber materials. 2. Numerical estimates, J. Appl. Phys. 55, 4058–4063 (1984)CrossRef
Zurück zum Zitat X.C. Long, S.R.J. Brueck: Large photosensitivity in lead-silicate glasses, Appl. Phys. Lett. 74, 2110–2112 (1999)CrossRef X.C. Long, S.R.J. Brueck: Large photosensitivity in lead-silicate glasses, Appl. Phys. Lett. 74, 2110–2112 (1999)CrossRef
Zurück zum Zitat A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, R. Vallee: Direct femtosecond laser writing of waveguides in As2S3 thin films, Opt. Lett. 29, 748–750 (2004)CrossRef A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, R. Vallee: Direct femtosecond laser writing of waveguides in As2S3 thin films, Opt. Lett. 29, 748–750 (2004)CrossRef
Zurück zum Zitat S. Ramachandran, S.G. Bishop: Low loss photoinduced waveguides in rapid thermally annealed films of chalcogenide glasses, Appl. Phys. Lett. 74, 13–15 (1999)CrossRef S. Ramachandran, S.G. Bishop: Low loss photoinduced waveguides in rapid thermally annealed films of chalcogenide glasses, Appl. Phys. Lett. 74, 13–15 (1999)CrossRef
Zurück zum Zitat A.V. Kolobov, J. Tominaga: Chalcogenides Metastability and Phase Change Phenomena (Springer, Berlin 2012)CrossRef A.V. Kolobov, J. Tominaga: Chalcogenides Metastability and Phase Change Phenomena (Springer, Berlin 2012)CrossRef
Zurück zum Zitat K.M. Davis, K. Miura, N. Sugimoto, K. Hirao: Writing waveguides in glass with a femtosecond laser, Opt. Lett. 21, 1729–1731 (1996)CrossRef K.M. Davis, K. Miura, N. Sugimoto, K. Hirao: Writing waveguides in glass with a femtosecond laser, Opt. Lett. 21, 1729–1731 (1996)CrossRef
Zurück zum Zitat B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D.C. Johnson, K.O. Hill, K. Hattori, Y. Hibino, S. Gujrathi: Photosensitivity in phosphorus-doped silica glass and optical wave-guides, Appl. Phys. Lett. 65, 394–396 (1994)CrossRef B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D.C. Johnson, K.O. Hill, K. Hattori, Y. Hibino, S. Gujrathi: Photosensitivity in phosphorus-doped silica glass and optical wave-guides, Appl. Phys. Lett. 65, 394–396 (1994)CrossRef
Zurück zum Zitat A. Canciamilla, S. Grillanda, F. Morichetti, C. Ferrari, J.J. Hu, J.D. Musgraves, K. Richardson, A. Agarwal, L.C. Kimerling, A. Melloni: Photo-induced trimming of coupled ring-resonator filters and delay lines in As2S3 chalcogenide glass, Opt. Lett. 36, 4002–4004 (2011)CrossRef A. Canciamilla, S. Grillanda, F. Morichetti, C. Ferrari, J.J. Hu, J.D. Musgraves, K. Richardson, A. Agarwal, L.C. Kimerling, A. Melloni: Photo-induced trimming of coupled ring-resonator filters and delay lines in As2S3 chalcogenide glass, Opt. Lett. 36, 4002–4004 (2011)CrossRef
Zurück zum Zitat Q. Wang, E.T.F. Rogers, B. Gholipour, C.M. Wang, G.H. Yuan, J.H. Teng, N.I. Zheludev: Optically reconfigurable metasurfaces and photonic devices based on phase change materials, Nat. Photonics 10, 60–65 (2016)CrossRef Q. Wang, E.T.F. Rogers, B. Gholipour, C.M. Wang, G.H. Yuan, J.H. Teng, N.I. Zheludev: Optically reconfigurable metasurfaces and photonic devices based on phase change materials, Nat. Photonics 10, 60–65 (2016)CrossRef
Zurück zum Zitat M. Takahashi, K. Sugimoto, R. Maeda: Nanoimprint of glass materials with glassy carbon molds fabricated by focused-ion-beam etching, Jpn. J. Appl. Phys. Part 1(44), 5600–5605 (2005)CrossRef M. Takahashi, K. Sugimoto, R. Maeda: Nanoimprint of glass materials with glassy carbon molds fabricated by focused-ion-beam etching, Jpn. J. Appl. Phys. Part 1(44), 5600–5605 (2005)CrossRef
Zurück zum Zitat C. Peroz, C. Heitz, E. Barthel, E. Sondergard, V. Goletto: Glass nanostructures fabricated by soft thermal nanoimprint, J. Vac. Sci. Technol. B 25, L27–L30 (2007)CrossRef C. Peroz, C. Heitz, E. Barthel, E. Sondergard, V. Goletto: Glass nanostructures fabricated by soft thermal nanoimprint, J. Vac. Sci. Technol. B 25, L27–L30 (2007)CrossRef
Zurück zum Zitat T. Han, S. Madden, D. Bulla, B. Luther-Davies: Low loss chalcogenide glass waveguides by thermal nano-imprint lithography, Opt. Express 18, 19286–19291 (2010)CrossRef T. Han, S. Madden, D. Bulla, B. Luther-Davies: Low loss chalcogenide glass waveguides by thermal nano-imprint lithography, Opt. Express 18, 19286–19291 (2010)CrossRef
Zurück zum Zitat D.K. Armani, T.J. Kippenberg, S.M. Spillane, K.J. Vahala: Ultra-high-Q toroid microcavity on a chip, Nature 421, 925–928 (2003)CrossRef D.K. Armani, T.J. Kippenberg, S.M. Spillane, K.J. Vahala: Ultra-high-Q toroid microcavity on a chip, Nature 421, 925–928 (2003)CrossRef
Zurück zum Zitat S. Tanabe: Glass and rare-earth elements: A personal perspective, Int. J. Appl. Glass Sci. 6, 305–328 (2015)CrossRef S. Tanabe: Glass and rare-earth elements: A personal perspective, Int. J. Appl. Glass Sci. 6, 305–328 (2015)CrossRef
Zurück zum Zitat R.W. Boyd: Nonlinear Optics (Academic, Cambridge 2003) R.W. Boyd: Nonlinear Optics (Academic, Cambridge 2003)
Zurück zum Zitat D.J. Moss, R. Morandotti, A.L. Gaeta, M. Lipson: New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics, Nat. Photonics 7, 597–607 (2013)CrossRef D.J. Moss, R. Morandotti, A.L. Gaeta, M. Lipson: New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics, Nat. Photonics 7, 597–607 (2013)CrossRef
Zurück zum Zitat V.G. Ta'eed, N.J. Baker, L.B. Fu, K. Finsterbusch, M.R.E. Lamont, D.J. Moss, H.C. Nguyen, B.J. Eggleton, D.Y. Choi, S. Madden, B. Luther-Davies: Ultrafast all-optical chalcogenide glass photonic circuits, Opt. Express 15, 9205–9221 (2007)CrossRef V.G. Ta'eed, N.J. Baker, L.B. Fu, K. Finsterbusch, M.R.E. Lamont, D.J. Moss, H.C. Nguyen, B.J. Eggleton, D.Y. Choi, S. Madden, B. Luther-Davies: Ultrafast all-optical chalcogenide glass photonic circuits, Opt. Express 15, 9205–9221 (2007)CrossRef
Zurück zum Zitat M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, T. Cardinal: Thermal poling of optical glasses: Mechanisms and second-order optical properties, Int. J. Appl. Glass Sci. 3, 309–320 (2012)CrossRef M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, T. Cardinal: Thermal poling of optical glasses: Mechanisms and second-order optical properties, Int. J. Appl. Glass Sci. 3, 309–320 (2012)CrossRef
Zurück zum Zitat Y. Shen: Surface properties probed by second-harmonic and sum-frequency generation, Nature 337, 519–525 (1989)CrossRef Y. Shen: Surface properties probed by second-harmonic and sum-frequency generation, Nature 337, 519–525 (1989)CrossRef
Zurück zum Zitat M. Cazzanelli, J. Schilling: Second order optical nonlinearity in silicon by symmetry breaking, Appl. Phys. Rev. 3, 011104 (2016)CrossRef M. Cazzanelli, J. Schilling: Second order optical nonlinearity in silicon by symmetry breaking, Appl. Phys. Rev. 3, 011104 (2016)CrossRef
Zurück zum Zitat A. Hedler, S.L. Klaumunzer, W. Wesch: Amorphous silicon exhibits a glass transition, Nat. Mater. 3, 804–809 (2004)CrossRef A. Hedler, S.L. Klaumunzer, W. Wesch: Amorphous silicon exhibits a glass transition, Nat. Mater. 3, 804–809 (2004)CrossRef
Zurück zum Zitat J.T. Tippett: Optical and Electro-optical Information Processing (MIT Press, Cambridge 1965) J.T. Tippett: Optical and Electro-optical Information Processing (MIT Press, Cambridge 1965)
Zurück zum Zitat D.B. Anderson, R.R. August, W.A. Mcdowell, S.G. Plouski: Rectangular dielectric optical wave-guide of width about one-half wave-length of the transmitted light (1971) US patent US3563630A D.B. Anderson, R.R. August, W.A. Mcdowell, S.G. Plouski: Rectangular dielectric optical wave-guide of width about one-half wave-length of the transmitted light (1971) US patent US3563630A
Zurück zum Zitat D. Hülsenberg, A. Harnisch, A. Bismarck: Microstructuring of Glasses (Springer, Berlin 2008)CrossRef D. Hülsenberg, A. Harnisch, A. Bismarck: Microstructuring of Glasses (Springer, Berlin 2008)CrossRef
Zurück zum Zitat E. Mcgoldrick, P. Beaud, J. Schutz, W. Hodel, C. Deutsch, N. Thomas, S.A. Hubbard: Optical characterization of arsenic-doped silica-on-silicon wave-guides using femtosecond optical-time-domain-reflectometry techniques, Opt. Lett. 15, 1354–1356 (1990)CrossRef E. Mcgoldrick, P. Beaud, J. Schutz, W. Hodel, C. Deutsch, N. Thomas, S.A. Hubbard: Optical characterization of arsenic-doped silica-on-silicon wave-guides using femtosecond optical-time-domain-reflectometry techniques, Opt. Lett. 15, 1354–1356 (1990)CrossRef
Zurück zum Zitat R.R.A. Syms, A.S. Holmes: Reflow and burial of channel wave-guides formed in sol-gel glass on Si substrates, IEEE Photonics Technol. Lett. 5, 1077–1079 (1993)CrossRef R.R.A. Syms, A.S. Holmes: Reflow and burial of channel wave-guides formed in sol-gel glass on Si substrates, IEEE Photonics Technol. Lett. 5, 1077–1079 (1993)CrossRef
Zurück zum Zitat R. Adar, M.R. Serbin, V. Mizrahi: Less-than-1 dB per meter propagation loss of silica wave-guides measured using a ring-resonator, J. Lightwave Technol. 5, 1369–1372 (1994)CrossRef R. Adar, M.R. Serbin, V. Mizrahi: Less-than-1 dB per meter propagation loss of silica wave-guides measured using a ring-resonator, J. Lightwave Technol. 5, 1369–1372 (1994)CrossRef
Zurück zum Zitat T. Kominato, Y. Hida, M. Itoh, H. Takahashi, S. Sohma, T. Kitoh, Y. Hibino: Extremely low-loss (0.3 dB/m) and long silica-based waveguides with large width and clothoid curve connection, In: Proc. ECOC pp, 5–9 (2004) T. Kominato, Y. Hida, M. Itoh, H. Takahashi, S. Sohma, T. Kitoh, Y. Hibino: Extremely low-loss (0.3 dB/m) and long silica-based waveguides with large width and clothoid curve connection, In: Proc. ECOC pp, 5–9 (2004)
Zurück zum Zitat H. Lee, T. Chen, J. Li, O. Painter, K.J. Vahala: Ultra-low-loss optical delay line on a silicon chip, Nat. Commun. 3, 867 (2012)CrossRef H. Lee, T. Chen, J. Li, O. Painter, K.J. Vahala: Ultra-low-loss optical delay line on a silicon chip, Nat. Commun. 3, 867 (2012)CrossRef
Zurück zum Zitat T.J. Kippenberg, J. Kalkman, A. Polman, K.J. Vahala: Demonstration of an erbium-doped microdisk laser on a silicon chip, Phys. Rev. A 74, 051802(R) (2006)CrossRef T.J. Kippenberg, J. Kalkman, A. Polman, K.J. Vahala: Demonstration of an erbium-doped microdisk laser on a silicon chip, Phys. Rev. A 74, 051802(R) (2006)CrossRef
Zurück zum Zitat H. Lee, T. Chen, J. Li, K.Y. Yang, S. Jeon, O. Painter, K.J. Vahala: Chemically etched ultrahigh-Q wedge-resonator on a silicon chip, Nat. Photonics 6, 369–373 (2012)CrossRef H. Lee, T. Chen, J. Li, K.Y. Yang, S. Jeon, O. Painter, K.J. Vahala: Chemically etched ultrahigh-Q wedge-resonator on a silicon chip, Nat. Photonics 6, 369–373 (2012)CrossRef
Zurück zum Zitat J.A. Frantz, L.B. Shaw, J.S. Sanghera, I.D. Aggarwal: Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass, Opt. Express 14, 1797–1803 (2006)CrossRef J.A. Frantz, L.B. Shaw, J.S. Sanghera, I.D. Aggarwal: Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass, Opt. Express 14, 1797–1803 (2006)CrossRef
Zurück zum Zitat J.J. Hu, V. Tarasov, N. Carlie, N.N. Feng, L. Petit, A. Agarwal, K. Richardson, L. Kimerling: Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides, Opt. Express 15, 11798–11807 (2007)CrossRef J.J. Hu, V. Tarasov, N. Carlie, N.N. Feng, L. Petit, A. Agarwal, K. Richardson, L. Kimerling: Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides, Opt. Express 15, 11798–11807 (2007)CrossRef
Zurück zum Zitat J. Hu, N.-N. Feng, N. Carlie, L. Petit, J. Wang, A. Agarwal, K. Richardson, L. Kimerling: Low-loss high-index-contrast planar waveguides with graded-index cladding layers, Opt. Express 15, 14566–14572 (2007)CrossRef J. Hu, N.-N. Feng, N. Carlie, L. Petit, J. Wang, A. Agarwal, K. Richardson, L. Kimerling: Low-loss high-index-contrast planar waveguides with graded-index cladding layers, Opt. Express 15, 14566–14572 (2007)CrossRef
Zurück zum Zitat J.J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L. Kimerling: Exploration of waveguide fabrication from thermally evaporated Ge-Sb-S glass films, Opt. Mater. 30, 1560–1566 (2008)CrossRef J.J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L. Kimerling: Exploration of waveguide fabrication from thermally evaporated Ge-Sb-S glass films, Opt. Mater. 30, 1560–1566 (2008)CrossRef
Zurück zum Zitat J.J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L. Kimerling: Demonstration of chalcogenide glass racetrack microresonators, Opt. Lett. 33, 761–763 (2008)CrossRef J.J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L. Kimerling: Demonstration of chalcogenide glass racetrack microresonators, Opt. Lett. 33, 761–763 (2008)CrossRef
Zurück zum Zitat V. Mittal, A. Aghajani, L.G. Carpenter, J.C. Gates, J. Butement, P.G.R. Smith, J.S. Wilkinson, G.S. Murugan: Fabrication and characterization of high-contrast mid-infrared GeTe4 channel waveguides, Opt. Lett. 40, 2016–2019 (2015)CrossRef V. Mittal, A. Aghajani, L.G. Carpenter, J.C. Gates, J. Butement, P.G.R. Smith, J.S. Wilkinson, G.S. Murugan: Fabrication and characterization of high-contrast mid-infrared GeTe4 channel waveguides, Opt. Lett. 40, 2016–2019 (2015)CrossRef
Zurück zum Zitat Y. Gao, B. Boulard, M. Lemiti, R. Rimet, P. Loeffler, H. Poignant: Design and fabrication of lead-based fluoride glass channel waveguides, J. Non-Cryst. Solids 256, 183–188 (1999)CrossRef Y. Gao, B. Boulard, M. Lemiti, R. Rimet, P. Loeffler, H. Poignant: Design and fabrication of lead-based fluoride glass channel waveguides, J. Non-Cryst. Solids 256, 183–188 (1999)CrossRef
Zurück zum Zitat J.-L. Adam, E. Lebrasseur, B. Boulard, B. Jacquier, G. Fonteneau, Y. Gao, R. Sramek, C. Legein, S. Guy: Rare-earth-doped fluoride-glass channel waveguides for optical amplification. In: Proc. Symp. Integr. Optoelectron (2000) pp. 130–138 J.-L. Adam, E. Lebrasseur, B. Boulard, B. Jacquier, G. Fonteneau, Y. Gao, R. Sramek, C. Legein, S. Guy: Rare-earth-doped fluoride-glass channel waveguides for optical amplification. In: Proc. Symp. Integr. Optoelectron (2000) pp. 130–138
Zurück zum Zitat C.C. Evans, C.Y. Liu, J. Suntivich: Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process, Opt. Express 23, 11160–11169 (2015)CrossRef C.C. Evans, C.Y. Liu, J. Suntivich: Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process, Opt. Express 23, 11160–11169 (2015)CrossRef
Zurück zum Zitat N.Y. Duan, H.T. Lin, L. Li, J.J. Hu, L. Bi, H.P. Lu, X.L. Weng, J.L. Xie, L.J. Deng: ZrO2-TiO2 thin films: A new material system for mid-infrared integrated photonics, Opt. Mater. Express 3, 1537–1545 (2013)CrossRef N.Y. Duan, H.T. Lin, L. Li, J.J. Hu, L. Bi, H.P. Lu, X.L. Weng, J.L. Xie, L.J. Deng: ZrO2-TiO2 thin films: A new material system for mid-infrared integrated photonics, Opt. Mater. Express 3, 1537–1545 (2013)CrossRef
Zurück zum Zitat F.P. Jiang, L. Bi, H.T. Lin, Q.Y. Du, J.J. Hu, A.R. Guo, C.Y. Li, J.L. Xie, L.J. Deng: Microstructure, optical properties, and optical resonators of Hf1-xTixO2 amorphous thin films, Opt. Mater. Express 6, 1871–1880 (2016)CrossRef F.P. Jiang, L. Bi, H.T. Lin, Q.Y. Du, J.J. Hu, A.R. Guo, C.Y. Li, J.L. Xie, L.J. Deng: Microstructure, optical properties, and optical resonators of Hf1-xTixO2 amorphous thin films, Opt. Mater. Express 6, 1871–1880 (2016)CrossRef
Zurück zum Zitat W.D. Li, W. Wu, R.S. Williams: Combined helium ion beam and nanoimprint lithography attains 4 nm half-pitch dense patterns, J. Vac. Sci. Technol. B 30, 06F304 (2012)CrossRef W.D. Li, W. Wu, R.S. Williams: Combined helium ion beam and nanoimprint lithography attains 4 nm half-pitch dense patterns, J. Vac. Sci. Technol. B 30, 06F304 (2012)CrossRef
Zurück zum Zitat F. Hua, Y.G. Sun, A. Gaur, M.A. Meitl, L. Bilhaut, L. Rotkina, J.F. Wang, P. Geil, M. Shim, J.A. Rogers, A. Shim: Polymer imprint lithography with molecular-scale resolution, Nano Lett. 4, 2467–2471 (2004)CrossRef F. Hua, Y.G. Sun, A. Gaur, M.A. Meitl, L. Bilhaut, L. Rotkina, J.F. Wang, P. Geil, M. Shim, J.A. Rogers, A. Shim: Polymer imprint lithography with molecular-scale resolution, Nano Lett. 4, 2467–2471 (2004)CrossRef
Zurück zum Zitat H. Schift, A. Kristensen: Nanoimprint lithography—patterning of resists using molding. In: Springer Handbook of Nanotechnology, ed. by B. Bhushan (Springer, Berlin 2010) pp. 271–312CrossRef H. Schift, A. Kristensen: Nanoimprint lithography—patterning of resists using molding. In: Springer Handbook of Nanotechnology, ed. by B. Bhushan (Springer, Berlin 2010) pp. 271–312CrossRef
Zurück zum Zitat Z.G. Man, W.J. Pan, D. Furniss, T.M. Benson, A.B. Seddon, T. Kohoutek, J. Orava, T. Wagner: Embossing of chalcogenide glasses: Monomode rib optical waveguides in evaporated thin films, Opt. Lett. 34, 1234–1236 (2009)CrossRef Z.G. Man, W.J. Pan, D. Furniss, T.M. Benson, A.B. Seddon, T. Kohoutek, J. Orava, T. Wagner: Embossing of chalcogenide glasses: Monomode rib optical waveguides in evaporated thin films, Opt. Lett. 34, 1234–1236 (2009)CrossRef
Zurück zum Zitat T. Han, S. Madden, S. Debbarma, B. Luther-Davies: Improved method for hot embossing As2S3 waveguides employing a thermally stable chalcogenide coating, Opt. Express 19, 25447–25453 (2011)CrossRef T. Han, S. Madden, S. Debbarma, B. Luther-Davies: Improved method for hot embossing As2S3 waveguides employing a thermally stable chalcogenide coating, Opt. Express 19, 25447–25453 (2011)CrossRef
Zurück zum Zitat A.B. Seddon, W.J. Pan, D. Furniss, C.A. Miller, H. Rowe, D. Zhang, E. McBrearty, Y. Zhang, A. Loni, P. Sewell, T.M. Benson: Fine embossing of chalcogenide glasses—A new fabrication route for photonic integrated circuits, J. Non-Cryst. Solids 352, 2515–2520 (2006)CrossRef A.B. Seddon, W.J. Pan, D. Furniss, C.A. Miller, H. Rowe, D. Zhang, E. McBrearty, Y. Zhang, A. Loni, P. Sewell, T.M. Benson: Fine embossing of chalcogenide glasses—A new fabrication route for photonic integrated circuits, J. Non-Cryst. Solids 352, 2515–2520 (2006)CrossRef
Zurück zum Zitat M. Solmaz, H. Park, C.K. Madsen, X. Cheng: Patterning chalcogenide glass by direct resist-free thermal nanoimprint, J. Vac. Sci. Technol. B 26, 606–610 (2008)CrossRef M. Solmaz, H. Park, C.K. Madsen, X. Cheng: Patterning chalcogenide glass by direct resist-free thermal nanoimprint, J. Vac. Sci. Technol. B 26, 606–610 (2008)CrossRef
Zurück zum Zitat M.T. Li, H. Tan, L. Chen, J. Wang, S.Y. Chou: Large area direct nanoimprinting of SiO2-TiO2 gel gratings for optical applications, J. Vac. Sci. Technol. B 21, 660–663 (2003)CrossRef M.T. Li, H. Tan, L. Chen, J. Wang, S.Y. Chou: Large area direct nanoimprinting of SiO2-TiO2 gel gratings for optical applications, J. Vac. Sci. Technol. B 21, 660–663 (2003)CrossRef
Zurück zum Zitat M. Okinaka, K. Tsukagoshi, Y. Aoyagi: Direct nanoimprint of inorganic–organic hybrid glass, J. Vac. Sci. Technol. B 24, 1402–1404 (2006)CrossRef M. Okinaka, K. Tsukagoshi, Y. Aoyagi: Direct nanoimprint of inorganic–organic hybrid glass, J. Vac. Sci. Technol. B 24, 1402–1404 (2006)CrossRef
