Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 2/2011

01.02.2011 | Research Paper

Global optima for the Zhou–Rozvany problem

verfasst von: Mathias Stolpe, Martin P. Bendsøe

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 2/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We consider the minimum compliance topology design problem with a volume constraint and discrete design variables. In particular, our interest is to provide global optimal designs to a challenging benchmark example proposed by Zhou and Rozvany. Global optimality is achieved by an implementation of a local branching method in which the subproblems are solved by a special purpose nonlinear branch-and-cut algorithm. The convergence rate of the branch-and-cut method is improved by strengthening the problem formulation with valid linear inequalities and variable fixing techniques. With the proposed algorithms, we find global optimal designs for several values on the available volume. These designs can be used to validate other methods and heuristics for the considered class of problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
There is an ambiguity with the word node, since it can also refer to a finite element node. Throughout this paper, unless explicitly stated, a node refers to a part of the enumeration tree.
 
2
By hidden solutions, we mean optimal designs that are found, by the heuristics, at great depths in the search tree.
 
Literatur
Zurück zum Zitat Achtziger W (1998) Multiple load truss topology and sizing optimization: some properties of minimax compliance. J Optim Theory Appl 98:255–280MATHCrossRefMathSciNet Achtziger W (1998) Multiple load truss topology and sizing optimization: some properties of minimax compliance. J Optim Theory Appl 98:255–280MATHCrossRefMathSciNet
Zurück zum Zitat Achtziger W, Stolpe M (2007) Truss topology optimization with discrete design variables—guaranteed global optimality and benchmark examples. Struct Multidisc Optim 34(1):1–20CrossRefMathSciNet Achtziger W, Stolpe M (2007) Truss topology optimization with discrete design variables—guaranteed global optimality and benchmark examples. Struct Multidisc Optim 34(1):1–20CrossRefMathSciNet
Zurück zum Zitat Achtziger W, Stolpe M (2008) Global optimization of truss topology with discrete bar areas—Part I: Theory of relaxed problems. Comput Optim Appl 40(2):247–280MATHCrossRefMathSciNet Achtziger W, Stolpe M (2008) Global optimization of truss topology with discrete bar areas—Part I: Theory of relaxed problems. Comput Optim Appl 40(2):247–280MATHCrossRefMathSciNet
Zurück zum Zitat Achtziger W, Stolpe M (2009) Global optimization of truss topology with discrete bar areas—Part II: Implementation and numerical results. Comput Optim Appl 44(2):315–341MATHCrossRefMathSciNet Achtziger W, Stolpe M (2009) Global optimization of truss topology with discrete bar areas—Part II: Implementation and numerical results. Comput Optim Appl 44(2):315–341MATHCrossRefMathSciNet
Zurück zum Zitat Achtziger W, Bendsøe M, Ben-Tal A, Zowe J (1992) Equivalent displacement based formulations for maximum strength truss topology design. Impact Comput Sci Eng 4:315–345MATHCrossRef Achtziger W, Bendsøe M, Ben-Tal A, Zowe J (1992) Equivalent displacement based formulations for maximum strength truss topology design. Impact Comput Sci Eng 4:315–345MATHCrossRef
Zurück zum Zitat Bendsøe M, Sigmund O (2003) Topology Optimization—theory, methods and applications. Springer Bendsøe M, Sigmund O (2003) Topology Optimization—theory, methods and applications. Springer
Zurück zum Zitat Cook R, Malkus D, Plesha M (1989) Concepts and applications of finite element analysis, 3rd edn. Wiley Cook R, Malkus D, Plesha M (1989) Concepts and applications of finite element analysis, 3rd edn. Wiley
Zurück zum Zitat Gill P, Murray W, Saunders M (2002) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J Optim 12(4):979–1006MATHCrossRefMathSciNet Gill P, Murray W, Saunders M (2002) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J Optim 12(4):979–1006MATHCrossRefMathSciNet