Zurück zum Zitat Y. Zou, L. Moreel, H.T. Lin, J. Zhou, L. Li, S. Danto, J.D. Musgraves, E. Koontz, K. Richardson, K.D. Dobson, R. Birkmire, J.J. Hu: Solution processing and resist-free nanoimprint fabrication of thin film chalcogenide glass devices: Inorganic–organic hybrid photonic integration, Adv. Opt. Mater. 2, 759–764 (2014)CrossRef Y. Zou, L. Moreel, H.T. Lin, J. Zhou, L. Li, S. Danto, J.D. Musgraves, E. Koontz, K. Richardson, K.D. Dobson, R. Birkmire, J.J. Hu: Solution processing and resist-free nanoimprint fabrication of thin film chalcogenide glass devices: Inorganic–organic hybrid photonic integration, Adv. Opt. Mater. 2, 759–764 (2014)CrossRef
Zurück zum Zitat H. Mekaru, T. Tsuchida, J. Uegaki, M. Yasui, M. Yamashita, M. Takahashi: Micro lens imprinted on Pyrex glass by using amorphous Ni-P alloy mold, Microelectron. Eng. 85, 873–876 (2008)CrossRef H. Mekaru, T. Tsuchida, J. Uegaki, M. Yasui, M. Yamashita, M. Takahashi: Micro lens imprinted on Pyrex glass by using amorphous Ni-P alloy mold, Microelectron. Eng. 85, 873–876 (2008)CrossRef
Zurück zum Zitat C. Tsay, Y.L. Zha, C.B. Arnold: Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides, Opt. Express 18, 26744–26753 (2010)CrossRef C. Tsay, Y.L. Zha, C.B. Arnold: Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides, Opt. Express 18, 26744–26753 (2010)CrossRef
Zurück zum Zitat Y.L. Zha, M. Waldmann, C.B. Arnold: A review on solution processing of chalcogenide glasses for optical components, Opt. Mater. Express 3, 1259–1272 (2013)CrossRef Y.L. Zha, M. Waldmann, C.B. Arnold: A review on solution processing of chalcogenide glasses for optical components, Opt. Mater. Express 3, 1259–1272 (2013)CrossRef
Zurück zum Zitat H. Krause, W. Mönch, H. Zappe: Replicated, high-aspect-ratio micro-optical components fabricated from inorganic solgel materials, Appl. Opt. 45, 4843–4849 (2006)CrossRef H. Krause, W. Mönch, H. Zappe: Replicated, high-aspect-ratio micro-optical components fabricated from inorganic solgel materials, Appl. Opt. 45, 4843–4849 (2006)CrossRef
Zurück zum Zitat V.K. Parashar, A. Sayah, M. Pfeffer, F. Schoch, J. Gobrecht, M.A.M. Gijs: Nano-replication of diffractive optical elements in sol-gel derived glasses, Microelectron. Eng. 67/68, 710–719 (2003)CrossRef V.K. Parashar, A. Sayah, M. Pfeffer, F. Schoch, J. Gobrecht, M.A.M. Gijs: Nano-replication of diffractive optical elements in sol-gel derived glasses, Microelectron. Eng. 67/68, 710–719 (2003)CrossRef
Zurück zum Zitat M.T. Gale: Replication technology for micro-optics and optical microsystems, Proc. SPIE 5177, 113–120 (2003)CrossRef M.T. Gale: Replication technology for micro-optics and optical microsystems, Proc. SPIE 5177, 113–120 (2003)CrossRef
Zurück zum Zitat X.C. Yuan, W.X. Yu, M. He, J. Bu, W.C. Cheong, H.B. Niu, X. Peng: Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2-TiO2 sol-gel glass, Appl. Phys. Lett. 86, 114102 (2005)CrossRef X.C. Yuan, W.X. Yu, M. He, J. Bu, W.C. Cheong, H.B. Niu, X. Peng: Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2-TiO2 sol-gel glass, Appl. Phys. Lett. 86, 114102 (2005)CrossRef
Zurück zum Zitat Y. Huang, L.J. Liu, M. Johnson, A.C. Hillier, M. Lu: One-step sol-gel imprint lithography for guided-mode resonance structures, Nanotechnology 27, 095–302 (2016) Y. Huang, L.J. Liu, M. Johnson, A.C. Hillier, M. Lu: One-step sol-gel imprint lithography for guided-mode resonance structures, Nanotechnology 27, 095–302 (2016)
Zurück zum Zitat S.K. Smoukov, K.J.M. Bishop, R. Klajn, C.J. Campbell, B.A. Grzybowski: Cutting into solids with micropatterned gels, Adv. Mater. 17, 1361 (2005)CrossRef S.K. Smoukov, K.J.M. Bishop, R. Klajn, C.J. Campbell, B.A. Grzybowski: Cutting into solids with micropatterned gels, Adv. Mater. 17, 1361 (2005)CrossRef
Zurück zum Zitat B.A. Grzybowski, K.J.M. Bishop: Micro- and nanoprinting into solids using reaction-diffusion etching and hydrogel stamps, Small 5, 22–27 (2009)CrossRef B.A. Grzybowski, K.J.M. Bishop: Micro- and nanoprinting into solids using reaction-diffusion etching and hydrogel stamps, Small 5, 22–27 (2009)CrossRef
Zurück zum Zitat G.D. Marshall, A. Politi, J.C.F. Matthews, P. Dekker, M. Ams, M.J. Withford, J.L. O'Brien: Laser written waveguide photonic quantum circuits, Opt. Express 17, 12546–12554 (2009)CrossRef G.D. Marshall, A. Politi, J.C.F. Matthews, P. Dekker, M. Ams, M.J. Withford, J.L. O'Brien: Laser written waveguide photonic quantum circuits, Opt. Express 17, 12546–12554 (2009)CrossRef
Zurück zum Zitat C. Corbari, A. Champion, M. Gecevicius, M. Beresna, Y. Bellouard, P.G. Kazansky: Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass, Opt. Express 21, 3946–3958 (2013)CrossRef C. Corbari, A. Champion, M. Gecevicius, M. Beresna, Y. Bellouard, P.G. Kazansky: Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass, Opt. Express 21, 3946–3958 (2013)CrossRef
Zurück zum Zitat B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tunnermann: Femtosecond, picosecond and nanosecond laser ablation of solids, Appl. Phys. A 63, 109–115 (1996)CrossRef B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tunnermann: Femtosecond, picosecond and nanosecond laser ablation of solids, Appl. Phys. A 63, 109–115 (1996)CrossRef
Zurück zum Zitat H. Ebendorff-Heidepriem: Laser writing of waveguides in photosensitive glasses, Opt. Mater. 25, 109–115 (2004)CrossRef H. Ebendorff-Heidepriem: Laser writing of waveguides in photosensitive glasses, Opt. Mater. 25, 109–115 (2004)CrossRef
Zurück zum Zitat A.K. Mairaj, P. Hua, H.N. Rutt, D.W. Hewak: Fabrication and characterization of continuous wave direct UV (lambda = 244 nm) written channel waveguides in chalcogenide (Ga:La:S) glass, J. Lightwave Technol. 20, 1578–1584 (2002)CrossRef A.K. Mairaj, P. Hua, H.N. Rutt, D.W. Hewak: Fabrication and characterization of continuous wave direct UV (lambda = 244 nm) written channel waveguides in chalcogenide (Ga:La:S) glass, J. Lightwave Technol. 20, 1578–1584 (2002)CrossRef
Zurück zum Zitat W.X. Yu, X.C. Yuan, N.Q. Ngo, W.X. Qui, W.C. Cheong, V. Koudriachov: Single-step fabrication of continuous surface relief micro-optical elements in hybrid sol-gel glass by laser direct writing, Opt. Express 10, 443–448 (2002)CrossRef W.X. Yu, X.C. Yuan, N.Q. Ngo, W.X. Qui, W.C. Cheong, V. Koudriachov: Single-step fabrication of continuous surface relief micro-optical elements in hybrid sol-gel glass by laser direct writing, Opt. Express 10, 443–448 (2002)CrossRef
Zurück zum Zitat M. Svalgaard, C.V. Poulsen, A. Bjarklev, O. Poulsen: Direct UV writing of buried singlemode channel wave-guides in Ge-doped silica films, Electron. Lett. 30, 1401–1403 (1994)CrossRef M. Svalgaard, C.V. Poulsen, A. Bjarklev, O. Poulsen: Direct UV writing of buried singlemode channel wave-guides in Ge-doped silica films, Electron. Lett. 30, 1401–1403 (1994)CrossRef
Zurück zum Zitat M. Svalgaard, M. Kristensen: Directly UV written silica-on-silicon planar waveguides with low loss, Electron. Lett. 33, 861–863 (1997)CrossRef M. Svalgaard, M. Kristensen: Directly UV written silica-on-silicon planar waveguides with low loss, Electron. Lett. 33, 861–863 (1997)CrossRef
Zurück zum Zitat C.B.E. Gawith, A. Fu, T. Bhutta, P. Hua, D.P. Shepherd, E.R. Taylor, P.G.R. Smith, D. Milanese, M. Ferraris: Direct-UV-written buried channel waveguide lasers in direct-bonded intersubstrate ion-exchanged neodymium-doped germano-borosilicate glass, Appl. Phys. Lett. 81, 3522–3524 (2002)CrossRef C.B.E. Gawith, A. Fu, T. Bhutta, P. Hua, D.P. Shepherd, E.R. Taylor, P.G.R. Smith, D. Milanese, M. Ferraris: Direct-UV-written buried channel waveguide lasers in direct-bonded intersubstrate ion-exchanged neodymium-doped germano-borosilicate glass, Appl. Phys. Lett. 81, 3522–3524 (2002)CrossRef
Zurück zum Zitat T. Anderson, L. Petit, N. Carlie, J. Choi, J. Hu, A. Agarwal, L. Kimerling, K. Richardson, M. Richardson: Femtosecond laser photo-response of Ge23Sb7S70 films, Opt. Express 16, 20081–20098 (2008)CrossRef T. Anderson, L. Petit, N. Carlie, J. Choi, J. Hu, A. Agarwal, L. Kimerling, K. Richardson, M. Richardson: Femtosecond laser photo-response of Ge23Sb7S70 films, Opt. Express 16, 20081–20098 (2008)CrossRef
Zurück zum Zitat S. Ramachandran, S.G. Bishop, J.P. Guo, D.J. Brady: Fabrication of holographic gratings in As2S3 glass by photoexpansion and photodarkening, IEEE Photonics Technol. Lett. 8, 1041–1043 (1996)CrossRef S. Ramachandran, S.G. Bishop, J.P. Guo, D.J. Brady: Fabrication of holographic gratings in As2S3 glass by photoexpansion and photodarkening, IEEE Photonics Technol. Lett. 8, 1041–1043 (1996)CrossRef
Zurück zum Zitat I. Antonov, F. Bass, Y. Kaganovskii, M. Rosenbluh, A. Lipovskii: Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam, J. Appl. Phys. 93, 2343–2348 (2003)CrossRef I. Antonov, F. Bass, Y. Kaganovskii, M. Rosenbluh, A. Lipovskii: Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam, J. Appl. Phys. 93, 2343–2348 (2003)CrossRef
Zurück zum Zitat S. Nolte, M. Will, J. Burghoff, A. Tuennermann: Femtosecond waveguide writing: A new avenue to three-dimensional integrated optics, Appl. Phys. A 77, 109–111 (2003)CrossRef S. Nolte, M. Will, J. Burghoff, A. Tuennermann: Femtosecond waveguide writing: A new avenue to three-dimensional integrated optics, Appl. Phys. A 77, 109–111 (2003)CrossRef
Zurück zum Zitat J. Lapointe, M. Gagne, M.J. Li, R. Kashyap: Making smart phones smarter with photonics, Opt. Express 22, 15473–15483 (2014)CrossRef J. Lapointe, M. Gagne, M.J. Li, R. Kashyap: Making smart phones smarter with photonics, Opt. Express 22, 15473–15483 (2014)CrossRef
Zurück zum Zitat J. Lapointe, F. Parent, E.S. de Lima, S. Loranger, R. Kashyap: Toward the integration of optical sensors in smartphone screens using femtosecond laser writing, Opt. Lett. 40, 5654–5657 (2015)CrossRef J. Lapointe, F. Parent, E.S. de Lima, S. Loranger, R. Kashyap: Toward the integration of optical sensors in smartphone screens using femtosecond laser writing, Opt. Lett. 40, 5654–5657 (2015)CrossRef
Zurück zum Zitat M. Beresna, M. Gecevicius, P.G. Kazansky: Ultrafast laser direct writing and nanostructuring in transparent materials, Adv. Opt. Photonics 6, 293–339 (2014)CrossRef M. Beresna, M. Gecevicius, P.G. Kazansky: Ultrafast laser direct writing and nanostructuring in transparent materials, Adv. Opt. Photonics 6, 293–339 (2014)CrossRef
Zurück zum Zitat R.R. Gattass, E. Mazur: Femtosecond laser micromachining in transparent materials, Nat. Photonics 2, 219–225 (2008)CrossRef R.R. Gattass, E. Mazur: Femtosecond laser micromachining in transparent materials, Nat. Photonics 2, 219–225 (2008)CrossRef
Zurück zum Zitat R. Osellame, G. Cerullo, R. Ramponi: Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer, Berlin 2012)CrossRef R. Osellame, G. Cerullo, R. Ramponi: Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer, Berlin 2012)CrossRef
Zurück zum Zitat G.D. Valle, R. Osellame, P. Laporta: Micromachining of photonic devices by femtosecond laser pulses, J. Opt. A Pure Appl. Opt. 11, 013001 (2009)CrossRef G.D. Valle, R. Osellame, P. Laporta: Micromachining of photonic devices by femtosecond laser pulses, J. Opt. A Pure Appl. Opt. 11, 013001 (2009)CrossRef
Zurück zum Zitat M. Ams, G.D. Marshall, P. Dekker, J.A. Piper, M.J. Withford: Ultrafast laser written active devices, Laser Photonics Rev. 3, 535–544 (2009)CrossRef M. Ams, G.D. Marshall, P. Dekker, J.A. Piper, M.J. Withford: Ultrafast laser written active devices, Laser Photonics Rev. 3, 535–544 (2009)CrossRef
Zurück zum Zitat J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, B. Poumellec: Anatomy of a femtosecond laser processed silica waveguide, Opt. Mater. Express 1, 998–1008 (2011)CrossRef J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, B. Poumellec: Anatomy of a femtosecond laser processed silica waveguide, Opt. Mater. Express 1, 998–1008 (2011)CrossRef
Zurück zum Zitat F. Watt, M.B.H. Breese, A.A. Bettiol, J.A. van Kan: Proton beam writing, Mater. Today 10, 20–29 (2007)CrossRef F. Watt, M.B.H. Breese, A.A. Bettiol, J.A. van Kan: Proton beam writing, Mater. Today 10, 20–29 (2007)CrossRef
Zurück zum Zitat A.A. Bettiol, S.Y. Chiam, E.J. Teo, C. Udalagama, S.F. Chan, S.K. Hoi, J.A. van Kan, M.B.H. Breese, F. Watt: Advanced applications in microphotonics using proton beam writing, Nucl. Instr. Meth. Phys. Res. B 267, 2280–2284 (2009)CrossRef A.A. Bettiol, S.Y. Chiam, E.J. Teo, C. Udalagama, S.F. Chan, S.K. Hoi, J.A. van Kan, M.B.H. Breese, F. Watt: Advanced applications in microphotonics using proton beam writing, Nucl. Instr. Meth. Phys. Res. B 267, 2280–2284 (2009)CrossRef
Zurück zum Zitat Q. An, C. Cheng, S.K. Vanga, A.A. Bettiol, F. Chen: Proton beam writing of chalcogenide glass: A new approach for fabrication of channel waveguides at telecommunication O and C bands, J. Lightwave Technol. 32, 4365–4369 (2014)CrossRef Q. An, C. Cheng, S.K. Vanga, A.A. Bettiol, F. Chen: Proton beam writing of chalcogenide glass: A new approach for fabrication of channel waveguides at telecommunication O and C bands, J. Lightwave Technol. 32, 4365–4369 (2014)CrossRef
Zurück zum Zitat A.A. Bettiol, S.V. Rao, E.J. Teo, J.A. van Kan, F. Watt: Fabrication of buried channel waveguides in photosensitive glass using proton beam writing, Appl. Phys. Lett. 88, 171106 (2006)CrossRef A.A. Bettiol, S.V. Rao, E.J. Teo, J.A. van Kan, F. Watt: Fabrication of buried channel waveguides in photosensitive glass using proton beam writing, Appl. Phys. Lett. 88, 171106 (2006)CrossRef
Zurück zum Zitat K. Liu, E.Y.B. Pun, T.C. Sum, A.A. Bettiol, J.A. van Kan, F. Watt: Erbium-doped waveguide amplifiers fabricated using focused proton beam writing, Appl. Phys. Lett. 84, 684–686 (2004)CrossRef K. Liu, E.Y.B. Pun, T.C. Sum, A.A. Bettiol, J.A. van Kan, F. Watt: Erbium-doped waveguide amplifiers fabricated using focused proton beam writing, Appl. Phys. Lett. 84, 684–686 (2004)CrossRef
Zurück zum Zitat Y. Handa, T. Suhara, H. Nishihara, J. Koyama: Microgratings for high-efficiency guided-beam deflection fabricated by electron-beam direct-writing techniques, Appl. Opt. 19, 2842–2847 (1980)CrossRef Y. Handa, T. Suhara, H. Nishihara, J. Koyama: Microgratings for high-efficiency guided-beam deflection fabricated by electron-beam direct-writing techniques, Appl. Opt. 19, 2842–2847 (1980)CrossRef
Zurück zum Zitat T. Suhara, H. Nishihara, J. Koyama: Electron-beam-induced refractive-index change of amorphous-semiconductors, Jpn. J. Appl. Phys. 14, 1079–1080 (1975)CrossRef T. Suhara, H. Nishihara, J. Koyama: Electron-beam-induced refractive-index change of amorphous-semiconductors, Jpn. J. Appl. Phys. 14, 1079–1080 (1975)CrossRef
Zurück zum Zitat E.-B. Kley, M. Cumme, L.-C. Wittig, C. Wu: Adapting existing e-beam writers to write HEBS-glass gray-scale masks. In: Proc. Optoelectron. 99, Integr. Optoelectron. Devices (1999) pp. 35–45 E.-B. Kley, M. Cumme, L.-C. Wittig, C. Wu: Adapting existing e-beam writers to write HEBS-glass gray-scale masks. In: Proc. Optoelectron. 99, Integr. Optoelectron. Devices (1999) pp. 35–45
Zurück zum Zitat S. Rizvi: Handbook of Photomask Manufacturing Technology (CRC, Boca Raton 2005) S. Rizvi: Handbook of Photomask Manufacturing Technology (CRC, Boca Raton 2005)
Zurück zum Zitat M. Baba, T. Ikeda: A new inorganic electron resist using amorphous Wo3 film, Jpn. J. Appl. Phys. 20, L149–L152 (1981)CrossRef M. Baba, T. Ikeda: A new inorganic electron resist using amorphous Wo3 film, Jpn. J. Appl. Phys. 20, L149–L152 (1981)CrossRef
Zurück zum Zitat J. Stowers, D.A. Keszler: High resolution, high sensitivity inorganic resists, Microelectron. Eng. 86, 730–733 (2009)CrossRef J. Stowers, D.A. Keszler: High resolution, high sensitivity inorganic resists, Microelectron. Eng. 86, 730–733 (2009)CrossRef
Zurück zum Zitat M. Kang, S. Kim, J. Jung, H. Kim, I. Shin, C. Jeon, H. Lee: Inorganic resist materials based on zirconium phosphonate for atomic force microscope lithography, Proc. SPIE 9051, 905110 (2014)CrossRef M. Kang, S. Kim, J. Jung, H. Kim, I. Shin, C. Jeon, H. Lee: Inorganic resist materials based on zirconium phosphonate for atomic force microscope lithography, Proc. SPIE 9051, 905110 (2014)CrossRef
Zurück zum Zitat M.S.M. Saifullah, H. Namatsu, T. Yamaguchi, K. Yamazaki, K. Kurihara: Spin-coatable Al2O3 resists in electron beam nanolithography, Proc. SPIE 3678, 633–642 (1999)CrossRef M.S.M. Saifullah, H. Namatsu, T. Yamaguchi, K. Yamazaki, K. Kurihara: Spin-coatable Al2O3 resists in electron beam nanolithography, Proc. SPIE 3678, 633–642 (1999)CrossRef
Zurück zum Zitat K.D. Kolwicz, M.S. Chang: Silver-halide chalcogenide glass inorganic resists for x-ray-lithography, J. Electrochem. Soc. 127, 135–138 (1980)CrossRef K.D. Kolwicz, M.S. Chang: Silver-halide chalcogenide glass inorganic resists for x-ray-lithography, J. Electrochem. Soc. 127, 135–138 (1980)CrossRef
Zurück zum Zitat H. Jain, M. Vlcek: Glasses for lithography, J. Non-Cryst. Solids 354, 1401–1406 (2008)CrossRef H. Jain, M. Vlcek: Glasses for lithography, J. Non-Cryst. Solids 354, 1401–1406 (2008)CrossRef
Zurück zum Zitat A. Yoshikawa, O. Ochi, H. Nagai, Y. Mizushima: New inorganic electron resist of high contrast, Appl. Phys. Lett. 31, 161–163 (1977)CrossRef A. Yoshikawa, O. Ochi, H. Nagai, Y. Mizushima: New inorganic electron resist of high contrast, Appl. Phys. Lett. 31, 161–163 (1977)CrossRef
Zurück zum Zitat A. Yoshikawa, O. Ochi, Y. Mizushima: Dry development of Se-Ge inorganic photoresist, Appl. Phys. Lett. 36, 107–109 (1980)CrossRef A. Yoshikawa, O. Ochi, Y. Mizushima: Dry development of Se-Ge inorganic photoresist, Appl. Phys. Lett. 36, 107–109 (1980)CrossRef
Zurück zum Zitat K. Balasubramanyam, L. Karapiperis, C.A. Lee, A.L. Ruoff: An inorganic resist for ion-beam microfabrication, J. Vac. Sci. Technol. 19, 18–22 (1981)CrossRef K. Balasubramanyam, L. Karapiperis, C.A. Lee, A.L. Ruoff: An inorganic resist for ion-beam microfabrication, J. Vac. Sci. Technol. 19, 18–22 (1981)CrossRef
Zurück zum Zitat A. Kovalskiy, J. Cech, M. Vlcek, C.M. Waits, M. Dubey, W.R. Heffner, H. Jain: Chalcogenide glass e-beam and photoresists for ultrathin grayscale patterning, J. Micro/Nanolith., MEMS MOEMS 8, 043012 (2009)CrossRef A. Kovalskiy, J. Cech, M. Vlcek, C.M. Waits, M. Dubey, W.R. Heffner, H. Jain: Chalcogenide glass e-beam and photoresists for ultrathin grayscale patterning, J. Micro/Nanolith., MEMS MOEMS 8, 043012 (2009)CrossRef
Zurück zum Zitat V. Lyubin: Chalcogenide glassy photoresists: History of development, properties, and applications, Phys. Status Solidi (b) 246, 1758–1767 (2009)CrossRef V. Lyubin: Chalcogenide glassy photoresists: History of development, properties, and applications, Phys. Status Solidi (b) 246, 1758–1767 (2009)CrossRef
Zurück zum Zitat I. Utke, S. Moshkalev, P. Russell: Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications (Oxford Univ. Press, Oxford 2012) I. Utke, S. Moshkalev, P. Russell: Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications (Oxford Univ. Press, Oxford 2012)
Zurück zum Zitat C.A. Volkert, A.M. Minor: Focused ion beam microscopy and micromachining, MRS Bulletin 32, 389–399 (2007)CrossRef C.A. Volkert, A.M. Minor: Focused ion beam microscopy and micromachining, MRS Bulletin 32, 389–399 (2007)CrossRef
Zurück zum Zitat R.M. Langford, P.M. Nellen, J. Gierak, Y. Fu: Focused ion beam micro-and nanoengineering, MRS Bulletin 32, 417–423 (2007)CrossRef R.M. Langford, P.M. Nellen, J. Gierak, Y. Fu: Focused ion beam micro-and nanoengineering, MRS Bulletin 32, 417–423 (2007)CrossRef
Zurück zum Zitat T. Izawa, H. Nakagome: Optical waveguide formed by electrically induced migration of ions in glass plates, Appl. Phys. Lett. 21, 584 (1972)CrossRef T. Izawa, H. Nakagome: Optical waveguide formed by electrically induced migration of ions in glass plates, Appl. Phys. Lett. 21, 584 (1972)CrossRef
Zurück zum Zitat T.G. Giallorenzi, E.J. West, R. Kirk, R. Ginther, R.A. Andrews: Optical waveguides formed by thermal migration of ions in glass, Appl. Opt. 12, 1240–1245 (1973)CrossRef T.G. Giallorenzi, E.J. West, R. Kirk, R. Ginther, R.A. Andrews: Optical waveguides formed by thermal migration of ions in glass, Appl. Opt. 12, 1240–1245 (1973)CrossRef
Zurück zum Zitat E. Fogret, G. Fonteneau, J. Lucas, R. Rimet: Fluoride glass planar optical waveguides by anionic exchange, Opt. Mater. 5, 87–95 (1996)CrossRef E. Fogret, G. Fonteneau, J. Lucas, R. Rimet: Fluoride glass planar optical waveguides by anionic exchange, Opt. Mater. 5, 87–95 (1996)CrossRef
Zurück zum Zitat E. Josse, G. Fonteneau, J. Lucas: Low-phonon waveguides made by F-/Cl- exchange on fluoride glasses, Mater. Res. Bull. 32, 1139–1146 (1997)CrossRef E. Josse, G. Fonteneau, J. Lucas: Low-phonon waveguides made by F-/Cl- exchange on fluoride glasses, Mater. Res. Bull. 32, 1139–1146 (1997)CrossRef
Zurück zum Zitat J.L. Jackel: Glass waveguides made using low melting point nitrate mixtures, Appl. Opt. 27, 472–475 (1988)CrossRef J.L. Jackel: Glass waveguides made using low melting point nitrate mixtures, Appl. Opt. 27, 472–475 (1988)CrossRef
Zurück zum Zitat A. Tervonen, B.R. West, S. Honkanen: Ion-exchanged glass waveguide technology: A review, Opt. Eng. 50, 071107 (2011)CrossRef A. Tervonen, B.R. West, S. Honkanen: Ion-exchanged glass waveguide technology: A review, Opt. Eng. 50, 071107 (2011)CrossRef
Zurück zum Zitat P. Camy, J.E. Roman, F.W. Willems, M. Hempstead, J.C. van der Plaats, C. Prel, A. Beguin, A.M.J. Koonen, J.S. Wilkinson, C. Lerminiaux: Ion-exchanged planar lossless splitter at 1.5 \(\upmu\)m, Electron. Lett. 32, 321–323 (1996)CrossRef P. Camy, J.E. Roman, F.W. Willems, M. Hempstead, J.C. van der Plaats, C. Prel, A. Beguin, A.M.J. Koonen, J.S. Wilkinson, C. Lerminiaux: Ion-exchanged planar lossless splitter at 1.5 \(\upmu\)m, Electron. Lett. 32, 321–323 (1996)CrossRef
Zurück zum Zitat S. Das, D.F. Geraghty, S. Honkanen, N. Peyghambarian: MMI splitters by ion-exchange in glass. In: Proc. Symp. Integr. Optoelectron (2000) pp. 239–247 S. Das, D.F. Geraghty, S. Honkanen, N. Peyghambarian: MMI splitters by ion-exchange in glass. In: Proc. Symp. Integr. Optoelectron (2000) pp. 239–247
Zurück zum Zitat A. Tervonen, P. Poyhonen, S. Honkanen, M. Tahkokorpi: A guided-wave Mach–Zehnder interferometer structure for wavelength multiplexing, IEEE Photonics Technol. Lett. 3, 516–518 (1991)CrossRef A. Tervonen, P. Poyhonen, S. Honkanen, M. Tahkokorpi: A guided-wave Mach–Zehnder interferometer structure for wavelength multiplexing, IEEE Photonics Technol. Lett. 3, 516–518 (1991)CrossRef
Zurück zum Zitat B. Buchold, E. Voges: Polarisation insensitive arrayed-waveguide grating multiplexers with ion-exchanged waveguides in glass, Electron. Lett. 32, 2248–2250 (1996)CrossRef B. Buchold, E. Voges: Polarisation insensitive arrayed-waveguide grating multiplexers with ion-exchanged waveguides in glass, Electron. Lett. 32, 2248–2250 (1996)CrossRef
Zurück zum Zitat A. Yiyan, W.K. Chan, T.J. Gmitter, L.T. Florez, J.L. Jackel, E. Yablonovitch, R. Bhat, J.P. Harbison: Grafted GaAs detectors on lithium-niobate and glass optical wave-guides, IEEE Photonics Technol. Lett. 1, 379–380 (1989)CrossRef A. Yiyan, W.K. Chan, T.J. Gmitter, L.T. Florez, J.L. Jackel, E. Yablonovitch, R. Bhat, J.P. Harbison: Grafted GaAs detectors on lithium-niobate and glass optical wave-guides, IEEE Photonics Technol. Lett. 1, 379–380 (1989)CrossRef
Zurück zum Zitat M. Nannini, E. Grondin, A. Gorin, V. Aimez, J.E. Broquin: Hybridization of III–V semiconductor membranes onto ion-exchanged waveguides, IEEE J. Sel. Top. Quantum Electron. 11, 547–554 (2005)CrossRef M. Nannini, E. Grondin, A. Gorin, V. Aimez, J.E. Broquin: Hybridization of III–V semiconductor membranes onto ion-exchanged waveguides, IEEE J. Sel. Top. Quantum Electron. 11, 547–554 (2005)CrossRef
Zurück zum Zitat S. Honkanen, B.R. West, S. Yliniemi, P. Madasamy, M. Morrell, J. Auxier, A. Schulzgen, N. Peyghambarian, J. Carriere, J. Frantz, R. Kostuk, J. Castro, D. Geraghty: Recent advances in ion exchanged glass waveguides and devices, Phys. Chem. Glasses 47, 110–120 (2006) S. Honkanen, B.R. West, S. Yliniemi, P. Madasamy, M. Morrell, J. Auxier, A. Schulzgen, N. Peyghambarian, J. Carriere, J. Frantz, R. Kostuk, J. Castro, D. Geraghty: Recent advances in ion exchanged glass waveguides and devices, Phys. Chem. Glasses 47, 110–120 (2006)
Zurück zum Zitat S. Wong, E. Pun, P. Chung: Er3+/Yb3+ codoped phosphate glass waveguide amplifier using Ag+/Li+ ion exchange, IEEE Photonics Technol. Lett. 14, 80–82 (2002)CrossRef S. Wong, E. Pun, P. Chung: Er3+/Yb3+ codoped phosphate glass waveguide amplifier using Ag+/Li+ ion exchange, IEEE Photonics Technol. Lett. 14, 80–82 (2002)CrossRef
Zurück zum Zitat C. Florea, K.A. Winick: Ytterbium-doped glass waveguide laser fabricated by ion exchange, J. Lightwave Technol. 17, 1593–1601 (1999)CrossRef C. Florea, K.A. Winick: Ytterbium-doped glass waveguide laser fabricated by ion exchange, J. Lightwave Technol. 17, 1593–1601 (1999)CrossRef
Zurück zum Zitat K.A. Winick, G.L. Vossler: Erbium:ytterbium planar waveguide laser in ion-exchanged glass, Proc. SPIE 2996, 121–134 (1997)CrossRef K.A. Winick, G.L. Vossler: Erbium:ytterbium planar waveguide laser in ion-exchanged glass, Proc. SPIE 2996, 121–134 (1997)CrossRef
Zurück zum Zitat P.D. Townsend, P. Chandler, L. Zhang: Optical Effects of Ion Implantation, Vol. 13 (Cambridge Univ. Press, Cambridge 2006) P.D. Townsend, P. Chandler, L. Zhang: Optical Effects of Ion Implantation, Vol. 13 (Cambridge Univ. Press, Cambridge 2006)
Zurück zum Zitat M. Nastasi, J. Mayer, J.K. Hirvonen: Ion–Solid Interactions: Fundamentals and Applications (Cambridge Univ. Press, Cambridge 1996)CrossRef M. Nastasi, J. Mayer, J.K. Hirvonen: Ion–Solid Interactions: Fundamentals and Applications (Cambridge Univ. Press, Cambridge 1996)CrossRef
Zurück zum Zitat G.C. Righini, A. Chiappini: Glass optical waveguides: A review of fabrication techniques, Opt. Eng. 53, 071819 (2014)CrossRef G.C. Righini, A. Chiappini: Glass optical waveguides: A review of fabrication techniques, Opt. Eng. 53, 071819 (2014)CrossRef
Zurück zum Zitat W. Wesch, E. Wendler: Ion Beam Modification of Solids: Ion-Solid Interaction and Radiation Damage (Springer, Cham 2016)CrossRef W. Wesch, E. Wendler: Ion Beam Modification of Solids: Ion-Solid Interaction and Radiation Damage (Springer, Cham 2016)CrossRef
Zurück zum Zitat F. Chen, X.L. Wang, K.M. Wang: Development of ion-implanted optical waveguides in optical materials: A review, Opt. Mater. 29, 1523–1542 (2007)CrossRef F. Chen, X.L. Wang, K.M. Wang: Development of ion-implanted optical waveguides in optical materials: A review, Opt. Mater. 29, 1523–1542 (2007)CrossRef
Zurück zum Zitat A. Polman: Erbium implanted thin film photonic materials, J. Appl. Phys. 82, 1–39 (1997)CrossRef A. Polman: Erbium implanted thin film photonic materials, J. Appl. Phys. 82, 1–39 (1997)CrossRef
Zurück zum Zitat B. Min, T.J. Kippenberg, L. Yang, K.J. Vahala, J. Kalkman, A. Polman: Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip, Phys. Rev. A 70, 033803 (2004)CrossRef B. Min, T.J. Kippenberg, L. Yang, K.J. Vahala, J. Kalkman, A. Polman: Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip, Phys. Rev. A 70, 033803 (2004)CrossRef
Zurück zum Zitat A. Polman, B. Min, J. Kalkman, T.J. Kippenberg, K.J. Vahala: Ultralow-threshold erbium-implanted toroidal microlaser on silicon, Appl. Phys. Lett. 84, 1037–1039 (2004)CrossRef A. Polman, B. Min, J. Kalkman, T.J. Kippenberg, K.J. Vahala: Ultralow-threshold erbium-implanted toroidal microlaser on silicon, Appl. Phys. Lett. 84, 1037–1039 (2004)CrossRef
Zurück zum Zitat M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour: Inkjet printing-process and its applications, Adv. Mater. 22, 673–685 (2010)CrossRef M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour: Inkjet printing-process and its applications, Adv. Mater. 22, 673–685 (2010)CrossRef
Zurück zum Zitat R. Danzebrink, M.A. Aegerter: Deposition of micropatterned coating using an ink-jet technique, Thin Solid Films 351, 115–118 (1999)CrossRef R. Danzebrink, M.A. Aegerter: Deposition of micropatterned coating using an ink-jet technique, Thin Solid Films 351, 115–118 (1999)CrossRef
Zurück zum Zitat H.Y. Fan, Y.F. Lu, A. Stump, S.T. Reed, T. Baer, R. Schunk, V. Perez-Luna, G.P. Lopez, C.J. Brinker: Rapid prototyping of patterned functional nanostructures, Nature 405, 56–60 (2000)CrossRef H.Y. Fan, Y.F. Lu, A. Stump, S.T. Reed, T. Baer, R. Schunk, V. Perez-Luna, G.P. Lopez, C.J. Brinker: Rapid prototyping of patterned functional nanostructures, Nature 405, 56–60 (2000)CrossRef
Zurück zum Zitat D. Kim, Y. Jeong, C.Y. Koo, K. Song, J. Moon: Thin film transistors with ink-jet printed amorphous oxide semiconductors, Jpn. J. Appl. Phys. 49, 05EB06 (2010) D. Kim, Y. Jeong, C.Y. Koo, K. Song, J. Moon: Thin film transistors with ink-jet printed amorphous oxide semiconductors, Jpn. J. Appl. Phys. 49, 05EB06 (2010)
Zurück zum Zitat T. Vidmar, M. Topic, P. Dzik, U.O. Krasovec: Inkjet printing of sol-gel derived tungsten oxide inks, Sol. Energy Mater. Sol. Cells 125, 87–95 (2014)CrossRef T. Vidmar, M. Topic, P. Dzik, U.O. Krasovec: Inkjet printing of sol-gel derived tungsten oxide inks, Sol. Energy Mater. Sol. Cells 125, 87–95 (2014)CrossRef
Zurück zum Zitat E.A. Sanchez, M. Waldmann, C.B. Arnold: Chalcogenide glass microlenses by inkjet printing, Appl. Opt. 50, 1974–1978 (2011)CrossRef E.A. Sanchez, M. Waldmann, C.B. Arnold: Chalcogenide glass microlenses by inkjet printing, Appl. Opt. 50, 1974–1978 (2011)CrossRef
Zurück zum Zitat J.U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair, D.K. Mukhopadhyay, C.Y. Lee, M.S. Strano, A.G. Alleyne, J.G. Georgiadis, P.M. Ferreira, J.A. Rogers: High-resolution electrohydrodynamic jet printing, Nat. Mater. 6, 782–789 (2007)CrossRef J.U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair, D.K. Mukhopadhyay, C.Y. Lee, M.S. Strano, A.G. Alleyne, J.G. Georgiadis, P.M. Ferreira, J.A. Rogers: High-resolution electrohydrodynamic jet printing, Nat. Mater. 6, 782–789 (2007)CrossRef
Zurück zum Zitat C.W. Sele, T. von Werne, R.H. Friend, H. Sirringhaus: Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution, Adv. Mater. 17, 997–1001 (2005)CrossRef C.W. Sele, T. von Werne, R.H. Friend, H. Sirringhaus: Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution, Adv. Mater. 17, 997–1001 (2005)CrossRef
Zurück zum Zitat N.P. Bansal, R.H. Doremus: Handbook of Glass Properties (Academic, Orlando 1986) N.P. Bansal, R.H. Doremus: Handbook of Glass Properties (Academic, Orlando 1986)
Zurück zum Zitat J.C. Mauro, Y.Z. Yue, A.J. Ellison, P.K. Gupta, D.C. Allan: Viscosity of glass-forming liquids, Proc. Natl. Acad. Sci. USA 106, 19780–19784 (2009)CrossRef J.C. Mauro, Y.Z. Yue, A.J. Ellison, P.K. Gupta, D.C. Allan: Viscosity of glass-forming liquids, Proc. Natl. Acad. Sci. USA 106, 19780–19784 (2009)CrossRef
Zurück zum Zitat N.M. Parikh: Effect of atmosphere on surface tension of glass, J. Am. Ceram. Soc. 41, 18–22 (1958)CrossRef N.M. Parikh: Effect of atmosphere on surface tension of glass, J. Am. Ceram. Soc. 41, 18–22 (1958)CrossRef
Zurück zum Zitat F.T. O'Neill, J.T. Sheridan: Photoresist reflow method of microlens production Part I: Background and experiments, Optik 113, 391–404 (2002)CrossRef F.T. O'Neill, J.T. Sheridan: Photoresist reflow method of microlens production Part I: Background and experiments, Optik 113, 391–404 (2002)CrossRef
Zurück zum Zitat D. Nieto, J. Arines, C. Gomez-Reino, G.M. O'Connor, M.T. Flores-Arias: Fabrication and characterization of microlens arrays on soda-lime glass using a combination of laser direct-write and thermal reflow techniques, J. Appl. Phys. 110, 023108 (2011)CrossRef D. Nieto, J. Arines, C. Gomez-Reino, G.M. O'Connor, M.T. Flores-Arias: Fabrication and characterization of microlens arrays on soda-lime glass using a combination of laser direct-write and thermal reflow techniques, J. Appl. Phys. 110, 023108 (2011)CrossRef
Zurück zum Zitat S.K. Lee, M.G. Kim, K.W. Jo, S.M. Shin, J.H. Lee: A glass reflowed microlens array on a Si substrate with rectangular through-holes, J. Opt. Pure Appl. Opt. 10, 044003 (2008)CrossRef S.K. Lee, M.G. Kim, K.W. Jo, S.M. Shin, J.H. Lee: A glass reflowed microlens array on a Si substrate with rectangular through-holes, J. Opt. Pure Appl. Opt. 10, 044003 (2008)CrossRef
Zurück zum Zitat N.P. Eisenberg, M. Klebanov, V. Lyubin, M. Manevich, S. Noach: Infrared microlens arrays based on chalcogenide photoresist, fabricated by thermal reflow process, J. Optoelectron. Adv. Mater. 2, 147–152 (2000) N.P. Eisenberg, M. Klebanov, V. Lyubin, M. Manevich, S. Noach: Infrared microlens arrays based on chalcogenide photoresist, fabricated by thermal reflow process, J. Optoelectron. Adv. Mater. 2, 147–152 (2000)
Zurück zum Zitat J. Jackle, K. Kawasaki: Intrinsic roughness of glass surfaces, J. Phys. Cond. Matt. 7, 4351–4358 (1995)CrossRef J. Jackle, K. Kawasaki: Intrinsic roughness of glass surfaces, J. Phys. Cond. Matt. 7, 4351–4358 (1995)CrossRef
Zurück zum Zitat J.J. Hu, N.N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L. Kimerling: Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow, Opt. Express 18, 1469–1478 (2010)CrossRef J.J. Hu, N.N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L. Kimerling: Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow, Opt. Express 18, 1469–1478 (2010)CrossRef
Zurück zum Zitat P.J. Roberts, F. Couny, H. Sabert, B.J. Mangan, D.P. Williams, L. Farr, M.W. Mason, A. Tomlinson, T.A. Birks, J.C. Knight, P.S.J. Russell: Ultimate low loss of hollow-core photonic crystal fibres, Opt. Express 13, 236–244 (2005)CrossRef P.J. Roberts, F. Couny, H. Sabert, B.J. Mangan, D.P. Williams, L. Farr, M.W. Mason, A. Tomlinson, T.A. Birks, J.C. Knight, P.S.J. Russell: Ultimate low loss of hollow-core photonic crystal fibres, Opt. Express 13, 236–244 (2005)CrossRef
Zurück zum Zitat D. Vernooy, V.S. Ilchenko, H. Mabuchi, E. Streed, H. Kimble: High-Q measurements of fused-silica microspheres in the near infrared, Opt. Lett. 23, 247–249 (1998)CrossRef D. Vernooy, V.S. Ilchenko, H. Mabuchi, E. Streed, H. Kimble: High-Q measurements of fused-silica microspheres in the near infrared, Opt. Lett. 23, 247–249 (1998)CrossRef
Zurück zum Zitat T.J. Kippenberg, S.M. Spillane, K.J. Vahala: Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip, Appl. Phys. Lett. 85, 6113–6115 (2004)CrossRef T.J. Kippenberg, S.M. Spillane, K.J. Vahala: Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip, Appl. Phys. Lett. 85, 6113–6115 (2004)CrossRef
Zurück zum Zitat A.J. Maker, A.M. Armani: Fabrication of silica ultra high quality factor microresonators, J. Vis. Exp. 65, e4164–e4164 (2012) A.J. Maker, A.M. Armani: Fabrication of silica ultra high quality factor microresonators, J. Vis. Exp. 65, e4164–e4164 (2012)
Zurück zum Zitat C. Tsay, E. Mujagic, C.K. Madsen, C.F. Gmachl, C.B. Arnold: Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides, Opt. Express 18, 15523–15530 (2010)CrossRef C. Tsay, E. Mujagic, C.K. Madsen, C.F. Gmachl, C.B. Arnold: Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides, Opt. Express 18, 15523–15530 (2010)CrossRef
Zurück zum Zitat J.D. Wright, N.A. Sommerdijk: Sol-Gel Materials: Chemistry and Applications (CRS, Boca Raton 2000) J.D. Wright, N.A. Sommerdijk: Sol-Gel Materials: Chemistry and Applications (CRS, Boca Raton 2000)
Zurück zum Zitat L. Yang, T. Carmon, B. Min, S.M. Spillane, K.J. Vahala: Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process, Appl. Phys. Lett. 86, 091114 (2005)CrossRef L. Yang, T. Carmon, B. Min, S.M. Spillane, K.J. Vahala: Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process, Appl. Phys. Lett. 86, 091114 (2005)CrossRef
Zurück zum Zitat V.S. Ilchenko, A.A. Savchenkov, A.B. Matsko, L. Maleki: Nonlinear optics and crystalline whispering gallery mode cavities, Phys. Rev. Lett. 92, 043903 (2004)CrossRef V.S. Ilchenko, A.A. Savchenkov, A.B. Matsko, L. Maleki: Nonlinear optics and crystalline whispering gallery mode cavities, Phys. Rev. Lett. 92, 043903 (2004)CrossRef
Zurück zum Zitat S.M. Spillane, T.J. Kippenberg, K.J. Vahala: Ultralow-threshold Raman laser using a spherical dielectric microcavity, Nature 415, 621–623 (2002)CrossRef S.M. Spillane, T.J. Kippenberg, K.J. Vahala: Ultralow-threshold Raman laser using a spherical dielectric microcavity, Nature 415, 621–623 (2002)CrossRef
Zurück zum Zitat T. Carmon, K.J. Vahala: Visible continuous emission from a silica microphotonic device by third-harmonic generation, Nat. Phys. 3, 430–435 (2007)CrossRef T. Carmon, K.J. Vahala: Visible continuous emission from a silica microphotonic device by third-harmonic generation, Nat. Phys. 3, 430–435 (2007)CrossRef
Zurück zum Zitat P. Del'Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T.J. Kippenberg: Optical frequency comb generation from a monolithic microresonator, Nature 450, 1214–1217 (2007)CrossRef P. Del'Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T.J. Kippenberg: Optical frequency comb generation from a monolithic microresonator, Nature 450, 1214–1217 (2007)CrossRef
Zurück zum Zitat B. Min, T.J. Kippenberg, K.J. Vahala: Compact, fiber-compatible, cascaded Raman laser, Opt. Lett. 28, 1507–1509 (2003)CrossRef B. Min, T.J. Kippenberg, K.J. Vahala: Compact, fiber-compatible, cascaded Raman laser, Opt. Lett. 28, 1507–1509 (2003)CrossRef
Zurück zum Zitat S. Montant, A. Le Calvez, E. Freysz, A. Ducasse, M. Couzi: Time-domain separation of nuclear and electronic contributions to the third-order nonlinearity in glasses, J. Opt. Soc. Am. B 15, 2802–2807 (1998)CrossRef S. Montant, A. Le Calvez, E. Freysz, A. Ducasse, M. Couzi: Time-domain separation of nuclear and electronic contributions to the third-order nonlinearity in glasses, J. Opt. Soc. Am. B 15, 2802–2807 (1998)CrossRef
Zurück zum Zitat J. Li, H. Lee, T. Chen, K.J. Vahala: Characterization of a high coherence, Brillouin microcavity laser on silicon, Opt. Express 20, 20170–20180 (2012)CrossRef J. Li, H. Lee, T. Chen, K.J. Vahala: Characterization of a high coherence, Brillouin microcavity laser on silicon, Opt. Express 20, 20170–20180 (2012)CrossRef
Zurück zum Zitat P. Del'Haye, T. Herr, E. Gavartin, M.L. Gorodetsky, R. Holzwarth, T.J. Kippenberg: Octave spanning tunable frequency comb from a microresonator, Phys. Rev. Lett. 107, 063901 (2011)CrossRef P. Del'Haye, T. Herr, E. Gavartin, M.L. Gorodetsky, R. Holzwarth, T.J. Kippenberg: Octave spanning tunable frequency comb from a microresonator, Phys. Rev. Lett. 107, 063901 (2011)CrossRef