Zurück zum Zitat Haber R, Jog C, Bendsøe M (1996) New approach to variable-topology shape design using a constraint on perimeter. Struct Optim 11(1–2):1–12CrossRef Haber R, Jog C, Bendsøe M (1996) New approach to variable-topology shape design using a constraint on perimeter. Struct Optim 11(1–2):1–12CrossRef
Zurück zum Zitat Horst R, Tuy H (1993) Global optimization: deterministic approaches. Springer Horst R, Tuy H (1993) Global optimization: deterministic approaches. Springer
Zurück zum Zitat Luenberger D (1989) Linear and nonlinear programming, 2nd edn. Addison-Wesley Luenberger D (1989) Linear and nonlinear programming, 2nd edn. Addison-Wesley
Zurück zum Zitat Nemhauser G, Wolsey L (1999) Integer and combinatorial optimization. Wiley Nemhauser G, Wolsey L (1999) Integer and combinatorial optimization. Wiley
Zurück zum Zitat Querin O, Steven G, Xie Y (1998) Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng Comput 15(8):1031–1048MATHCrossRef Querin O, Steven G, Xie Y (1998) Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng Comput 15(8):1031–1048MATHCrossRef
Zurück zum Zitat Rasmussen M, Stolpe M (2008) Global optimization of large-scale topology design problems using branch-and-bound methods. Comput Struct 86(13–14):1527–1538CrossRef Rasmussen M, Stolpe M (2008) Global optimization of large-scale topology design problems using branch-and-bound methods. Comput Struct 86(13–14):1527–1538CrossRef
Zurück zum Zitat Ryoo H, Sahinidis N (1995) Global optimization of nonconvex NLPs and MINLPs with applications in process design. Comput Chem Eng 19(5):551–566CrossRef Ryoo H, Sahinidis N (1995) Global optimization of nonconvex NLPs and MINLPs with applications in process design. Comput Chem Eng 19(5):551–566CrossRef
Zurück zum Zitat Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidisc Optim 21(2):120–127CrossRef Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidisc Optim 21(2):120–127CrossRef
Zurück zum Zitat Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33(4–5):401–424CrossRef Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33(4–5):401–424CrossRef
Zurück zum Zitat Stolpe M, Bendsøe M (2007) A non-linear branch and cut method for solving discrete minimum compliance problems to global optimality. In: Proceedings of the 7th world congress on structural and multidisciplinary optimization, pp 2513–2522 Stolpe M, Bendsøe M (2007) A non-linear branch and cut method for solving discrete minimum compliance problems to global optimality. In: Proceedings of the 7th world congress on structural and multidisciplinary optimization, pp 2513–2522
Zurück zum Zitat Stolpe M, Svanberg K (2003) Modeling topology optimization problems as linear mixed 0–1 programs. Int J Numer Methods Eng 57(5):723–739MATHCrossRefMathSciNet Stolpe M, Svanberg K (2003) Modeling topology optimization problems as linear mixed 0–1 programs. Int J Numer Methods Eng 57(5):723–739MATHCrossRefMathSciNet
Zurück zum Zitat Svanberg K (1994) On the convexity and concavity of compliances. Struct Optim 7(1–2):42–46CrossRef Svanberg K (1994) On the convexity and concavity of compliances. Struct Optim 7(1–2):42–46CrossRef
Zurück zum Zitat Xie Y, Steven G (1999) Evolutionary structural optimization. Springer, London Xie Y, Steven G (1999) Evolutionary structural optimization. Springer, London
Zurück zum Zitat Zhou M, Rozvany G (2001) On the validity of ESO type methods in topology optimization. Struct Multidisc Optim 21(1):80–83CrossRef Zhou M, Rozvany G (2001) On the validity of ESO type methods in topology optimization. Struct Multidisc Optim 21(1):80–83CrossRef
Metadaten
Titel
Global optima for the Zhou–Rozvany problem
verfasst von
Mathias Stolpe
Martin P. Bendsøe
Publikationsdatum
01.02.2011
Verlag
Springer-Verlag
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 2/2011
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-010-0574-y

Weitere Artikel der Ausgabe 2/2011

Structural and Multidisciplinary Optimization 2/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.