Zurück zum Zitat T. Herr, V. Brasch, J.D. Jost, C.Y. Wang, N.M. Kondratiev, M.L. Gorodetsky, T.J. Kippenberg: Temporal solitons in optical microresonators, Nat. Photonics 8, 145–152 (2014)CrossRef T. Herr, V. Brasch, J.D. Jost, C.Y. Wang, N.M. Kondratiev, M.L. Gorodetsky, T.J. Kippenberg: Temporal solitons in optical microresonators, Nat. Photonics 8, 145–152 (2014)CrossRef
Zurück zum Zitat T.J. Kippenberg, S.M. Spillane, K.J. Vahala: Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity, Phys. Rev. Lett. 93, 083904 (2004)CrossRef T.J. Kippenberg, S.M. Spillane, K.J. Vahala: Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity, Phys. Rev. Lett. 93, 083904 (2004)CrossRef
Zurück zum Zitat X. Yi, Q.F. Yang, K.Y. Yang, M.G. Suh, K. Vahala: Soliton frequency comb at microwave rates in a high-Q silica microresonator, Optica 2, 1078–1085 (2015)CrossRef X. Yi, Q.F. Yang, K.Y. Yang, M.G. Suh, K. Vahala: Soliton frequency comb at microwave rates in a high-Q silica microresonator, Optica 2, 1078–1085 (2015)CrossRef
Zurück zum Zitat F. Vollmer, L. Yang: Label-free detection with high-Q microcavities: A review of biosensing mechanisms for integrated devices, Nanophotonics 1, 267–291 (2012)CrossRef F. Vollmer, L. Yang: Label-free detection with high-Q microcavities: A review of biosensing mechanisms for integrated devices, Nanophotonics 1, 267–291 (2012)CrossRef
Zurück zum Zitat Y.Y. Zhi, X.C. Yu, Q.H. Gong, L. Yang, Y.F. Xiao: Single nanoparticle detection using optical microcavities, Adv. Mater. 29, 1604920 (2017)CrossRef Y.Y. Zhi, X.C. Yu, Q.H. Gong, L. Yang, Y.F. Xiao: Single nanoparticle detection using optical microcavities, Adv. Mater. 29, 1604920 (2017)CrossRef
Zurück zum Zitat F. Vollmer, S. Arnold, D. Keng: Single virus detection from the reactive shift of a whispering-gallery mode, Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008)CrossRef F. Vollmer, S. Arnold, D. Keng: Single virus detection from the reactive shift of a whispering-gallery mode, Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008)CrossRef
Zurück zum Zitat F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, S. Arnold: Protein detection by optical shift of a resonant microcavity, Appl. Phys. Lett. 80, 4057–4059 (2002)CrossRef F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, S. Arnold: Protein detection by optical shift of a resonant microcavity, Appl. Phys. Lett. 80, 4057–4059 (2002)CrossRef
Zurück zum Zitat J.G. Zhu, S.K. Ozdemir, Y.F. Xiao, L. Li, L.N. He, D.R. Chen, L. Yang: On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator, Nat. Photonics 4, 46–49 (2010)CrossRef J.G. Zhu, S.K. Ozdemir, Y.F. Xiao, L. Li, L.N. He, D.R. Chen, L. Yang: On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator, Nat. Photonics 4, 46–49 (2010)CrossRef
Zurück zum Zitat L.B. Shao, X.F. Jiang, X.C. Yu, B.B. Li, W.R. Clements, F. Vollmer, W. Wang, Y.F. Xiao, Q.H. Gong: Detection of single nanoparticles and lentiviruses using microcavity resonance broadening, Adv. Mater. 25, 5616 (2013)CrossRef L.B. Shao, X.F. Jiang, X.C. Yu, B.B. Li, W.R. Clements, F. Vollmer, W. Wang, Y.F. Xiao, Q.H. Gong: Detection of single nanoparticles and lentiviruses using microcavity resonance broadening, Adv. Mater. 25, 5616 (2013)CrossRef
Zurück zum Zitat C.M. Bender, S. Boettcher: Real spectra in non-Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80, 5243–5246 (1998)CrossRef C.M. Bender, S. Boettcher: Real spectra in non-Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80, 5243–5246 (1998)CrossRef
Zurück zum Zitat B. Peng, S.K. Ozdemir, F.C. Lei, F. Monifi, M. Gianfreda, G.L. Long, S.H. Fan, F. Nori, C.M. Bender, L. Yang: Parity-time-symmetric whispering-gallery microcavities, Nat. Phys. 10, 394–398 (2014)CrossRef B. Peng, S.K. Ozdemir, F.C. Lei, F. Monifi, M. Gianfreda, G.L. Long, S.H. Fan, F. Nori, C.M. Bender, L. Yang: Parity-time-symmetric whispering-gallery microcavities, Nat. Phys. 10, 394–398 (2014)CrossRef
Zurück zum Zitat X.Y. Sun, Q. Du, T. Goto, M.C. Onbasli, D.H. Kim, N.M. Aimon, J. Hu, C.A. Ross: Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation, ACS Photonics 2, 856–863 (2015)CrossRef X.Y. Sun, Q. Du, T. Goto, M.C. Onbasli, D.H. Kim, N.M. Aimon, J. Hu, C.A. Ross: Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation, ACS Photonics 2, 856–863 (2015)CrossRef
Zurück zum Zitat L. Bi, J. Hu, P. Jiang, H.S. Kim, D.H. Kim, M.C. Onbasli, G.F. Dionne, C.A. Ross: Magneto-optical thin films for on-chip monolithic integration of non-reciprocal photonic devices, Materials 6, 5094–5117 (2013)CrossRef L. Bi, J. Hu, P. Jiang, H.S. Kim, D.H. Kim, M.C. Onbasli, G.F. Dionne, C.A. Ross: Magneto-optical thin films for on-chip monolithic integration of non-reciprocal photonic devices, Materials 6, 5094–5117 (2013)CrossRef
Zurück zum Zitat G.S. Wiederhecker, S. Manipatruni, S. Lee, M. Lipson: Broadband tuning of optomechanical cavities, Opt. Express 19, 2782–2790 (2011)CrossRef G.S. Wiederhecker, S. Manipatruni, S. Lee, M. Lipson: Broadband tuning of optomechanical cavities, Opt. Express 19, 2782–2790 (2011)CrossRef
Zurück zum Zitat G. Anetsberger, R. Riviere, A. Schliesser, O. Arcizet, T.J. Kippenberg: Ultralow-dissipation optomechanical resonators on a chip, Nat. Photonics 2, 627–633 (2008)CrossRef G. Anetsberger, R. Riviere, A. Schliesser, O. Arcizet, T.J. Kippenberg: Ultralow-dissipation optomechanical resonators on a chip, Nat. Photonics 2, 627–633 (2008)CrossRef
Zurück zum Zitat T. Carmon, K.J. Vahala: Modal spectroscopy of optoexcited vibrations of a micron-scale on-chip resonator at greater than 1 GHz frequency, Phys. Rev. Lett. 98, 123901 (2007)CrossRef T. Carmon, K.J. Vahala: Modal spectroscopy of optoexcited vibrations of a micron-scale on-chip resonator at greater than 1 GHz frequency, Phys. Rev. Lett. 98, 123901 (2007)CrossRef
Zurück zum Zitat M. Aspelmeyer, T.J. Kippenberg, F. Marquard: Cavity optomechanics, Rev. Mod. Phys. 86, 1391–1452 (2014)CrossRef M. Aspelmeyer, T.J. Kippenberg, F. Marquard: Cavity optomechanics, Rev. Mod. Phys. 86, 1391–1452 (2014)CrossRef
Zurück zum Zitat T.J. Kippenberg, K.J. Vahala: Cavity optomechanics: Back-action at the mesoscale, Science 321, 1172–1176 (2008)CrossRef T.J. Kippenberg, K.J. Vahala: Cavity optomechanics: Back-action at the mesoscale, Science 321, 1172–1176 (2008)CrossRef
Zurück zum Zitat F. Ruesink, M.A. Miri, A. Alu, E. Verhagen: Nonreciprocity and magnetic-free isolation based on optomechanical interactions, Nat. Commun. 7, 13662 (2016)CrossRef F. Ruesink, M.A. Miri, A. Alu, E. Verhagen: Nonreciprocity and magnetic-free isolation based on optomechanical interactions, Nat. Commun. 7, 13662 (2016)CrossRef
Zurück zum Zitat A.H. Safavi-Naeini, T.P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J.T. Hill, D.E. Chang, O. Painter: Electromagnetically induced transparency and slow light with optomechanics, Nature 472, 69–73 (2011)CrossRef A.H. Safavi-Naeini, T.P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J.T. Hill, D.E. Chang, O. Painter: Electromagnetically induced transparency and slow light with optomechanics, Nature 472, 69–73 (2011)CrossRef
Zurück zum Zitat Y.C. Chen, S. Kim, G. Bahl: Brillouin cooling in a linear waveguide, New J. Phys. 18, 115004 (2016)CrossRef Y.C. Chen, S. Kim, G. Bahl: Brillouin cooling in a linear waveguide, New J. Phys. 18, 115004 (2016)CrossRef
Zurück zum Zitat C.H. Dong, Z. Shen, C.L. Zou, Y.L. Zhang, W. Fu, G.C. Guo: Brillouin-scattering-induced transparency and non-reciprocal light storage, Nat. Commun. 6, 6193 (2015)CrossRef C.H. Dong, Z. Shen, C.L. Zou, Y.L. Zhang, W. Fu, G.C. Guo: Brillouin-scattering-induced transparency and non-reciprocal light storage, Nat. Commun. 6, 6193 (2015)CrossRef
Zurück zum Zitat B. Peng, S.K. Ozdemir, M. Liertzer, W.J. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, L. Yang: Chiral modes and directional lasing at exceptional points, Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016)CrossRef B. Peng, S.K. Ozdemir, M. Liertzer, W.J. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, L. Yang: Chiral modes and directional lasing at exceptional points, Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016)CrossRef
Zurück zum Zitat B. Peng, S.K. Ozdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C.M. Bender, F. Nori, L. Yang: Loss-induced suppression and revival of lasing, Science 346, 328–332 (2014)CrossRef B. Peng, S.K. Ozdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C.M. Bender, F. Nori, L. Yang: Loss-induced suppression and revival of lasing, Science 346, 328–332 (2014)CrossRef
Zurück zum Zitat W. Chen, Ş.K. Özdemir, G.M. Zhao, J. Wiersig, L. Yang: Exceptional points enhance sensing in an optical microcavity, Nature 548, 192 (2017)CrossRef W. Chen, Ş.K. Özdemir, G.M. Zhao, J. Wiersig, L. Yang: Exceptional points enhance sensing in an optical microcavity, Nature 548, 192 (2017)CrossRef
Zurück zum Zitat M.E. Lines: Oxide glasses for fast photonic switching—A comparative-study, J. Appl. Phys. 69, 6876–6884 (1991)CrossRef M.E. Lines: Oxide glasses for fast photonic switching—A comparative-study, J. Appl. Phys. 69, 6876–6884 (1991)CrossRef
Zurück zum Zitat S.H. Kim, T. Yoko: Nonlinear-optical properties of TeO2-based glasses: MOx-TeO2 (M = Sc, Ti, V, Nb, Mo, Ta, and W) binary classes, J. Am. Ceram. Soc. 78, 1061–1065 (1995)CrossRef S.H. Kim, T. Yoko: Nonlinear-optical properties of TeO2-based glasses: MOx-TeO2 (M = Sc, Ti, V, Nb, Mo, Ta, and W) binary classes, J. Am. Ceram. Soc. 78, 1061–1065 (1995)CrossRef
Zurück zum Zitat G.S. Murugan, T. Suzuki, Y. Ohishi: Raman characteristics and nonlinear optical properties of tellurite and phosphotellurite glasses containing heavy metal oxides with ultrabroad Raman bands, J. Appl. Phys. 100, 023107 (2006)CrossRef G.S. Murugan, T. Suzuki, Y. Ohishi: Raman characteristics and nonlinear optical properties of tellurite and phosphotellurite glasses containing heavy metal oxides with ultrabroad Raman bands, J. Appl. Phys. 100, 023107 (2006)CrossRef
Zurück zum Zitat R. Stegeman, C. Rivero, K. Richardson, G. Stegeman, P. Delfyett, Y. Guo, A. Pope, A. Schulte, T. Cardinal, P. Thomas, J.C. Champarnaud-Mesjard: Raman gain measurements of thallium-tellurium oxide glasses, Opt. Express 13, 1144–1149 (2005)CrossRef R. Stegeman, C. Rivero, K. Richardson, G. Stegeman, P. Delfyett, Y. Guo, A. Pope, A. Schulte, T. Cardinal, P. Thomas, J.C. Champarnaud-Mesjard: Raman gain measurements of thallium-tellurium oxide glasses, Opt. Express 13, 1144–1149 (2005)CrossRef
Zurück zum Zitat D.W. Hall, M.A. Newhouse, N.F. Borrelli, W.H. Dumbaugh, D.L. Weidman: Nonlinear optical susceptibilities of high-index glasses, Appl. Phys. Lett. 54, 1293–1295 (1989)CrossRef D.W. Hall, M.A. Newhouse, N.F. Borrelli, W.H. Dumbaugh, D.L. Weidman: Nonlinear optical susceptibilities of high-index glasses, Appl. Phys. Lett. 54, 1293–1295 (1989)CrossRef
Zurück zum Zitat R. Reisfeld, Y. Eckstein: Radiative and non-radiative transition-probabilities and quantum yields for excited-states of Er3+ in germanate and tellurite glasses, J. Non-Cryst. Solids 15, 125–140 (1974)CrossRef R. Reisfeld, Y. Eckstein: Radiative and non-radiative transition-probabilities and quantum yields for excited-states of Er3+ in germanate and tellurite glasses, J. Non-Cryst. Solids 15, 125–140 (1974)CrossRef
Zurück zum Zitat K. Sun, W.M. Risen: Rare-earth phosphate-glasses, Solid State Commun 60, 697–700 (1986)CrossRef K. Sun, W.M. Risen: Rare-earth phosphate-glasses, Solid State Commun 60, 697–700 (1986)CrossRef
Zurück zum Zitat O. Ogbuu, Q. Du, H. Lin, L. Li, Y. Zou, E. Koontz, C. Smith, S. Danto, K. Richardson, J. Hu: Impact of stoichiometry on structural and optical properties of sputter deposited multicomponent tellurite glass films, J. Am. Ceram. Soc. 98, 1731–1738 (2015)CrossRef O. Ogbuu, Q. Du, H. Lin, L. Li, Y. Zou, E. Koontz, C. Smith, S. Danto, K. Richardson, J. Hu: Impact of stoichiometry on structural and optical properties of sputter deposited multicomponent tellurite glass films, J. Am. Ceram. Soc. 98, 1731–1738 (2015)CrossRef
Zurück zum Zitat P.T. Lin, M. Vanhoutte, N.S. Patel, V. Singh, J. Hu, Y. Cai, R. Camacho-Aguilera, J. Michel, L.C. Kimerling, A. Agarwal: Engineering broadband and anisotropic photoluminescence emission from rare earth doped tellurite thin film photonic crystals, Opt. Express 20, 2124–2135 (2012)CrossRef P.T. Lin, M. Vanhoutte, N.S. Patel, V. Singh, J. Hu, Y. Cai, R. Camacho-Aguilera, J. Michel, L.C. Kimerling, A. Agarwal: Engineering broadband and anisotropic photoluminescence emission from rare earth doped tellurite thin film photonic crystals, Opt. Express 20, 2124–2135 (2012)CrossRef
Zurück zum Zitat M.W. Sckerl, S. Guldberg-Kjaer, M.R. Poulsen, P. Shi, J. Chevallier: Precipitate coarsening and self organization in erbium-doped silica, Phys. Rev. B 59, 13494–13497 (1999)CrossRef M.W. Sckerl, S. Guldberg-Kjaer, M.R. Poulsen, P. Shi, J. Chevallier: Precipitate coarsening and self organization in erbium-doped silica, Phys. Rev. B 59, 13494–13497 (1999)CrossRef
Zurück zum Zitat S. Tanabe: Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication, C.R. Chim. 5, 815–824 (2002)CrossRef S. Tanabe: Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication, C.R. Chim. 5, 815–824 (2002)CrossRef
Zurück zum Zitat D.L. Yang, E.Y.B. Pun, B.J. Chen, H. Lin: Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides, J. Opt. Soc. Am. B 26, 357–363 (2009)CrossRef D.L. Yang, E.Y.B. Pun, B.J. Chen, H. Lin: Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides, J. Opt. Soc. Am. B 26, 357–363 (2009)CrossRef
Zurück zum Zitat S.F. Wong, E.Y.B. Pun, P.S. Chung: Er3+-Yb3+ codoped phosphate glass waveguide amplifier using Ag+-Li+ ion exchange, IEEE Photonics Technol. Lett. 14, 80–82 (2002)CrossRef S.F. Wong, E.Y.B. Pun, P.S. Chung: Er3+-Yb3+ codoped phosphate glass waveguide amplifier using Ag+-Li+ ion exchange, IEEE Photonics Technol. Lett. 14, 80–82 (2002)CrossRef
Zurück zum Zitat T.T. Fernandez, S.M. Eaton, G.D. Valle, R.M. Vazquez, M. Irannejad, G. Jose, A. Jha, G. Cerullo, R. Osellame, P. Laporta: Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass, Opt. Express 18, 20289–20297 (2010)CrossRef T.T. Fernandez, S.M. Eaton, G.D. Valle, R.M. Vazquez, M. Irannejad, G. Jose, A. Jha, G. Cerullo, R. Osellame, P. Laporta: Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass, Opt. Express 18, 20289–20297 (2010)CrossRef
Zurück zum Zitat S. Gross, M. Ams, G. Palmer, C.T. Miese, R.J. Williams, G.D. Marshall, A. Fuerbach, M.J. Withford, D.G. Lancaster, H. Ebendorff-Heidepriem: Ultrafast laser inscription in soft glasses: A comparative study of athermal and thermal processing regimes for guided wave optics, Int. J. Appl. Glass Sci. 3, 332–348 (2012)CrossRef S. Gross, M. Ams, G. Palmer, C.T. Miese, R.J. Williams, G.D. Marshall, A. Fuerbach, M.J. Withford, D.G. Lancaster, H. Ebendorff-Heidepriem: Ultrafast laser inscription in soft glasses: A comparative study of athermal and thermal processing regimes for guided wave optics, Int. J. Appl. Glass Sci. 3, 332–348 (2012)CrossRef
Zurück zum Zitat D.P. Shepherd, D.J.B. Brinck, J. Wang, A.C. Tropper, D.C. Hanna, G. Kakarantzas, P.D. Townsend: 1.9-\(\upmu\)m operation of a Tm: lead germanate glass waveguide laser, Opt. Lett. 19, 954–956 (1994)CrossRef D.P. Shepherd, D.J.B. Brinck, J. Wang, A.C. Tropper, D.C. Hanna, G. Kakarantzas, P.D. Townsend: 1.9-\(\upmu\)m operation of a Tm: lead germanate glass waveguide laser, Opt. Lett. 19, 954–956 (1994)CrossRef
Zurück zum Zitat K. Vu, S. Madden: Tellurium dioxide erbium doped planar rib waveguide amplifiers with net gain and 2.8 dB/cm internal gain, Opt. Express 18, 19192–19200 (2010)CrossRef K. Vu, S. Madden: Tellurium dioxide erbium doped planar rib waveguide amplifiers with net gain and 2.8 dB/cm internal gain, Opt. Express 18, 19192–19200 (2010)CrossRef
Zurück zum Zitat K. Vu, S. Farahani, S. Madden: 980 nm pumped erbium doped tellurium oxide planar rib waveguide laser and amplifier with gain in S, C and L band, Opt. Express 23, 747–755 (2015)CrossRef K. Vu, S. Farahani, S. Madden: 980 nm pumped erbium doped tellurium oxide planar rib waveguide laser and amplifier with gain in S, C and L band, Opt. Express 23, 747–755 (2015)CrossRef
Zurück zum Zitat C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, J. Lucas: Chalcogenide glasses with high non linear optical properties for telecommunications, J. Phys. Chem. Solids 62, 1435–1440 (2001)CrossRef C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, J. Lucas: Chalcogenide glasses with high non linear optical properties for telecommunications, J. Phys. Chem. Solids 62, 1435–1440 (2001)CrossRef
Zurück zum Zitat T. Wang, X. Gai, W.H. Wei, R.P. Wang, Z.Y. Yang, X. Shen, S. Madden, B. Luther-Davies: Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses, Opt. Mater. Express 4, 1011–1022 (2014)CrossRef T. Wang, X. Gai, W.H. Wei, R.P. Wang, Z.Y. Yang, X. Shen, S. Madden, B. Luther-Davies: Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses, Opt. Mater. Express 4, 1011–1022 (2014)CrossRef
Zurück zum Zitat L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, K. Richardson: Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses, J. Solid State Chem. 182, 2756–2761 (2009)CrossRef L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, K. Richardson: Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses, J. Solid State Chem. 182, 2756–2761 (2009)CrossRef
Zurück zum Zitat B.J. Eggleton, B. Luther-Davies, K. Richardson: Chalcogenide photonics, Nat. Photonics 5, 141–148 (2011)CrossRef B.J. Eggleton, B. Luther-Davies, K. Richardson: Chalcogenide photonics, Nat. Photonics 5, 141–148 (2011)CrossRef
Zurück zum Zitat G.X. Wang, Q.H. Nie, X.S. Wang, X. Shen, F. Chen, T.F. Xu, S.X. Dai, X.H. Zhang: New far-infrared transmitting Te-based chalcogenide glasses, J. Appl. Phys. 110, 043536 (2011)CrossRef G.X. Wang, Q.H. Nie, X.S. Wang, X. Shen, F. Chen, T.F. Xu, S.X. Dai, X.H. Zhang: New far-infrared transmitting Te-based chalcogenide glasses, J. Appl. Phys. 110, 043536 (2011)CrossRef
Zurück zum Zitat Z.Y. Yang, P. Lucas: Tellurium-based far-infrared transmitting glasses, J. Am. Ceram. Soc. 92, 2920–2923 (2009)CrossRef Z.Y. Yang, P. Lucas: Tellurium-based far-infrared transmitting glasses, J. Am. Ceram. Soc. 92, 2920–2923 (2009)CrossRef
Zurück zum Zitat V. Singh, P.T. Lin, N. Patel, H.T. Lin, L. Li, Y. Zou, F. Deng, C.Y. Ni, J.J. Hu, J. Giammarco, A.P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J.D. Musgraves, K. Richardson, L.C. Kimerling, A.M. Agarwal: Mid-infrared materials and devices on a Si platform for optical sensing, Sci. Technol. Adv. Mater. 15, 014603 (2014)CrossRef V. Singh, P.T. Lin, N. Patel, H.T. Lin, L. Li, Y. Zou, F. Deng, C.Y. Ni, J.J. Hu, J. Giammarco, A.P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J.D. Musgraves, K. Richardson, L.C. Kimerling, A.M. Agarwal: Mid-infrared materials and devices on a Si platform for optical sensing, Sci. Technol. Adv. Mater. 15, 014603 (2014)CrossRef
Zurück zum Zitat L. Labadie, O. Wallner: Mid-infrared guided optics: A perspective for astronomical instruments, Opt. Express 17, 1947–1962 (2009)CrossRef L. Labadie, O. Wallner: Mid-infrared guided optics: A perspective for astronomical instruments, Opt. Express 17, 1947–1962 (2009)CrossRef
Zurück zum Zitat J. Hu, J. Meyer, K. Richardson, L. Shah: Feature issue introduction: Mid-IR photonic materials, Opt. Mater. Express 3, 1571–1575 (2013)CrossRef J. Hu, J. Meyer, K. Richardson, L. Shah: Feature issue introduction: Mid-IR photonic materials, Opt. Mater. Express 3, 1571–1575 (2013)CrossRef
Zurück zum Zitat P.T. Lin, V. Singh, J. Wang, H. Lin, J. Hu, K. Richardson, J.D. Musgraves, I. Luzinov, J. Hensley, L.C. Kimerling: Si-CMOS compatible materials and devices for mid-IR microphotonics, Opt. Mater. Express 3, 1474–1487 (2013)CrossRef P.T. Lin, V. Singh, J. Wang, H. Lin, J. Hu, K. Richardson, J.D. Musgraves, I. Luzinov, J. Hensley, L.C. Kimerling: Si-CMOS compatible materials and devices for mid-IR microphotonics, Opt. Mater. Express 3, 1474–1487 (2013)CrossRef
Zurück zum Zitat H. Lin, Z. Luo, T. Gu, L.C. Kimerling, K. Wada, A. Agarwal, J. Hu: Mid-infrared integrated photonics on silicon: A perspective, Nanophotonics 7, 393–420 (2018)CrossRef H. Lin, Z. Luo, T. Gu, L.C. Kimerling, K. Wada, A. Agarwal, J. Hu: Mid-infrared integrated photonics on silicon: A perspective, Nanophotonics 7, 393–420 (2018)CrossRef
Zurück zum Zitat J.D. Musgraves, N. Carlie, J. Hu, L. Petit, A. Agarwal, L.C. Kimerling, K.A. Richardson: Comparison of the optical, thermal and structural properties of Ge-Sb-S thin films deposited using thermal evaporation and pulsed laser deposition techniques, Acta Mater 59, 5032–5039 (2011)CrossRef J.D. Musgraves, N. Carlie, J. Hu, L. Petit, A. Agarwal, L.C. Kimerling, K.A. Richardson: Comparison of the optical, thermal and structural properties of Ge-Sb-S thin films deposited using thermal evaporation and pulsed laser deposition techniques, Acta Mater 59, 5032–5039 (2011)CrossRef
Zurück zum Zitat B. Brunetti, V. Piacente, P. Scardala: Torsion measurement of orpiment vapor pressure, J. Chem. Eng. Data 52, 1343–1346 (2007)CrossRef B. Brunetti, V. Piacente, P. Scardala: Torsion measurement of orpiment vapor pressure, J. Chem. Eng. Data 52, 1343–1346 (2007)CrossRef
Zurück zum Zitat J.D.F. Ramsay, R.G. Avery: Ultrafine oxide powders prepared by electron-beam evaporation. 1. Evaporation and condensation processes, J. Mater. Sci. 9, 1681–1688 (1974)CrossRef J.D.F. Ramsay, R.G. Avery: Ultrafine oxide powders prepared by electron-beam evaporation. 1. Evaporation and condensation processes, J. Mater. Sci. 9, 1681–1688 (1974)CrossRef
Zurück zum Zitat E. Lhuillier, S. Keuleyan, P. Zolotavin, P. Guyot-Sionnest: Mid-infrared HgTe/As2S3 field effect transistors and photodetectors, Adv. Mater. 25, 137–141 (2013)CrossRef E. Lhuillier, S. Keuleyan, P. Zolotavin, P. Guyot-Sionnest: Mid-infrared HgTe/As2S3 field effect transistors and photodetectors, Adv. Mater. 25, 137–141 (2013)CrossRef
Zurück zum Zitat E. Lhuillier, M. Scarafagio, P. Hease, B. Nadal, H. Aubin, X.Z. Xu, N. Lequeux, G. Patriarche, S. Ithurria, B. Dubertret: Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz, Nano Lett. 16, 1282–1286 (2016)CrossRef E. Lhuillier, M. Scarafagio, P. Hease, B. Nadal, H. Aubin, X.Z. Xu, N. Lequeux, G. Patriarche, S. Ithurria, B. Dubertret: Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz, Nano Lett. 16, 1282–1286 (2016)CrossRef
Zurück zum Zitat M.A. Hughes, Y. Fedorenko, B. Gholipour, J. Yao, T.H. Lee, R.M. Gwilliam, K.P. Homewood, S. Hinder, D.W. Hewak, S.R. Elliott, R.J. Curry: n-Type chalcogenides by ion implantation, Nat. Commun. 5, 5346 (2014)CrossRef M.A. Hughes, Y. Fedorenko, B. Gholipour, J. Yao, T.H. Lee, R.M. Gwilliam, K.P. Homewood, S. Hinder, D.W. Hewak, S.R. Elliott, R.J. Curry: n-Type chalcogenides by ion implantation, Nat. Commun. 5, 5346 (2014)CrossRef
Zurück zum Zitat D. Strand: Ovonics: From science to products, J. Optoelectron. Adv. Mater. 7, 1679–1690 (2005) D. Strand: Ovonics: From science to products, J. Optoelectron. Adv. Mater. 7, 1679–1690 (2005)
Zurück zum Zitat T. Katsuyama, S. Satoh, H. Matsumura: Fabrication of high-purity chalcogenide glasses by chemical vapor-deposition, J. Appl. Phys. 59, 1446–1449 (1986)CrossRef T. Katsuyama, S. Satoh, H. Matsumura: Fabrication of high-purity chalcogenide glasses by chemical vapor-deposition, J. Appl. Phys. 59, 1446–1449 (1986)CrossRef
Zurück zum Zitat C.C. Huang, D.W. Hewak, J.V. Badding: Deposition and characterization of germanium sulphide glass planar waveguides, Opt. Express 12, 2501–2506 (2004)CrossRef C.C. Huang, D.W. Hewak, J.V. Badding: Deposition and characterization of germanium sulphide glass planar waveguides, Opt. Express 12, 2501–2506 (2004)CrossRef
Zurück zum Zitat E. Sleeckx, P. Nagels, R. Callaerts, M. Vanroy: Plasma-enhanced CVD of amorphous GexS1-X and GexSe1-X films, J. Phys. IV 3, 419–426 (1993) E. Sleeckx, P. Nagels, R. Callaerts, M. Vanroy: Plasma-enhanced CVD of amorphous GexS1-X and GexSe1-X films, J. Phys. IV 3, 419–426 (1993)
Zurück zum Zitat G.C. Chern, I. Lauks: Spin-coated amorphous-chalcogenide films, J. Appl. Phys. 53, 6979–6982 (1982)CrossRef G.C. Chern, I. Lauks: Spin-coated amorphous-chalcogenide films, J. Appl. Phys. 53, 6979–6982 (1982)CrossRef
Zurück zum Zitat S. Novak, P.-T. Lin, C. Li, N. Borodinov, Z. Han, C. Monmeyran, N. Patel, Q. Du, M. Malinowski, S. Fathpour, C. Lumdee, C. Xu, P.G. Kik, W. Deng, J. Hu, A. Agarwal, I. Luzinov, K. Richardson: Electrospray deposition of uniform thickness Ge23Sb7S70 and As40S60 chalcogenide glass films, J. Vis. Exp. (2016), https://doi.org/10.3791/54379CrossRef S. Novak, P.-T. Lin, C. Li, N. Borodinov, Z. Han, C. Monmeyran, N. Patel, Q. Du, M. Malinowski, S. Fathpour, C. Lumdee, C. Xu, P.G. Kik, W. Deng, J. Hu, A. Agarwal, I. Luzinov, K. Richardson: Electrospray deposition of uniform thickness Ge23Sb7S70 and As40S60 chalcogenide glass films, J. Vis. Exp. (2016), https://​doi.​org/​10.​3791/​54379CrossRef
Zurück zum Zitat V. Nazabal, F. Charpentier, J.L. Adam, P. Nemec, H. Lhermite, M.L. Brandily-Anne, J. Charrier, J.P. Guin, A. Moreac: Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films, Int. J. Appl. Ceram. Technol. 8, 990–1000 (2011)CrossRef V. Nazabal, F. Charpentier, J.L. Adam, P. Nemec, H. Lhermite, M.L. Brandily-Anne, J. Charrier, J.P. Guin, A. Moreac: Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films, Int. J. Appl. Ceram. Technol. 8, 990–1000 (2011)CrossRef
Zurück zum Zitat J. Hu, X. Sun, A.M. Agarwal, J.F. Viens, L.C. Kimerling, L. Petit, N. Carlie, K.C. Richardson, T. Anderson, J. Choi, M. Richardson: Studies on structural, electrical, and optical properties of Cu doped As-Se-Te chalcogenide glasses, J. Appl. Phys. 101, 063520 (2007)CrossRef J. Hu, X. Sun, A.M. Agarwal, J.F. Viens, L.C. Kimerling, L. Petit, N. Carlie, K.C. Richardson, T. Anderson, J. Choi, M. Richardson: Studies on structural, electrical, and optical properties of Cu doped As-Se-Te chalcogenide glasses, J. Appl. Phys. 101, 063520 (2007)CrossRef
Zurück zum Zitat Y. Zou, H.T. Lin, O. Ogbuu, L. Li, S. Danto, S. Novak, J. Novak, J.D. Musgraves, K. Richardson, J.J. Hu: Effect of annealing conditions on the physio-chemical properties of spin-coated As2Se3 chalcogenide glass films, Opt. Mater. Express 2, 1723–1732 (2012)CrossRef Y. Zou, H.T. Lin, O. Ogbuu, L. Li, S. Danto, S. Novak, J. Novak, J.D. Musgraves, K. Richardson, J.J. Hu: Effect of annealing conditions on the physio-chemical properties of spin-coated As2Se3 chalcogenide glass films, Opt. Mater. Express 2, 1723–1732 (2012)CrossRef
Zurück zum Zitat A. Kovalskiy, J. Cech, M. Vlcek, C.M. Waits, M. Dubey, W.R. Heffner, H. Jain: Chalcogenide glass e-beam and photoresists for ultrathin grayscale patterning, J. Micro-Nanolithogr. MEMS MOEMS 8, 043012 (2009)CrossRef A. Kovalskiy, J. Cech, M. Vlcek, C.M. Waits, M. Dubey, W.R. Heffner, H. Jain: Chalcogenide glass e-beam and photoresists for ultrathin grayscale patterning, J. Micro-Nanolithogr. MEMS MOEMS 8, 043012 (2009)CrossRef
Zurück zum Zitat D.G. Georgiev, P. Boolchand, K.A. Jackson: Intrinsic nanoscale phase separation of bulk As2S3 glass, Philos. Mag. 83, 2941–2953 (2003)CrossRef D.G. Georgiev, P. Boolchand, K.A. Jackson: Intrinsic nanoscale phase separation of bulk As2S3 glass, Philos. Mag. 83, 2941–2953 (2003)CrossRef
Zurück zum Zitat R.A. Street, R.J. Nemanich, G.A.N. Connell: Thermally induced effects in evaporated chalcogenide films. 2. Optical-absorption, Phys. Rev. B 18, 6915–6919 (1978)CrossRef R.A. Street, R.J. Nemanich, G.A.N. Connell: Thermally induced effects in evaporated chalcogenide films. 2. Optical-absorption, Phys. Rev. B 18, 6915–6919 (1978)CrossRef
Zurück zum Zitat R.P. Wang, S.J. Madden, C.J. Zha, A.V. Rode, B. Luther-Davies: Annealing induced phase transformations in amorphous As2S3 films, J. Appl. Phys. 100, 063524 (2006)CrossRef R.P. Wang, S.J. Madden, C.J. Zha, A.V. Rode, B. Luther-Davies: Annealing induced phase transformations in amorphous As2S3 films, J. Appl. Phys. 100, 063524 (2006)CrossRef
Zurück zum Zitat D.Y. Choi, S. Madden, D. Bulla, R.P. Wang, A. Rode, B. Luther-Davies: Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance, J. Appl. Phys. 107, 053106 (2010)CrossRef D.Y. Choi, S. Madden, D. Bulla, R.P. Wang, A. Rode, B. Luther-Davies: Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance, J. Appl. Phys. 107, 053106 (2010)CrossRef
Zurück zum Zitat X. Gai, T. Han, A. Prasad, S. Madden, D.Y. Choi, R.P. Wang, D. Bulla, B. Luther-Davies: Progress in optical waveguides fabricated from chalcogenide glasses, Opt. Express 18, 26635–26646 (2010)CrossRef X. Gai, T. Han, A. Prasad, S. Madden, D.Y. Choi, R.P. Wang, D. Bulla, B. Luther-Davies: Progress in optical waveguides fabricated from chalcogenide glasses, Opt. Express 18, 26635–26646 (2010)CrossRef
Zurück zum Zitat A. Zakery, Y. Ruan, A.V. Rode, M. Samoc, B. Luther-Davies: Low-loss waveguides in ultrafast laser-deposited As2S3 chalcogenide films, J. Opt. Soc. Am. B Opt. Phys. 20, 1844–1852 (2003)CrossRef A. Zakery, Y. Ruan, A.V. Rode, M. Samoc, B. Luther-Davies: Low-loss waveguides in ultrafast laser-deposited As2S3 chalcogenide films, J. Opt. Soc. Am. B Opt. Phys. 20, 1844–1852 (2003)CrossRef
Zurück zum Zitat N. Ho, M.C. Phillips, H. Qiao, P.J. Allen, K. Krishnaswami, B.J. Riley, T.L. Myers, N.C. Anheier: Single-mode low-loss chalcogenide glass waveguides for the mid-infrared, Opt. Lett. 31, 1860–1862 (2006)CrossRef N. Ho, M.C. Phillips, H. Qiao, P.J. Allen, K. Krishnaswami, B.J. Riley, T.L. Myers, N.C. Anheier: Single-mode low-loss chalcogenide glass waveguides for the mid-infrared, Opt. Lett. 31, 1860–1862 (2006)CrossRef
Zurück zum Zitat J. Lapointe, Y. Ledemi, S. Loranger, V.L. Iezzi, E.S. de Lima, F. Parent, S. Morency, Y. Messaddeq, R. Kashyap: Fabrication of ultrafast laser written low-loss waveguides in flexible As2S3 chalcogenide glass tape, Opt. Lett. 41, 203–206 (2016)CrossRef J. Lapointe, Y. Ledemi, S. Loranger, V.L. Iezzi, E.S. de Lima, F. Parent, S. Morency, Y. Messaddeq, R. Kashyap: Fabrication of ultrafast laser written low-loss waveguides in flexible As2S3 chalcogenide glass tape, Opt. Lett. 41, 203–206 (2016)CrossRef
Zurück zum Zitat A. Rodenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, R. Thomson: Three-dimensional mid-infrared photonic circuits in chalcogenide glass, Opt. Lett. 37, 392–394 (2012)CrossRef A. Rodenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, R. Thomson: Three-dimensional mid-infrared photonic circuits in chalcogenide glass, Opt. Lett. 37, 392–394 (2012)CrossRef
Zurück zum Zitat R.M. Bryce, H.T. Nguyen, P. Nakeeran, R.G. DeCorby, P.K. Dwivedi, C.J. Haugen, J.N. McMullin, S.O. Kasap: Direct UV patterning of waveguide devices in AS2Se3 thin films, J. Vac. Sci. Technol. A 22, 1044–1047 (2004)CrossRef R.M. Bryce, H.T. Nguyen, P. Nakeeran, R.G. DeCorby, P.K. Dwivedi, C.J. Haugen, J.N. McMullin, S.O. Kasap: Direct UV patterning of waveguide devices in AS2Se3 thin films, J. Vac. Sci. Technol. A 22, 1044–1047 (2004)CrossRef
Zurück zum Zitat R.G. DeCorby, N. Ponnampalam, M.M. Pai, H.T. Nguyen, P.K. Dwivedi, T.J. Clement, C.J. Haugen, J.N. McMullin, S.O. Kasap: High index contrast waveguides in chalcogenide glass and polymer, IEEE J. Select. Top. Quantum Electron. 11, 539–546 (2005)CrossRef R.G. DeCorby, N. Ponnampalam, M.M. Pai, H.T. Nguyen, P.K. Dwivedi, T.J. Clement, C.J. Haugen, J.N. McMullin, S.O. Kasap: High index contrast waveguides in chalcogenide glass and polymer, IEEE J. Select. Top. Quantum Electron. 11, 539–546 (2005)CrossRef
Zurück zum Zitat M.W. Lee, C. Grillet, C.L.C. Smith, D.J. Moss, B.J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y.L. Ruan, Y.H. Lee: Photosensitive post tuning of chalcogenide photonic crystal waveguides, Opt. Express 15, 1277–1285 (2007)CrossRef M.W. Lee, C. Grillet, C.L.C. Smith, D.J. Moss, B.J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y.L. Ruan, Y.H. Lee: Photosensitive post tuning of chalcogenide photonic crystal waveguides, Opt. Express 15, 1277–1285 (2007)CrossRef
Zurück zum Zitat J.J. Hu, M. Torregiani, F. Morichetti, N. Carlie, A. Agarwal, K. Richardson, L.C. Kimerling, A. Melloni: Resonant cavity-enhanced photosensitivity in As2S3 chalcogenide glass at 1550 nm telecommunication wavelength, Opt. Lett. 35, 874–876 (2010)CrossRef J.J. Hu, M. Torregiani, F. Morichetti, N. Carlie, A. Agarwal, K. Richardson, L.C. Kimerling, A. Melloni: Resonant cavity-enhanced photosensitivity in As2S3 chalcogenide glass at 1550 nm telecommunication wavelength, Opt. Lett. 35, 874–876 (2010)CrossRef
Zurück zum Zitat A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B.J. Eggleton, N. Stoltz, P. Petroff, J. Vuckovic: Local tuning of photonic crystal cavities using chalcogenide glasses, Appl. Phys. Lett. 92, 043123 (2008)CrossRef A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B.J. Eggleton, N. Stoltz, P. Petroff, J. Vuckovic: Local tuning of photonic crystal cavities using chalcogenide glasses, Appl. Phys. Lett. 92, 043123 (2008)CrossRef
Zurück zum Zitat M.W. Lee, C. Grillet, S. Tomljenovic-Hanic, E.C. Magi, D.J. Moss, B.J. Eggleton, X. Gai, S. Madden, D.Y. Choi, D.A.P. Bulla, B. Luther-Davies: Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals, Opt. Lett. 34, 3671–3673 (2009)CrossRef M.W. Lee, C. Grillet, S. Tomljenovic-Hanic, E.C. Magi, D.J. Moss, B.J. Eggleton, X. Gai, S. Madden, D.Y. Choi, D.A.P. Bulla, B. Luther-Davies: Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals, Opt. Lett. 34, 3671–3673 (2009)CrossRef
Zurück zum Zitat J.F. Viens, C. Meneghini, A. Villeneuve, T.V. Galstian, E.J. Knystautas, M.A. Duguay, K.A. Richardson, T. Cardinal: Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses, J. Lightwave Technol. 17, 1184–1191 (1999)CrossRef J.F. Viens, C. Meneghini, A. Villeneuve, T.V. Galstian, E.J. Knystautas, M.A. Duguay, K.A. Richardson, T. Cardinal: Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses, J. Lightwave Technol. 17, 1184–1191 (1999)CrossRef
Zurück zum Zitat S.J. Madden, D.Y. Choi, D.A. Bulla, A.V. Rode, B. Luther-Davies, V.G. Ta'eed, M.D. Pelusi, B.J. Eggleton: Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration, Opt. Express 15, 14414–14421 (2007)CrossRef S.J. Madden, D.Y. Choi, D.A. Bulla, A.V. Rode, B. Luther-Davies, V.G. Ta'eed, M.D. Pelusi, B.J. Eggleton: Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration, Opt. Express 15, 14414–14421 (2007)CrossRef
Zurück zum Zitat Q.Y. Du, Y.Z. Huang, J.Y. Li, D. Kita, J. Michon, H.T. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, J.J. Hu: Low-loss photonic device in Ge-Sb-S chalcogenide glass, Opt. Lett. 41, 3090–3093 (2016)CrossRef Q.Y. Du, Y.Z. Huang, J.Y. Li, D. Kita, J. Michon, H.T. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, J.J. Hu: Low-loss photonic device in Ge-Sb-S chalcogenide glass, Opt. Lett. 41, 3090–3093 (2016)CrossRef
Zurück zum Zitat X. Gai, B. Luther-Davies, T.P. White: Photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding with a high Q-factor (\(> \) 750 000), Opt. Express 20, 15503–15515 (2012)CrossRef X. Gai, B. Luther-Davies, T.P. White: Photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding with a high Q-factor (\(> \) 750 000), Opt. Express 20, 15503–15515 (2012)CrossRef
Zurück zum Zitat P. Ma, D.Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, B. Luther-Davies: Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared, Opt. Express 21, 29927–29937 (2013)CrossRef P. Ma, D.Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, B. Luther-Davies: Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared, Opt. Express 21, 29927–29937 (2013)CrossRef
Zurück zum Zitat J.J. Hu, L. Li, H.T. Lin, Y. Zou, Q.Y. Du, C. Smith, S. Novak, K. Richardson, J.D. Musgraves: Chalcogenide glass microphotonics: Stepping into the spotlight, Am. Ceram. Soc. Bull. 94, 24–29 (2015) J.J. Hu, L. Li, H.T. Lin, Y. Zou, Q.Y. Du, C. Smith, S. Novak, K. Richardson, J.D. Musgraves: Chalcogenide glass microphotonics: Stepping into the spotlight, Am. Ceram. Soc. Bull. 94, 24–29 (2015)
Zurück zum Zitat X. Xia, Q. Chen, C. Tsay, C.B. Arnold, C.K. Madsen: Low-loss chalcogenide waveguides on lithium niobate for the mid-infrared, Opt. Lett. 35, 3228–3230 (2010)CrossRef X. Xia, Q. Chen, C. Tsay, C.B. Arnold, C.K. Madsen: Low-loss chalcogenide waveguides on lithium niobate for the mid-infrared, Opt. Lett. 35, 3228–3230 (2010)CrossRef
Zurück zum Zitat H.T. Lin, L. Li, F. Deng, C.Y. Ni, S. Danto, J.D. Musgraves, K. Richardson, J.J. Hu: Demonstration of mid-infrared waveguide photonic crystal cavities, Opt. Lett. 38, 2779–2782 (2013)CrossRef H.T. Lin, L. Li, F. Deng, C.Y. Ni, S. Danto, J.D. Musgraves, K. Richardson, J.J. Hu: Demonstration of mid-infrared waveguide photonic crystal cavities, Opt. Lett. 38, 2779–2782 (2013)CrossRef
Zurück zum Zitat H.T. Lin, L. Li, Y. Zou, S. Danto, J.D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P.T. Lin, V. Singh, A. Agarwal, L.C. Kimerling, J.J. Hu: Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators, Opt. Lett. 38, 1470–1472 (2013)CrossRef H.T. Lin, L. Li, Y. Zou, S. Danto, J.D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P.T. Lin, V. Singh, A. Agarwal, L.C. Kimerling, J.J. Hu: Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators, Opt. Lett. 38, 1470–1472 (2013)CrossRef
Zurück zum Zitat Y. Zou, D.N. Zhang, H.T. Lin, L. Li, L. Moreel, J. Zhou, Q.Y. Du, O. Ogbuu, S. Danto, J.D. Musgraves, K. Richardson, K.D. Dobson, R. Birkmire, J.J. Hu: High-Performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates, Adv. Opt. Mater. 2, 478–486 (2014)CrossRef Y. Zou, D.N. Zhang, H.T. Lin, L. Li, L. Moreel, J. Zhou, Q.Y. Du, O. Ogbuu, S. Danto, J.D. Musgraves, K. Richardson, K.D. Dobson, R. Birkmire, J.J. Hu: High-Performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates, Adv. Opt. Mater. 2, 478–486 (2014)CrossRef
Zurück zum Zitat T. Kohoutek, J. Orava, A.L. Greer, H. Fudouzi: Sub-micrometer soft lithography of a bulk chalcogenide glass, Opt. Express 21, 9584–9591 (2013)CrossRef T. Kohoutek, J. Orava, A.L. Greer, H. Fudouzi: Sub-micrometer soft lithography of a bulk chalcogenide glass, Opt. Express 21, 9584–9591 (2013)CrossRef
Zurück zum Zitat I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, J. Nishii: Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass, Opt. Lett. 36, 3882–3884 (2011)CrossRef I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, J. Nishii: Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass, Opt. Lett. 36, 3882–3884 (2011)CrossRef
Zurück zum Zitat Y.F. Zhai, R.D. Qi, C.Z. Yuan, W. Zhang, Y.D. Huang: High-quality chalcogenide glass waveguide fabrication by hot melt smoothing and micro-trench filling, Appl. Phys. Exp. 9, 052201 (2016)CrossRef Y.F. Zhai, R.D. Qi, C.Z. Yuan, W. Zhang, Y.D. Huang: High-quality chalcogenide glass waveguide fabrication by hot melt smoothing and micro-trench filling, Appl. Phys. Exp. 9, 052201 (2016)CrossRef
Zurück zum Zitat Y.L. Zha, P.T. Lin, L. Kimerling, A. Agarwal, C.B. Arnold: Inverted-rib chalcogenide waveguides by solution process, ACS Photonics 1, 153–157 (2014)CrossRef Y.L. Zha, P.T. Lin, L. Kimerling, A. Agarwal, C.B. Arnold: Inverted-rib chalcogenide waveguides by solution process, ACS Photonics 1, 153–157 (2014)CrossRef
Zurück zum Zitat C. Tsay, F. Toor, C.F. Gmachl, C.B. Arnold: Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits, Opt. Lett. 35, 3324–3326 (2010)CrossRef C. Tsay, F. Toor, C.F. Gmachl, C.B. Arnold: Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits, Opt. Lett. 35, 3324–3326 (2010)CrossRef
Zurück zum Zitat Z. Han, V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li, X. Huang, L. Kimerling, J. Hu: On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors, Appl. Phys. Lett. 109, 071111 (2016)CrossRef Z. Han, V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li, X. Huang, L. Kimerling, J. Hu: On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors, Appl. Phys. Lett. 109, 071111 (2016)CrossRef
Zurück zum Zitat V. Singh, T. Zens, J. Hu, J. Wang, J.D. Musgraves, K. Richardson, L.C. Kimerling, A. Agarwal: Evanescently coupled mid-infrared photodetector for integrated sensing applications: Theory and design, Sens. Actuators B Chem. 185, 195–200 (2013)CrossRef V. Singh, T. Zens, J. Hu, J. Wang, J.D. Musgraves, K. Richardson, L.C. Kimerling, A. Agarwal: Evanescently coupled mid-infrared photodetector for integrated sensing applications: Theory and design, Sens. Actuators B Chem. 185, 195–200 (2013)CrossRef
Zurück zum Zitat L. Li, H.T. Lin, S. Geiger, A. Zerdoum, P. Zhang, O. Ogbuu, Q.Y. Du, X.Q. Jia, S. Novak, C. Smith, K. Richardson, J.D. Musgraves, J.J. Hu: Amorphous thin films for mechanically flexible, multimaterial integrated photonics, Am. Ceram. Soc. Bull. 95, 34–36 (2016) L. Li, H.T. Lin, S. Geiger, A. Zerdoum, P. Zhang, O. Ogbuu, Q.Y. Du, X.Q. Jia, S. Novak, C. Smith, K. Richardson, J.D. Musgraves, J.J. Hu: Amorphous thin films for mechanically flexible, multimaterial integrated photonics, Am. Ceram. Soc. Bull. 95, 34–36 (2016)
Zurück zum Zitat L. Li, H. Lin, Y. Huang, R.-J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu: High-performance flexible waveguide-integrated photodetectors, Optica 5, 44–51 (2018)CrossRef L. Li, H. Lin, Y. Huang, R.-J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu: High-performance flexible waveguide-integrated photodetectors, Optica 5, 44–51 (2018)CrossRef
Zurück zum Zitat S. Serna, H. Lin, C. Alonso-Ramos, A. Yadav, X. Le Roux, K. Richardson, E. Cassan, N. Dubreuil, J. Hu, L. Vivien: Nonlinear optical properties of integrated GeSbS chalcogenide waveguides, Photonics Res. 6, B37–B42 (2018)CrossRef S. Serna, H. Lin, C. Alonso-Ramos, A. Yadav, X. Le Roux, K. Richardson, E. Cassan, N. Dubreuil, J. Hu, L. Vivien: Nonlinear optical properties of integrated GeSbS chalcogenide waveguides, Photonics Res. 6, B37–B42 (2018)CrossRef
Zurück zum Zitat X. Gai, S. Madden, D.Y. Choi, D. Bulla, B. Luther-Davies: Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W-1 m-1 at 1550 nm, Opt. Express 18, 18866–18874 (2010)CrossRef X. Gai, S. Madden, D.Y. Choi, D. Bulla, B. Luther-Davies: Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W-1 m-1 at 1550 nm, Opt. Express 18, 18866–18874 (2010)CrossRef
Zurück zum Zitat K. Suzuki, T. Baba: Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides, Opt. Express 18, 26675–26685 (2010)CrossRef K. Suzuki, T. Baba: Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides, Opt. Express 18, 26675–26685 (2010)CrossRef
Zurück zum Zitat S. Smolorz, I. Kang, F. Wise, B.G. Aitken, N.F. Borrelli: Studies of optical non-linearities of chalcogenide and heavy-metal oxide glasses, J. Non-Cryst. Solids 256, 310–317 (1999)CrossRef S. Smolorz, I. Kang, F. Wise, B.G. Aitken, N.F. Borrelli: Studies of optical non-linearities of chalcogenide and heavy-metal oxide glasses, J. Non-Cryst. Solids 256, 310–317 (1999)CrossRef
Zurück zum Zitat T.D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L.K. Oxenløwe, S.J. Madden, D.Y. Choi, D.A. Bulla, M.D. Pelusi, J. Schroder, B. Luther-Davies, B.J. Eggleton: Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal, Opt. Express 18, 17252–17261 (2010)CrossRef T.D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L.K. Oxenløwe, S.J. Madden, D.Y. Choi, D.A. Bulla, M.D. Pelusi, J. Schroder, B. Luther-Davies, B.J. Eggleton: Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal, Opt. Express 18, 17252–17261 (2010)CrossRef
Zurück zum Zitat Y. Yu, X. Gai, T. Wang, P. Ma, R.P. Wang, Z.Y. Yang, D.Y. Choi, S. Madden, B. Luther-Davies: Mid-infrared supercontinuum generation in chalcogenides, Opt. Mater. Express 3, 1075–1086 (2013)CrossRef Y. Yu, X. Gai, T. Wang, P. Ma, R.P. Wang, Z.Y. Yang, D.Y. Choi, S. Madden, B. Luther-Davies: Mid-infrared supercontinuum generation in chalcogenides, Opt. Mater. Express 3, 1075–1086 (2013)CrossRef
Zurück zum Zitat K.A. Cerqua-Richardson, J.M. McKinley, B. Lawrence, S. Joshi, A. Villeneuve: Comparison of nonlinear-optical properties of sulfide glasses in bulk and thin film form, Opt. Mater. 10, 155–159 (1998)CrossRef K.A. Cerqua-Richardson, J.M. McKinley, B. Lawrence, S. Joshi, A. Villeneuve: Comparison of nonlinear-optical properties of sulfide glasses in bulk and thin film form, Opt. Mater. 10, 155–159 (1998)CrossRef
Zurück zum Zitat S. Spalter, H.Y. Hwang, J. Zimmermann, G. Lenz, T. Katsufuji, S.W. Cheong, R.E. Slusher: Strong self-phase modulation in planar chalcogenide glass waveguides, Opt. Lett. 27, 363–365 (2002)CrossRef S. Spalter, H.Y. Hwang, J. Zimmermann, G. Lenz, T. Katsufuji, S.W. Cheong, R.E. Slusher: Strong self-phase modulation in planar chalcogenide glass waveguides, Opt. Lett. 27, 363–365 (2002)CrossRef
Zurück zum Zitat Y.L. Ruan, W.T. Li, R. Jarvis, N. Madsen, A. Rode, B. Luther-Davies: Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching, Opt. Express 12, 5140–5145 (2004)CrossRef Y.L. Ruan, W.T. Li, R. Jarvis, N. Madsen, A. Rode, B. Luther-Davies: Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching, Opt. Express 12, 5140–5145 (2004)CrossRef
Zurück zum Zitat N.D. Psaila, R.R. Thomson, H.T. Bookey, S.X. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, A.K. Kar: Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide, Opt. Express 15, 15776–15781 (2007)CrossRef N.D. Psaila, R.R. Thomson, H.T. Bookey, S.X. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, A.K. Kar: Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide, Opt. Express 15, 15776–15781 (2007)CrossRef
Zurück zum Zitat Y. Yu, X. Gai, P. Ma, D.Y. Choi, Z.Y. Yang, R.P. Wang, S. Debbarma, S.J. Madden, B. Luther-Davies: A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide, Laser Photonics Rev. 8, 792–798 (2014)CrossRef Y. Yu, X. Gai, P. Ma, D.Y. Choi, Z.Y. Yang, R.P. Wang, S. Debbarma, S.J. Madden, B. Luther-Davies: A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide, Laser Photonics Rev. 8, 792–798 (2014)CrossRef
Zurück zum Zitat X. Gai, D.Y. Choi, S. Madden, Z.Y. Yang, R.P. Wang, B. Luther-Davies: Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide, Opt. Lett. 37, 3870–3872 (2012)CrossRef X. Gai, D.Y. Choi, S. Madden, Z.Y. Yang, R.P. Wang, B. Luther-Davies: Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide, Opt. Lett. 37, 3870–3872 (2012)CrossRef
Zurück zum Zitat D.S. Zhivotkov, E.A. Romanova, A. Vukovic, S. Phang: Highly non-linear optical microresonators for frequency combs generation. In: Proc. Saratov Fall Meet. 2014: Opt. Technol. Biophys. Med. Xvi; Laser Phys. Photonics Xvi; Comput. Biophys, Vol. 9448 (2015) p. 9448 D.S. Zhivotkov, E.A. Romanova, A. Vukovic, S. Phang: Highly non-linear optical microresonators for frequency combs generation. In: Proc. Saratov Fall Meet. 2014: Opt. Technol. Biophys. Med. Xvi; Laser Phys. Photonics Xvi; Comput. Biophys, Vol. 9448 (2015) p. 9448
Zurück zum Zitat Y. Guo, J. Wang, Z. Han, Z. Jafari, A. Zarifkar, J. Hu, A.M. Agarwal, L.C. Kimerling, J. Michel, L. Zhang: Wavelength-flexible Kerr frequency comb generation covering a 2000-nm bandwidth in mid-infrared. In: Proc. Mid-Infrared Coherent Sources (2016) p. MM1C.4 Y. Guo, J. Wang, Z. Han, Z. Jafari, A. Zarifkar, J. Hu, A.M. Agarwal, L.C. Kimerling, J. Michel, L. Zhang: Wavelength-flexible Kerr frequency comb generation covering a 2000-nm bandwidth in mid-infrared. In: Proc. Mid-Infrared Coherent Sources (2016) p. MM1C.4
Zurück zum Zitat Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, J. Hu: Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide, Photonics Res. 6, 506–510 (2018)CrossRef Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, J. Hu: Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide, Photonics Res. 6, 506–510 (2018)CrossRef
Zurück zum Zitat B. Mizaikoff: Waveguide-enhanced mid-infrared chem/bio sensors, Chem. Soc. Rev. 42, 8683–8699 (2013)CrossRef B. Mizaikoff: Waveguide-enhanced mid-infrared chem/bio sensors, Chem. Soc. Rev. 42, 8683–8699 (2013)CrossRef
Zurück zum Zitat Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, D.T.H. Tan: On-chip mid-infrared gas detection using chalcogenide glass waveguide, Appl. Phys. Lett. 108, 141106 (2016)CrossRef Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, D.T.H. Tan: On-chip mid-infrared gas detection using chalcogenide glass waveguide, Appl. Phys. Lett. 108, 141106 (2016)CrossRef
Zurück zum Zitat A. Ganjoo, H. Jain, C. Yu, R. Song, J.V. Ryan, J. Irudayaraj, Y.J. Ding, C.G. Pantano: Planar chalcogenide glass waveguides for IR evanescent wave sensors, J. Non-Cryst. Solids 352, 584–588 (2006)CrossRef A. Ganjoo, H. Jain, C. Yu, R. Song, J.V. Ryan, J. Irudayaraj, Y.J. Ding, C.G. Pantano: Planar chalcogenide glass waveguides for IR evanescent wave sensors, J. Non-Cryst. Solids 352, 584–588 (2006)CrossRef
Zurück zum Zitat J.J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, K. Richardson: Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor, Opt. Express 15, 2307–2314 (2007)CrossRef J.J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, K. Richardson: Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor, Opt. Express 15, 2307–2314 (2007)CrossRef
Zurück zum Zitat L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, K. Richardson, J.J. Hu, A. Agarwal, L. Kimerling, T. Anderson, M. Richardson: Development of novel integrated bio/chemical sensor systems using chalcogenide glass materials, Int. J. Nanotechnol. 6, 799–815 (2009)CrossRef L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, K. Richardson, J.J. Hu, A. Agarwal, L. Kimerling, T. Anderson, M. Richardson: Development of novel integrated bio/chemical sensor systems using chalcogenide glass materials, Int. J. Nanotechnol. 6, 799–815 (2009)CrossRef
Zurück zum Zitat K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, M. Richardson: Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors, J. Nonlinear Opt. Phys. Mater. 19, 75–99 (2010)CrossRef K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, M. Richardson: Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors, J. Nonlinear Opt. Phys. Mater. 19, 75–99 (2010)CrossRef
Zurück zum Zitat M.L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compere, B. Bureau: Chalcogenide glass optical waveguides for infrared biosensing, Sensors 9, 7398–7411 (2009)CrossRef M.L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compere, B. Bureau: Chalcogenide glass optical waveguides for infrared biosensing, Sensors 9, 7398–7411 (2009)CrossRef
Zurück zum Zitat J. Charrier, M.L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, V. Nazabal: Evanescent wave optical micro-sensor based on chalcogenide glass, Sens. Actuators B Chem. 173, 468–476 (2012)CrossRef J. Charrier, M.L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, V. Nazabal: Evanescent wave optical micro-sensor based on chalcogenide glass, Sens. Actuators B Chem. 173, 468–476 (2012)CrossRef
Zurück zum Zitat A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, C.G. Pantano: Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films, J. Non-Cryst. Solids 354, 2757–2762 (2008)CrossRef A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, C.G. Pantano: Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films, J. Non-Cryst. Solids 354, 2757–2762 (2008)CrossRef
Zurück zum Zitat J. Giammarco, B. Zdyrko, L. Petit, J.D. Musgraves, J. Hu, A. Agarwal, L. Kimerling, K. Richardson, I. Luzinov: Towards universal enrichment nanocoating for IR-ATR waveguides, Chem. Commun. 47, 9104–9106 (2011)CrossRef J. Giammarco, B. Zdyrko, L. Petit, J.D. Musgraves, J. Hu, A. Agarwal, L. Kimerling, K. Richardson, I. Luzinov: Towards universal enrichment nanocoating for IR-ATR waveguides, Chem. Commun. 47, 9104–9106 (2011)CrossRef
Zurück zum Zitat J. Hu, V. Tarasov, N. Carlie, R. Sun, L. Petit, A. Agarwal, K. Richardson, L. Kimerling: Low-loss integrated planar chalcogenide waveguides for microfluidic chemical sensing, Proc. SPIE 644, 64440N (2007)CrossRef J. Hu, V. Tarasov, N. Carlie, R. Sun, L. Petit, A. Agarwal, K. Richardson, L. Kimerling: Low-loss integrated planar chalcogenide waveguides for microfluidic chemical sensing, Proc. SPIE 644, 64440N (2007)CrossRef
Zurück zum Zitat J.J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L.C. Kimerling: Cavity-enhanced IR absorption in planar chalcogenide glass microdisk resonators: Experiment and analysis, J. Lightwave Technol. 27, 5240–5245 (2009)CrossRef J.J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L.C. Kimerling: Cavity-enhanced IR absorption in planar chalcogenide glass microdisk resonators: Experiment and analysis, J. Lightwave Technol. 27, 5240–5245 (2009)CrossRef
Zurück zum Zitat N. Borodinov, A.P. Soliani, Y. Galabura, B. Zdyrko, C. Tysinger, S. Novak, Q. Du, Y. Huang, V. Singh, Z. Han: Gradient polymer nanofoams for encrypted recording of chemical events, ACS Nano 10, 10716–10725 (2016)CrossRef N. Borodinov, A.P. Soliani, Y. Galabura, B. Zdyrko, C. Tysinger, S. Novak, Q. Du, Y. Huang, V. Singh, Z. Han: Gradient polymer nanofoams for encrypted recording of chemical events, ACS Nano 10, 10716–10725 (2016)CrossRef
Zurück zum Zitat J. Hu, X. Sun, A. Agarwal, L.C. Kimerling: Design guidelines for optical resonator biochemical sensors, J. Opt. Soc. Am. B 26, 1032–1041 (2009)CrossRef J. Hu, X. Sun, A. Agarwal, L.C. Kimerling: Design guidelines for optical resonator biochemical sensors, J. Opt. Soc. Am. B 26, 1032–1041 (2009)CrossRef
Zurück zum Zitat J.J. Hu: Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy, Opt. Express 18, 22174–22186 (2010)CrossRef J.J. Hu: Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy, Opt. Express 18, 22174–22186 (2010)CrossRef
Zurück zum Zitat H.T. Lin, Z. Yi, J.J. Hu: Double resonance 1-D photonic crystal cavities for single-molecule mid-infrared photothermal spectroscopy: theory and design, Opt. Lett. 37, 1304–1306 (2012)CrossRef H.T. Lin, Z. Yi, J.J. Hu: Double resonance 1-D photonic crystal cavities for single-molecule mid-infrared photothermal spectroscopy: theory and design, Opt. Lett. 37, 1304–1306 (2012)CrossRef
Zurück zum Zitat D. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, J. Hu: On-chip infrared spectroscopic sensing: Redefining the benefits of scaling, IEEE J. Select. Top. Quantum Electron. 23, 5900110 (2017)CrossRef D. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, J. Hu: On-chip infrared spectroscopic sensing: Redefining the benefits of scaling, IEEE J. Select. Top. Quantum Electron. 23, 5900110 (2017)CrossRef
Zurück zum Zitat L. Su, C.J. Rowlands, S.R. Elliott: Nanostructures fabricated in chalcogenide glass for use as surface-enhanced Raman scattering substrates, Opt. Lett. 34, 1645–1647 (2009)CrossRef L. Su, C.J. Rowlands, S.R. Elliott: Nanostructures fabricated in chalcogenide glass for use as surface-enhanced Raman scattering substrates, Opt. Lett. 34, 1645–1647 (2009)CrossRef
Zurück zum Zitat M.J. Schoning, J.P. Kloock: About 20 years of silicon-based thin-film sensors with chalcogenide glass materials for heavy metal analysis: Technological aspects of fabrication and miniaturization, Electroanalysis 19, 2029–2038 (2007)CrossRef M.J. Schoning, J.P. Kloock: About 20 years of silicon-based thin-film sensors with chalcogenide glass materials for heavy metal analysis: Technological aspects of fabrication and miniaturization, Electroanalysis 19, 2029–2038 (2007)CrossRef
Zurück zum Zitat L. Li, H.T. Lin, S.T. Qiao, Y. Zou, S. Danto, K. Richardson, J.D. Musgraves, N.S. Lu, J.J. Hu: Integrated flexible chalcogenide glass photonic devices, Nat. Photonics 8, 643–649 (2014)CrossRef L. Li, H.T. Lin, S.T. Qiao, Y. Zou, S. Danto, K. Richardson, J.D. Musgraves, N.S. Lu, J.J. Hu: Integrated flexible chalcogenide glass photonic devices, Nat. Photonics 8, 643–649 (2014)CrossRef
Zurück zum Zitat H.T. Lin, L. Li, Y. Zou, Q.Y. Du, O. Ogbuu, C. Smith, E. Koontz, J.D. Musgraves, K. Richardson, J.J. Hu: Substrate-blind photonic integration based on high-index glasses, Proc. SPIE 9277, 92770T (2014)CrossRef H.T. Lin, L. Li, Y. Zou, Q.Y. Du, O. Ogbuu, C. Smith, E. Koontz, J.D. Musgraves, K. Richardson, J.J. Hu: Substrate-blind photonic integration based on high-index glasses, Proc. SPIE 9277, 92770T (2014)CrossRef
Zurück zum Zitat X. Sheng, C.A. Bower, S. Bonafede, J.W. Wilson, B. Fisher, M. Meitl, H. Yuen, S.D. Wang, L. Shen, A.R. Banks, C.J. Corcoran, R.G. Nuzzo, S. Burroughs, J.A. Rogers: Printing-based assembly of quadruple-junction four-terminal microscale solar cells and their use in high-efficiency modules, Nat. Mater. 13, 593–598 (2014)CrossRef X. Sheng, C.A. Bower, S. Bonafede, J.W. Wilson, B. Fisher, M. Meitl, H. Yuen, S.D. Wang, L. Shen, A.R. Banks, C.J. Corcoran, R.G. Nuzzo, S. Burroughs, J.A. Rogers: Printing-based assembly of quadruple-junction four-terminal microscale solar cells and their use in high-efficiency modules, Nat. Mater. 13, 593–598 (2014)CrossRef
Zurück zum Zitat V. Wood, J. Busch, C. Verber: Design, fabrication and evaluation of chalcogenide glass Luneburg lenses for LiNbO3 integrated optical devices, Technical Report NASA-CR-165972, NASA.26:165972 (NASA Langley Research Center, Hampton 1982) V. Wood, J. Busch, C. Verber: Design, fabrication and evaluation of chalcogenide glass Luneburg lenses for LiNbO3 integrated optical devices, Technical Report NASA-CR-165972, NASA.26:165972 (NASA Langley Research Center, Hampton 1982)
Zurück zum Zitat A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, S. Fathpour: Heterogeneous microring and Mach–Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon, Opt. Express 23, 22746–22752 (2015)CrossRef A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, S. Fathpour: Heterogeneous microring and Mach–Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon, Opt. Express 23, 22746–22752 (2015)CrossRef
Zurück zum Zitat M.E. Solmaz: Tunable ring-coupled Mach–Zehnder interferometer based on lithium niobate, J. Mod. Opt. 61, 419–423 (2014)CrossRef M.E. Solmaz: Tunable ring-coupled Mach–Zehnder interferometer based on lithium niobate, J. Mod. Opt. 61, 419–423 (2014)CrossRef
Zurück zum Zitat R.J. Martin-Palma, C.G. Pantano, A. Lakhtakia: Biomimetization of butterfly wings by the conformal-evaporated-film-by-rotation technique for photonics, Appl. Phys. Lett. 93, 083901 (2008)CrossRef R.J. Martin-Palma, C.G. Pantano, A. Lakhtakia: Biomimetization of butterfly wings by the conformal-evaporated-film-by-rotation technique for photonics, Appl. Phys. Lett. 93, 083901 (2008)CrossRef
Zurück zum Zitat H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo: Chalcogenide glass-on-graphene photonics, Nat. Photonics 11, 798–805 (2017)CrossRef H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo: Chalcogenide glass-on-graphene photonics, Nat. Photonics 11, 798–805 (2017)CrossRef
Zurück zum Zitat S. Deckoff-Jones, H. Lin, D. Kita, H. Zheng, D. Li, W. Zhang, J. Hu: Chalcogenide glass waveguide-integrated black phosphorus mid-infrared photodetectors, J. Opt. 20, 044004 (2018)CrossRef S. Deckoff-Jones, H. Lin, D. Kita, H. Zheng, D. Li, W. Zhang, J. Hu: Chalcogenide glass waveguide-integrated black phosphorus mid-infrared photodetectors, J. Opt. 20, 044004 (2018)CrossRef
Zurück zum Zitat L. Zhu, F. Liu, H. Lin, J. Hu, Z. Yu, X. Wang, S. Fan: Angle-selective perfect absorption with two-dimensional materials, Light Sci. Appl. 5, e16052 (2016)CrossRef L. Zhu, F. Liu, H. Lin, J. Hu, Z. Yu, X. Wang, S. Fan: Angle-selective perfect absorption with two-dimensional materials, Light Sci. Appl. 5, e16052 (2016)CrossRef
Zurück zum Zitat H.C. Ko, M.P. Stoykovich, J.Z. Song, V. Malyarchuk, W.M. Choi, C.J. Yu, J.B. Geddes, J.L. Xiao, S.D. Wang, Y.G. Huang, J.A. Rogers: A hemispherical electronic eye camera based on compressible silicon optoelectronics, Nature 454, 748–753 (2008)CrossRef H.C. Ko, M.P. Stoykovich, J.Z. Song, V. Malyarchuk, W.M. Choi, C.J. Yu, J.B. Geddes, J.L. Xiao, S.D. Wang, Y.G. Huang, J.A. Rogers: A hemispherical electronic eye camera based on compressible silicon optoelectronics, Nature 454, 748–753 (2008)CrossRef
Zurück zum Zitat D.H. Kim, N.S. Lu, R. Ma, Y.S. Kim, R.H. Kim, S.D. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T.I. Kim, R. Chowdhury, M. Ying, L.Z. Xu, M. Li, H.J. Chung, H. Keum, M. McCormick, P. Liu, Y.W. Zhang, F.G. Omenetto, Y.G. Huang, T. Coleman, J.A. Rogers: Epidermal electronics, Science 333, 838–843 (2011)CrossRef D.H. Kim, N.S. Lu, R. Ma, Y.S. Kim, R.H. Kim, S.D. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T.I. Kim, R. Chowdhury, M. Ying, L.Z. Xu, M. Li, H.J. Chung, H. Keum, M. McCormick, P. Liu, Y.W. Zhang, F.G. Omenetto, Y.G. Huang, T. Coleman, J.A. Rogers: Epidermal electronics, Science 333, 838–843 (2011)CrossRef
Zurück zum Zitat E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, P. Van Daele: Highly reliable flexible active optical links, IEEE Photonics Technol. Lett. 22, 287–289 (2010)CrossRef E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, P. Van Daele: Highly reliable flexible active optical links, IEEE Photonics Technol. Lett. 22, 287–289 (2010)CrossRef
Zurück zum Zitat L. Li, Y. Zou, H.T. Lin, J.J. Hu, X.C. Sun, N.N. Feng, S. Danto, K. Richardson, T. Gu, M. Haney: A fully-integrated flexible photonic platform for chip-to-chip optical interconnects, J. Lightwave Technol. 31, 4080–4086 (2013)CrossRef L. Li, Y. Zou, H.T. Lin, J.J. Hu, X.C. Sun, N.N. Feng, S. Danto, K. Richardson, T. Gu, M. Haney: A fully-integrated flexible photonic platform for chip-to-chip optical interconnects, J. Lightwave Technol. 31, 4080–4086 (2013)CrossRef
Zurück zum Zitat Y. Chen, H. Li, M. Li: Flexible and tunable silicon photonic circuits on plastic substrates, Sci. Rep. 2, 622 (2012)CrossRef Y. Chen, H. Li, M. Li: Flexible and tunable silicon photonic circuits on plastic substrates, Sci. Rep. 2, 622 (2012)CrossRef
Zurück zum Zitat J.J. Hu, L. Li, H.T. Lin, P. Zhang, W.D. Zhou, Z.Q. Ma: Flexible integrated photonics: Where materials, mechanics and optics meet, Opt. Mater. Express 3, 1313–1331 (2013)CrossRef J.J. Hu, L. Li, H.T. Lin, P. Zhang, W.D. Zhou, Z.Q. Ma: Flexible integrated photonics: Where materials, mechanics and optics meet, Opt. Mater. Express 3, 1313–1331 (2013)CrossRef
Zurück zum Zitat L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J.-Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav: Monolithically integrated stretchable photonics, Light Sci. Appl. 7, 17138 (2018)CrossRef L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J.-Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav: Monolithically integrated stretchable photonics, Light Sci. Appl. 7, 17138 (2018)CrossRef
Zurück zum Zitat L. Li, H. Lin, J. Michon, Y. Huang, J. Li, Q. Du, A. Yadav, K. Richardson, T. Gu, J. Hu: A new twist on glass: A brittle material enabling flexible integrated photonics, Int. J. Appl. Glass Sci. 8, 61–68 (2017)CrossRef L. Li, H. Lin, J. Michon, Y. Huang, J. Li, Q. Du, A. Yadav, K. Richardson, T. Gu, J. Hu: A new twist on glass: A brittle material enabling flexible integrated photonics, Int. J. Appl. Glass Sci. 8, 61–68 (2017)CrossRef
Zurück zum Zitat C. Charron, E. Fogret, G. Fonteneau, R. Rimet, J. Lucas: Fluoride glass planar optical waveguides, J. Non-Cryst. Solids 184, 222–224 (1995)CrossRef C. Charron, E. Fogret, G. Fonteneau, R. Rimet, J. Lucas: Fluoride glass planar optical waveguides, J. Non-Cryst. Solids 184, 222–224 (1995)CrossRef
Zurück zum Zitat M.E. Lines: Ultralow-loss glasses, Annu. Rev. Mater. Sci. 16, 113–135 (1986)CrossRef M.E. Lines: Ultralow-loss glasses, Annu. Rev. Mater. Sci. 16, 113–135 (1986)CrossRef
Zurück zum Zitat I.D. Aggarwal, G. Lu: Fluoride Glass Fiber Optics (Academic Press, Cambridge 2013) I.D. Aggarwal, G. Lu: Fluoride Glass Fiber Optics (Academic Press, Cambridge 2013)
Zurück zum Zitat S. Gross, N. Jovanovic, A. Sharp, M. Ireland, J. Lawrence, M.J. Withford: Low loss mid-infrared ZBLAN waveguides for future astronomical applications, Opt. Express 23, 7946–7956 (2015)CrossRef S. Gross, N. Jovanovic, A. Sharp, M. Ireland, J. Lawrence, M.J. Withford: Low loss mid-infrared ZBLAN waveguides for future astronomical applications, Opt. Express 23, 7946–7956 (2015)CrossRef
Zurück zum Zitat J.L. Adam, F. Smektala, J. Lucas: Active fluoride glass optical waveguides for laser sources, Opt. Mater. 4, 85–90 (1994)CrossRef J.L. Adam, F. Smektala, J. Lucas: Active fluoride glass optical waveguides for laser sources, Opt. Mater. 4, 85–90 (1994)CrossRef
Zurück zum Zitat B. Boulard, C. Jacoboni: Preparation of fluoride glass-films by evaporation, Mater. Res. Bull. 25, 671–677 (1990)CrossRef B. Boulard, C. Jacoboni: Preparation of fluoride glass-films by evaporation, Mater. Res. Bull. 25, 671–677 (1990)CrossRef
Zurück zum Zitat K. Fujiura, Y. Nishida, H. Sato, S. Sugawara, K. Kobayashi, Y. Terunuma, S. Takahashi: Plasma-enhanced chemical-vapor-deposition of ZrF4-based fluoride glasses, J. Non-Cryst. Solids 161, 14–17 (1993)CrossRef K. Fujiura, Y. Nishida, H. Sato, S. Sugawara, K. Kobayashi, Y. Terunuma, S. Takahashi: Plasma-enhanced chemical-vapor-deposition of ZrF4-based fluoride glasses, J. Non-Cryst. Solids 161, 14–17 (1993)CrossRef
Zurück zum Zitat J. Ballato, R.E. Riman, E. Snitzer: Sol-gel synthesis of fluoride optical materials for planar integrated photonic applications, J. Non-Cryst. Solids 213, 126–136 (1997)CrossRef J. Ballato, R.E. Riman, E. Snitzer: Sol-gel synthesis of fluoride optical materials for planar integrated photonic applications, J. Non-Cryst. Solids 213, 126–136 (1997)CrossRef
Zurück zum Zitat J.D. Shephard, D. Furniss, P.A. Houston, A.B. Seddon: Fabrication of mid-infrared planar waveguides from compatible fluorozirconate glass pairs, via hot spin-casting, J. Non-Cryst. Solids 284, 160–167 (2001)CrossRef J.D. Shephard, D. Furniss, P.A. Houston, A.B. Seddon: Fabrication of mid-infrared planar waveguides from compatible fluorozirconate glass pairs, via hot spin-casting, J. Non-Cryst. Solids 284, 160–167 (2001)CrossRef
Zurück zum Zitat D. Ganser, J. Gottmann, U. Mackens, U. Weichmann: Pulsed laser deposition of fluoride glass thin films, Appl. Surf. Sci. 257, 954–959 (2010)CrossRef D. Ganser, J. Gottmann, U. Mackens, U. Weichmann: Pulsed laser deposition of fluoride glass thin films, Appl. Surf. Sci. 257, 954–959 (2010)CrossRef
Zurück zum Zitat J. Gottmann, L. Moiseev, I. Vasilief, D. Wortmann: Manufacturing of Er:ZBLAN ridge waveguides by pulsed laser deposition and ultrafast laser micromachining for green integrated lasers, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 146, 245–251 (2008)CrossRef J. Gottmann, L. Moiseev, I. Vasilief, D. Wortmann: Manufacturing of Er:ZBLAN ridge waveguides by pulsed laser deposition and ultrafast laser micromachining for green integrated lasers, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 146, 245–251 (2008)CrossRef
Zurück zum Zitat J. Gottmann, L. Moiseev, D. Wortmann, I. Vasilief, L. Starovoytova, D. Ganser, R. Wagner: Laser deposition and structuring of laser active planar waveguides of Er:ZBLAN, Nd:YAG and Nd:GGG for integrated waveguide lasers, Proc. SPIE 6459, 64590W (2007)CrossRef J. Gottmann, L. Moiseev, D. Wortmann, I. Vasilief, L. Starovoytova, D. Ganser, R. Wagner: Laser deposition and structuring of laser active planar waveguides of Er:ZBLAN, Nd:YAG and Nd:GGG for integrated waveguide lasers, Proc. SPIE 6459, 64590W (2007)CrossRef
Zurück zum Zitat C. Jacoboni, O. Perrot, B. Boulard: Vapor-phase deposition of rare-earth-doped PZG glasses, J. Non-Cryst. Solids 184, 184–189 (1995)CrossRef C. Jacoboni, O. Perrot, B. Boulard: Vapor-phase deposition of rare-earth-doped PZG glasses, J. Non-Cryst. Solids 184, 184–189 (1995)CrossRef
Zurück zum Zitat O. Perrot, L. Guinvarch, D. Benhaddou, P.C. Montgomery, R. Rimet, B. Boulard, C. Jacobini: Optical investigation of fluoride glass planar wave-guides made by vapor-phase deposition, J. Non-Cryst. Solids 184, 257–262 (1995)CrossRef O. Perrot, L. Guinvarch, D. Benhaddou, P.C. Montgomery, R. Rimet, B. Boulard, C. Jacobini: Optical investigation of fluoride glass planar wave-guides made by vapor-phase deposition, J. Non-Cryst. Solids 184, 257–262 (1995)CrossRef
Zurück zum Zitat E. Lebrasseur, B. Jacquier, M.C.M. de Lucas, E. Josse, J.L. Adam, G. Fonteneau, J. Lucas, Y. Gao, B. Boulard, C. Jacoboni, J.E. Broquin, R. Rimet: Optical amplification and laser spectroscopy of neodymium-doped fluoride glass channel waveguides, J. Alloys Compd. 275, 716–720 (1998)CrossRef E. Lebrasseur, B. Jacquier, M.C.M. de Lucas, E. Josse, J.L. Adam, G. Fonteneau, J. Lucas, Y. Gao, B. Boulard, C. Jacoboni, J.E. Broquin, R. Rimet: Optical amplification and laser spectroscopy of neodymium-doped fluoride glass channel waveguides, J. Alloys Compd. 275, 716–720 (1998)CrossRef
Zurück zum Zitat P.J. Morais, M.C. Goncalves, R.M. Almeida: Physical vapor deposition of rare-earth doped ZrF4-based glass planar waveguides, J. Non-Cryst. Solids 256, 194–199 (1999)CrossRef P.J. Morais, M.C. Goncalves, R.M. Almeida: Physical vapor deposition of rare-earth doped ZrF4-based glass planar waveguides, J. Non-Cryst. Solids 256, 194–199 (1999)CrossRef
Zurück zum Zitat S.H. Cho, W.S. Chang, J.G. Kim, K.R. Kim, J.W. Hong: Fabrication of internal diffraction gratings in planar fluoride glass using low-density plasma formation induced by a femtosecond laser, Appl. Surf. Sci. 255, 2069–2074 (2008)CrossRef S.H. Cho, W.S. Chang, J.G. Kim, K.R. Kim, J.W. Hong: Fabrication of internal diffraction gratings in planar fluoride glass using low-density plasma formation induced by a femtosecond laser, Appl. Surf. Sci. 255, 2069–2074 (2008)CrossRef
Zurück zum Zitat K. Miura, J.R. Qiu, H. Inouye, T. Mitsuyu, K. Hirao: Photowritten optical waveguides in various glasses with ultrashort pulse laser, Appl. Phys. Lett. 71, 3329–3331 (1997)CrossRef K. Miura, J.R. Qiu, H. Inouye, T. Mitsuyu, K. Hirao: Photowritten optical waveguides in various glasses with ultrashort pulse laser, Appl. Phys. Lett. 71, 3329–3331 (1997)CrossRef
Zurück zum Zitat K. Miura, J.R. Qiu, T. Mitsuyu, K. Hirao: Preparation and optical properties of fluoride glass waveguides induced by laser pulses, J. Non-Cryst. Solids 256, 212–219 (1999)CrossRef K. Miura, J.R. Qiu, T. Mitsuyu, K. Hirao: Preparation and optical properties of fluoride glass waveguides induced by laser pulses, J. Non-Cryst. Solids 256, 212–219 (1999)CrossRef
Zurück zum Zitat E. Fogret, G. Fonteneau, J. Lucas, R. Rimet: Fluoride glass planar optical waveguides by cationic exchange, Opt. Mater. 5, 79–86 (1996)CrossRef E. Fogret, G. Fonteneau, J. Lucas, R. Rimet: Fluoride glass planar optical waveguides by cationic exchange, Opt. Mater. 5, 79–86 (1996)CrossRef
Zurück zum Zitat V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J.L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, J.L. Adam: Fluoride and oxyfluoride glasses for optical applications, J. Fluor. Chem. 134, 18–23 (2012)CrossRef V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J.L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, J.L. Adam: Fluoride and oxyfluoride glasses for optical applications, J. Fluor. Chem. 134, 18–23 (2012)CrossRef
Zurück zum Zitat T. Ohtsuki, S. Honkanen, N. Peyghambarian, M. Takahashi, Y. Kawamoto, J. Ingenhoff, A. Tervonen, K. Kadono: Evanescent-field amplification in Nd3+-doped fluoride planar waveguide, Appl. Phys. Lett. 69, 2012–2014 (1996)CrossRef T. Ohtsuki, S. Honkanen, N. Peyghambarian, M. Takahashi, Y. Kawamoto, J. Ingenhoff, A. Tervonen, K. Kadono: Evanescent-field amplification in Nd3+-doped fluoride planar waveguide, Appl. Phys. Lett. 69, 2012–2014 (1996)CrossRef
Zurück zum Zitat I. Vasilief, S. Guy, B. Jacquier, B. Boulard, Y.P. Gao, C. Duverger, H. Haquin, V. Nazabal, J.L. Adam, M. Couchaud, L. Fulbert, C. Cassagnettes, F. Rooms, D. Barbier: Propagation losses and gain measurements in erbium-doped fluoride glass channel waveguides by use of a double-pass technique, Appl. Opt. 44, 4678–4683 (2005)CrossRef I. Vasilief, S. Guy, B. Jacquier, B. Boulard, Y.P. Gao, C. Duverger, H. Haquin, V. Nazabal, J.L. Adam, M. Couchaud, L. Fulbert, C. Cassagnettes, F. Rooms, D. Barbier: Propagation losses and gain measurements in erbium-doped fluoride glass channel waveguides by use of a double-pass technique, Appl. Opt. 44, 4678–4683 (2005)CrossRef
Zurück zum Zitat N.D. Psaila, R.R. Thomson, H.T. Bookey, A.K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, S. Shen: Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription, Appl. Phys. Lett. 90, 131102 (2007)CrossRef N.D. Psaila, R.R. Thomson, H.T. Bookey, A.K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, S. Shen: Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription, Appl. Phys. Lett. 90, 131102 (2007)CrossRef
Zurück zum Zitat D. Harwood, A. Fu, E. Taylor, R. Moore, Y. West, D. Payne: A 1317 nm neodymium doped fluoride glass waveguide laser, ECOC Proc. 2, 191–192 (2000) D. Harwood, A. Fu, E. Taylor, R. Moore, Y. West, D. Payne: A 1317 nm neodymium doped fluoride glass waveguide laser, ECOC Proc. 2, 191–192 (2000)
Zurück zum Zitat G. Palmer, S. Gross, A. Fuerbach, D.G. Lancaster, M.J. Withford: High slope efficiency and high refractive index change in direct-written Yb-doped waveguide lasers with depressed claddings, Opt. Express 21, 17413–17420 (2013)CrossRef G. Palmer, S. Gross, A. Fuerbach, D.G. Lancaster, M.J. Withford: High slope efficiency and high refractive index change in direct-written Yb-doped waveguide lasers with depressed claddings, Opt. Express 21, 17413–17420 (2013)CrossRef
Zurück zum Zitat D.G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T.M. Monro, M. Ams, A. Fuerbach, M.J. Withford: Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser, Opt. Lett. 36, 1587–1589 (2011)CrossRef D.G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T.M. Monro, M. Ams, A. Fuerbach, M.J. Withford: Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser, Opt. Lett. 36, 1587–1589 (2011)CrossRef
Zurück zum Zitat D.G. Lancaster, S. Gross, A. Fuerbach, H.E. Heidepriem, T.M. Monro, M.J. Withford: Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers, Opt. Express 20, 27503–27509 (2012)CrossRef D.G. Lancaster, S. Gross, A. Fuerbach, H.E. Heidepriem, T.M. Monro, M.J. Withford: Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers, Opt. Express 20, 27503–27509 (2012)CrossRef
Zurück zum Zitat D.G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M.J. Withford, T.M. Monro: 2.1 \(\upmu\)m waveguide laser fabricated by femtosecond laser direct-writing in Ho3+,Tm3+:ZBLAN glass, Opt. Lett. 37, 996–998 (2012)CrossRef D.G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M.J. Withford, T.M. Monro: 2.1 \(\upmu\)m waveguide laser fabricated by femtosecond laser direct-writing in Ho3+,Tm3+:ZBLAN glass, Opt. Lett. 37, 996–998 (2012)CrossRef
Zurück zum Zitat D.G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M.J. Withford, T.M. Monro, S.D. Jackson: Efficient 2.9 \(\upmu\)m fluorozirconate glass waveguide chip laser, Opt. Lett. 38, 2588–2591 (2013)CrossRef D.G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M.J. Withford, T.M. Monro, S.D. Jackson: Efficient 2.9 \(\upmu\)m fluorozirconate glass waveguide chip laser, Opt. Lett. 38, 2588–2591 (2013)CrossRef
Zurück zum Zitat E.D. Zanotto: A bright future for glass-ceramics, Am. Ceram. Soc. Bull. 89, 19–27 (2010) E.D. Zanotto: A bright future for glass-ceramics, Am. Ceram. Soc. Bull. 89, 19–27 (2010)
Zurück zum Zitat N.F. Borrelli: Electro-optic effect in transparent niobate glass-ceramic systems, J. Appl. Phys. 38, 4243 (1967)CrossRef N.F. Borrelli: Electro-optic effect in transparent niobate glass-ceramic systems, J. Appl. Phys. 38, 4243 (1967)CrossRef
Zurück zum Zitat G.H. Beall, D.A. Duke: Transparent glass-ceramics, J. Mater. Sci. 4, 340 (1969)CrossRef G.H. Beall, D.A. Duke: Transparent glass-ceramics, J. Mater. Sci. 4, 340 (1969)CrossRef
Zurück zum Zitat P.A. Tick: Are low-loss glass-ceramic optical waveguides possible?, Opt. Lett. 23, 1904–1905 (1998)CrossRef P.A. Tick: Are low-loss glass-ceramic optical waveguides possible?, Opt. Lett. 23, 1904–1905 (1998)CrossRef
Zurück zum Zitat P. Tick, N. Borrelli, I. Reaney: The relationship between structure and transparency in glass-ceramic materials, Opt. Mater. 15, 81–91 (2000)CrossRef P. Tick, N. Borrelli, I. Reaney: The relationship between structure and transparency in glass-ceramic materials, Opt. Mater. 15, 81–91 (2000)CrossRef
Zurück zum Zitat A. Edgar, G.V.M. Williams, J. Hamelin: Optical scattering in glass ceramics, Curr. Appl. Phys. 6, 355–358 (2006)CrossRef A. Edgar, G.V.M. Williams, J. Hamelin: Optical scattering in glass ceramics, Curr. Appl. Phys. 6, 355–358 (2006)CrossRef
Zurück zum Zitat M. Mattarelli, M. Montagna, P. Verrocchio: Ultratransparent glass ceramics: The structure factor and the quenching of the Rayleigh scattering, Appl. Phys. Lett. 91, 061911 (2007)CrossRef M. Mattarelli, M. Montagna, P. Verrocchio: Ultratransparent glass ceramics: The structure factor and the quenching of the Rayleigh scattering, Appl. Phys. Lett. 91, 061911 (2007)CrossRef
Zurück zum Zitat M. Mortier, A. Monteville, G. Patriarche, G. Maze, F. Auzel: New progresses in transparent rare-earth doped glass-ceramics, Opt. Mater. 16, 255–267 (2001)CrossRef M. Mortier, A. Monteville, G. Patriarche, G. Maze, F. Auzel: New progresses in transparent rare-earth doped glass-ceramics, Opt. Mater. 16, 255–267 (2001)CrossRef
Zurück zum Zitat T. Berthier, V.M. Fokin, E.D. Zanotto: New large grain, highly crystalline, transparent glass–ceramics, J. Non-Cryst. Solids 354, 1721–1730 (2008)CrossRef T. Berthier, V.M. Fokin, E.D. Zanotto: New large grain, highly crystalline, transparent glass–ceramics, J. Non-Cryst. Solids 354, 1721–1730 (2008)CrossRef
Zurück zum Zitat M.C. Gonçalves, L.F. Santos, R.M. Almeida: Rare-earth-doped transparent glass ceramics, C.R. Chim. 5, 845–854 (2002)CrossRef M.C. Gonçalves, L.F. Santos, R.M. Almeida: Rare-earth-doped transparent glass ceramics, C.R. Chim. 5, 845–854 (2002)CrossRef
Zurück zum Zitat Y. Wang, J. Ohwaki: New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion, Appl. Phys. Lett. 63, 3268–3270 (1993)CrossRef Y. Wang, J. Ohwaki: New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion, Appl. Phys. Lett. 63, 3268–3270 (1993)CrossRef
Zurück zum Zitat M.J. Dejneka: Transparent oxyfluoride glass ceramics, MRS Bulletin 23, 57–62 (1998)CrossRef M.J. Dejneka: Transparent oxyfluoride glass ceramics, MRS Bulletin 23, 57–62 (1998)CrossRef
Zurück zum Zitat M. Mortier, A. Bensalah, G. Dantelle, G. Patriarche, D. Vivien: Rare-earth doped oxyfluoride glass-ceramics and fluoride ceramics: Synthesis and optical properties, Opt. Mater. 29, 1263–1270 (2007)CrossRef M. Mortier, A. Bensalah, G. Dantelle, G. Patriarche, D. Vivien: Rare-earth doped oxyfluoride glass-ceramics and fluoride ceramics: Synthesis and optical properties, Opt. Mater. 29, 1263–1270 (2007)CrossRef
Zurück zum Zitat M.J. Dejneka: The luminescence and structure of novel transparent oxyfluoride glass-ceramics, J. Non-Cryst. Solids 239, 149–155 (1998)CrossRef M.J. Dejneka: The luminescence and structure of novel transparent oxyfluoride glass-ceramics, J. Non-Cryst. Solids 239, 149–155 (1998)CrossRef
Zurück zum Zitat S. Berneschi, S. Soria, G. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser: Rare-earth-activated glass–ceramic waveguides, Opt. Mater. 32, 1644–1647 (2010)CrossRef S. Berneschi, S. Soria, G. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser: Rare-earth-activated glass–ceramic waveguides, Opt. Mater. 32, 1644–1647 (2010)CrossRef
Zurück zum Zitat B. Samson, P. Tick, N. Borrelli: Efficient neodymium-doped glass-ceramic fiber laser and amplifier, Opt. Lett. 26, 145–147 (2001)CrossRef B. Samson, P. Tick, N. Borrelli: Efficient neodymium-doped glass-ceramic fiber laser and amplifier, Opt. Lett. 26, 145–147 (2001)CrossRef
Zurück zum Zitat V. Tikhomirov, A. Seddon, J. Koch, D. Wandt, B. Chichkov: Fabrication of buried waveguides and nanocrystals in Er3+-doped oxyfluoride glass, Phys. Status Solidi (a) 202, R73–R75 (2005)CrossRef V. Tikhomirov, A. Seddon, J. Koch, D. Wandt, B. Chichkov: Fabrication of buried waveguides and nanocrystals in Er3+-doped oxyfluoride glass, Phys. Status Solidi (a) 202, R73–R75 (2005)CrossRef
Zurück zum Zitat A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, C.D. Arfuso: Rare earth-activated glass-ceramic in planar format, Opt. Eng. 50, 071105 (2011)CrossRef A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, C.D. Arfuso: Rare earth-activated glass-ceramic in planar format, Opt. Eng. 50, 071105 (2011)CrossRef
Zurück zum Zitat Y. Jestin, C. Armellini, A. Chiasera, A. Chiappini, M. Ferrari, E. Moser, R. Retoux, G. Righini: Low-loss optical Er3+-activated glass-ceramics planar waveguides fabricated by bottom-up approach, Appl. Phys. Lett. 91, 071909 (2007)CrossRef Y. Jestin, C. Armellini, A. Chiasera, A. Chiappini, M. Ferrari, E. Moser, R. Retoux, G. Righini: Low-loss optical Er3+-activated glass-ceramics planar waveguides fabricated by bottom-up approach, Appl. Phys. Lett. 91, 071909 (2007)CrossRef
Zurück zum Zitat O. Péron, B. Boulard, Y. Jestin, M. Ferrari, C. Duverger-Arfuso, S. Kodjikian, Y. Gao: Erbium doped fluoride glass–ceramics waveguides fabricated by PVD, J. Non-Cryst. Solids 354, 3586–3591 (2008)CrossRef O. Péron, B. Boulard, Y. Jestin, M. Ferrari, C. Duverger-Arfuso, S. Kodjikian, Y. Gao: Erbium doped fluoride glass–ceramics waveguides fabricated by PVD, J. Non-Cryst. Solids 354, 3586–3591 (2008)CrossRef
Zurück zum Zitat F.T. Aquino, J.L. Ferrari, S.J.L. Ribeiro, A. Ferrier, P. Goldner, R.R. Gonçalves: Broadband NIR emission in novel sol-gel Er3+-doped SiO2-Nb2O5 glass ceramic planar waveguides for photonic applications, Opt. Mater. 35, 387–396 (2013)CrossRef F.T. Aquino, J.L. Ferrari, S.J.L. Ribeiro, A. Ferrier, P. Goldner, R.R. Gonçalves: Broadband NIR emission in novel sol-gel Er3+-doped SiO2-Nb2O5 glass ceramic planar waveguides for photonic applications, Opt. Mater. 35, 387–396 (2013)CrossRef
Zurück zum Zitat J.H. Shin, M.J. Kim, S.Y. Seo, C. Lee: Composition dependence of room temperature 1.54 \(\upmu\)m Er3+ luminescence from erbium-doped silicon: Oxygen thin films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition, Appl. Phys. Lett. 72, 1092–1094 (1998)CrossRef J.H. Shin, M.J. Kim, S.Y. Seo, C. Lee: Composition dependence of room temperature 1.54 \(\upmu\)m Er3+ luminescence from erbium-doped silicon: Oxygen thin films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition, Appl. Phys. Lett. 72, 1092–1094 (1998)CrossRef
Zurück zum Zitat A.J. Kenyon, C.E. Chryssou, C.W. Pitt, T. Shimizu-Iwayama, D.E. Hole, N. Sharma, C.J. Humphreys: Luminescence from erbium-doped silicon nanocrystals in silica: Excitation mechanisms, J. Appl. Phys. 91, 367–374 (2002)CrossRef A.J. Kenyon, C.E. Chryssou, C.W. Pitt, T. Shimizu-Iwayama, D.E. Hole, N. Sharma, C.J. Humphreys: Luminescence from erbium-doped silicon nanocrystals in silica: Excitation mechanisms, J. Appl. Phys. 91, 367–374 (2002)CrossRef
Zurück zum Zitat R.D. Kekatpure, M.L. Brongersma: Quantification of free-carrier absorption in silicon nanocrystals with an optical microcavity, Nano Lett. 8, 3787–3793 (2008)CrossRef R.D. Kekatpure, M.L. Brongersma: Quantification of free-carrier absorption in silicon nanocrystals with an optical microcavity, Nano Lett. 8, 3787–3793 (2008)CrossRef
Zurück zum Zitat N. Prtljaga, D. Navarro-Urrios, A. Tengattini, A. Anopchenko, J.M. Ramírez, J.M. Rebled, S. Estradé, J.-P. Colonna, J.-M. Fedeli, B. Garrido: Limit to the erbium ions emission in silicon-rich oxide films by erbium ion clustering, Opt. Mater. Express 2, 1278–1285 (2012)CrossRef N. Prtljaga, D. Navarro-Urrios, A. Tengattini, A. Anopchenko, J.M. Ramírez, J.M. Rebled, S. Estradé, J.-P. Colonna, J.-M. Fedeli, B. Garrido: Limit to the erbium ions emission in silicon-rich oxide films by erbium ion clustering, Opt. Mater. Express 2, 1278–1285 (2012)CrossRef
Zurück zum Zitat S. Brovelli, N. Chiodini, R. Lorenzi, A. Lauria, M. Romagnoli, A. Paleari: Fully inorganic oxide-in-oxide ultraviolet nanocrystal light emitting devices, Nat. Commun. 3, 690 (2012)CrossRef S. Brovelli, N. Chiodini, R. Lorenzi, A. Lauria, M. Romagnoli, A. Paleari: Fully inorganic oxide-in-oxide ultraviolet nanocrystal light emitting devices, Nat. Commun. 3, 690 (2012)CrossRef
Zurück zum Zitat A. Lipovskii, D. Svistunov, D. Tagantsev, B. Tatarintsev, P. Kazansky: Optical waveguides in electrooptical nanophase glass–ceramics, Mater. Lett. 58, 1231–1233 (2004)CrossRef A. Lipovskii, D. Svistunov, D. Tagantsev, B. Tatarintsev, P. Kazansky: Optical waveguides in electrooptical nanophase glass–ceramics, Mater. Lett. 58, 1231–1233 (2004)CrossRef
Zurück zum Zitat P.A. Krug, R.M. Rogojan, J. Albert: Directly photoinscribed refractive index change and Bragg gratings in Ohara WMS-15 glass ceramic, Appl. Opt. 48, 3429–3437 (2009)CrossRef P.A. Krug, R.M. Rogojan, J. Albert: Directly photoinscribed refractive index change and Bragg gratings in Ohara WMS-15 glass ceramic, Appl. Opt. 48, 3429–3437 (2009)CrossRef
Zurück zum Zitat K. Richardson, A. Buff, C. Smith, L. Sisken, J. Musgraves, P. Wachtel, T. Mayer, A. Swisher, A. Pogrebnyakov, M. Kang: Engineering novel infrared glass ceramics for advanced optical solutions. In: SPIE Defense + Security (2016) p. 982205 K. Richardson, A. Buff, C. Smith, L. Sisken, J. Musgraves, P. Wachtel, T. Mayer, A. Swisher, A. Pogrebnyakov, M. Kang: Engineering novel infrared glass ceramics for advanced optical solutions. In: SPIE Defense + Security (2016) p. 982205
Zurück zum Zitat L. Sisken, C. Smith, A. Buff, M. Kang, K. Chamma, P. Wachtel, J.D. Musgraves, C. Rivero-Baleine, A. Kirk, M. Kalinowski, M. Melvin, T.S. Mayer, K. Richardson: Evidence of spatially selective refractive index modification in 15GeSe2-45As2Se3-40PbSe glass ceramic through correlation of structure and optical property measurements for GRIN applications, Opt. Mater. Express 7, 3077–3092 (2017)CrossRef L. Sisken, C. Smith, A. Buff, M. Kang, K. Chamma, P. Wachtel, J.D. Musgraves, C. Rivero-Baleine, A. Kirk, M. Kalinowski, M. Melvin, T.S. Mayer, K. Richardson: Evidence of spatially selective refractive index modification in 15GeSe2-45As2Se3-40PbSe glass ceramic through correlation of structure and optical property measurements for GRIN applications, Opt. Mater. Express 7, 3077–3092 (2017)CrossRef
Zurück zum Zitat D. Strand, D.V. Tsu, R. Miller, M. Hennessey, D. Jablonski: Optical routers based on ovonic phase change materials. In: Proc. Eur. Phase Change Ovonics Symp. (E/PCOS) (2006) D. Strand, D.V. Tsu, R. Miller, M. Hennessey, D. Jablonski: Optical routers based on ovonic phase change materials. In: Proc. Eur. Phase Change Ovonics Symp. (E/PCOS) (2006)
Zurück zum Zitat Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, H. Tsuda: Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film, Electron. Lett. 46, 1460–1462 (2010)CrossRef Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, H. Tsuda: Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film, Electron. Lett. 46, 1460–1462 (2010)CrossRef
Zurück zum Zitat M. Rudé, J. Pello, R.E. Simpson, J. Osmond, G. Roelkens, J.J. van der Tol, V. Pruneri: Optical switching at 1.55 \(\upmu\)m in silicon racetrack resonators using phase change materials, Appl. Phys. Lett. 103, 141119 (2013)CrossRef M. Rudé, J. Pello, R.E. Simpson, J. Osmond, G. Roelkens, J.J. van der Tol, V. Pruneri: Optical switching at 1.55 \(\upmu\)m in silicon racetrack resonators using phase change materials, Appl. Phys. Lett. 103, 141119 (2013)CrossRef
Zurück zum Zitat B. Gholipour, J. Zhang, K.F. MacDonald, D.W. Hewak, N.I. Zheludev: An all-optical, non-volatile, bidirectional, phase-change meta-switch, Adv. Mater. 25, 3050–3054 (2013)CrossRef B. Gholipour, J. Zhang, K.F. MacDonald, D.W. Hewak, N.I. Zheludev: An all-optical, non-volatile, bidirectional, phase-change meta-switch, Adv. Mater. 25, 3050–3054 (2013)CrossRef
Zurück zum Zitat Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, H. Tsuda: Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide, Electron. Lett. 46, 368–369 (2010)CrossRef Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, H. Tsuda: Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide, Electron. Lett. 46, 368–369 (2010)CrossRef
Zurück zum Zitat B.-S. Lee, S.G. Bishop: Optical and electrical properties of phase change materials. In: Phase Change Materials, ed. by S. Raoux, M. Wuttig (Springer, Boston 2009) pp. 175–198CrossRef B.-S. Lee, S.G. Bishop: Optical and electrical properties of phase change materials. In: Phase Change Materials, ed. by S. Raoux, M. Wuttig (Springer, Boston 2009) pp. 175–198CrossRef
Zurück zum Zitat A. Mendoza-Galvan, J. González-Hernández: Drude-like behavior of Ge:Sb:Te alloys in the infrared, J. Appl. Phys. 87, 760–765 (2000)CrossRef A. Mendoza-Galvan, J. González-Hernández: Drude-like behavior of Ge:Sb:Te alloys in the infrared, J. Appl. Phys. 87, 760–765 (2000)CrossRef
Zurück zum Zitat P. Hosseini, C.D. Wright, H. Bhaskaran: An optoelectronic framework enabled by low-dimensional phase-change films, Nature 511, 206–211 (2014)CrossRef P. Hosseini, C.D. Wright, H. Bhaskaran: An optoelectronic framework enabled by low-dimensional phase-change films, Nature 511, 206–211 (2014)CrossRef
Zurück zum Zitat A.-K.U. Michel, P. Zalden, D.N. Chigrin, M. Wuttig, A.M. Lindenberg, T. Taubner: Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses, ACS Photonics 1, 833–839 (2014)CrossRef A.-K.U. Michel, P. Zalden, D.N. Chigrin, M. Wuttig, A.M. Lindenberg, T. Taubner: Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses, ACS Photonics 1, 833–839 (2014)CrossRef
Zurück zum Zitat Q. Wang, E.T. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, N.I. Zheludev: Optically reconfigurable metasurfaces and photonic devices based on phase change materials, Nat. Photonics 10, 60–65 (2016)CrossRef Q. Wang, E.T. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, N.I. Zheludev: Optically reconfigurable metasurfaces and photonic devices based on phase change materials, Nat. Photonics 10, 60–65 (2016)CrossRef
Zurück zum Zitat A.-K.U. Michel, D.N. Chigrin, T.W. Maß, K. Schönauer, M. Salinga, M. Wuttig, T. Taubner: Using low-loss phase-change materials for mid-infrared antenna resonance tuning, Nano Lett. 13, 3470–3475 (2013)CrossRef A.-K.U. Michel, D.N. Chigrin, T.W. Maß, K. Schönauer, M. Salinga, M. Wuttig, T. Taubner: Using low-loss phase-change materials for mid-infrared antenna resonance tuning, Nano Lett. 13, 3470–3475 (2013)CrossRef
Zurück zum Zitat D. Loke, T. Lee, W. Wang, L. Shi, R. Zhao, Y. Yeo, T. Chong, S. Elliott: Breaking the speed limits of phase-change memory, Science 336, 1566–1569 (2012)CrossRef D. Loke, T. Lee, W. Wang, L. Shi, R. Zhao, Y. Yeo, T. Chong, S. Elliott: Breaking the speed limits of phase-change memory, Science 336, 1566–1569 (2012)CrossRef
Zurück zum Zitat S. Ahn, Y. Song, C. Jeong, J. Shin, Y. Fai, Y. Hwang, S. Lee, K. Ryoo, S. Lee, J. Park: Highly manufacturable high density phase change memory of 64Mb and beyond. In: Electron Devices Meet., 2004. IEDM Tech. Digest. IEEE Int (2004) pp. 907–910CrossRef S. Ahn, Y. Song, C. Jeong, J. Shin, Y. Fai, Y. Hwang, S. Lee, K. Ryoo, S. Lee, J. Park: Highly manufacturable high density phase change memory of 64Mb and beyond. In: Electron Devices Meet., 2004. IEDM Tech. Digest. IEEE Int (2004) pp. 907–910CrossRef
Zurück zum Zitat B.-S. Lee, J.R. Abelson, S.G. Bishop, D.-H. Kang, B.-K. Cheong, K.-B. Kim: Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases, J. Appl. Phys. 97, 093509 (2005)CrossRef B.-S. Lee, J.R. Abelson, S.G. Bishop, D.-H. Kang, B.-K. Cheong, K.-B. Kim: Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases, J. Appl. Phys. 97, 093509 (2005)CrossRef
Zurück zum Zitat J. Olson, H. Li, T. Ju, J. Viner, P. Taylor: Optical properties of amorphous GeTe, Sb2Te3, and Ge2Sb2Te5: The role of oxygen, J. Appl. Phys. 99, 3508 (2006)CrossRef J. Olson, H. Li, T. Ju, J. Viner, P. Taylor: Optical properties of amorphous GeTe, Sb2Te3, and Ge2Sb2Te5: The role of oxygen, J. Appl. Phys. 99, 3508 (2006)CrossRef
Zurück zum Zitat S. Hudgens, B. Johnson: Overview of phase-change chalcogenide nonvolatile memory technology, MRS Bulletin 29, 829–832 (2004)CrossRef S. Hudgens, B. Johnson: Overview of phase-change chalcogenide nonvolatile memory technology, MRS Bulletin 29, 829–832 (2004)CrossRef
Zurück zum Zitat Y. Zhang, J. Li, J. Chou, Z. Fang, A. Yadav, H. Lin, Q. Du, J. Michon, Z. Han, Y. Huang: Broadband transparent optical phase change materials. In: Proc. CLEO Appl. Technol (2017) p. JTh5C.4 Y. Zhang, J. Li, J. Chou, Z. Fang, A. Yadav, H. Lin, Q. Du, J. Michon, Z. Han, Y. Huang: Broadband transparent optical phase change materials. In: Proc. CLEO Appl. Technol (2017) p. JTh5C.4
Zurück zum Zitat Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, J. Hu: Broadband nonvolatile photonic switching based on optical phase change materials: Beyond the classical figure-of-merit, Opt. Lett. 43, 94–97 (2018)CrossRef Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, J. Hu: Broadband nonvolatile photonic switching based on optical phase change materials: Beyond the classical figure-of-merit, Opt. Lett. 43, 94–97 (2018)CrossRef
Zurück zum Zitat T. Nirschl, J. Philipp, T. Happ, G. Burr, B. Rajendran, M.-H. Lee, A. Schrott, M. Yang, M. Breitwisch, C.-F. Chen: Write strategies for 2 and 4-bit multi-level phase-change memory. In: Proc. 2007 IEEE Int. Electron Devices Meet (2007) pp. 461–464CrossRef T. Nirschl, J. Philipp, T. Happ, G. Burr, B. Rajendran, M.-H. Lee, A. Schrott, M. Yang, M. Breitwisch, C.-F. Chen: Write strategies for 2 and 4-bit multi-level phase-change memory. In: Proc. 2007 IEEE Int. Electron Devices Meet (2007) pp. 461–464CrossRef
Zurück zum Zitat C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C.D. Wright, H. Bhaskaran, W.H. Pernice: Integrated all-photonic non-volatile multi-level memory, Nat. Photonics 9, 725–732 (2015)CrossRef C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C.D. Wright, H. Bhaskaran, W.H. Pernice: Integrated all-photonic non-volatile multi-level memory, Nat. Photonics 9, 725–732 (2015)CrossRef
Zurück zum Zitat M.N. Kozicki, P. Dandamudi, H.J. Barnaby, Y. Gonzalez-Velo: Programmable metallization cells in memory and switching applications, ECS Transaction 58, 47–52 (2013)CrossRef M.N. Kozicki, P. Dandamudi, H.J. Barnaby, Y. Gonzalez-Velo: Programmable metallization cells in memory and switching applications, ECS Transaction 58, 47–52 (2013)CrossRef
Zurück zum Zitat S. Dong, K. Zhang, Z. Yu, J.A. Fan: Electrochemically programmable plasmonic antennas, ACS Nano 10, 6716–6724 (2016)CrossRef S. Dong, K. Zhang, Z. Yu, J.A. Fan: Electrochemically programmable plasmonic antennas, ACS Nano 10, 6716–6724 (2016)CrossRef
Metadaten
Titel
Glass in Integrated Photonics
verfasst von
Juejun Hu
Lan Yang
Copyright-Jahr
2019
Verlag
Springer International Publishing
DOI
https://doi.org/10.1007/978-3-319-93728-1_42

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.