Skip to main content
Erschienen in:

04.01.2024

Global Robust Exponential Synchronization of Interval BAM Neural Networks with Multiple Time-Varying Delays

verfasst von: Jinbao Lan, Xin Wang, Xian Zhang

Erschienen in: Circuits, Systems, and Signal Processing | Ausgabe 4/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we studied the problem of global robust exponential synchronization of interval bidirectional associative memory (BAM) neural networks with multiple time-varying delays. A direct method based on system solutions is proposed to give sufficient conditions for the global robust exponential synchronization of interval BAM neural networks under consideration. This method not only avoids the difficult to set up appropriate Lyapunov–Krasovskii functional, but also derives simpler global robust exponential synchronization criteria. To validate our results, we present two numerical examples that demonstrate the effectiveness of the obtained results. Furthermore, we use the global exponential synchronization criterion obtained to encrypt and decrypt color images, demonstrating the practical application of our research results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat A. Arbi, N. Tahri, C. Jammazi, C. Huang, J. Cao, Almost anti-periodic solution of inertial neural networks with leakage and time-varying delays on timescales. Circ. Syst. Signal Process. 41(4), 1940–1956 (2022)CrossRef A. Arbi, N. Tahri, C. Jammazi, C. Huang, J. Cao, Almost anti-periodic solution of inertial neural networks with leakage and time-varying delays on timescales. Circ. Syst. Signal Process. 41(4), 1940–1956 (2022)CrossRef
2.
Zurück zum Zitat J.D. Cao, Y. Wan, Matrix measure strategies for stability and synchronization of inertial BAM neural network with time delays. Neural Networks 53, 165–172 (2014)CrossRefPubMed J.D. Cao, Y. Wan, Matrix measure strategies for stability and synchronization of inertial BAM neural network with time delays. Neural Networks 53, 165–172 (2014)CrossRefPubMed
3.
Zurück zum Zitat C. Chen, L. Li, H. Peng, Y. Yang, Fixed-time synchronization of memristor-based BAM neural networks with time-varying discrete delay. Neural Networks 96, 47–54 (2017)CrossRefPubMed C. Chen, L. Li, H. Peng, Y. Yang, Fixed-time synchronization of memristor-based BAM neural networks with time-varying discrete delay. Neural Networks 96, 47–54 (2017)CrossRefPubMed
4.
Zurück zum Zitat D. Chen, Z. Zhang, Finite-time synchronization for delayed BAM neural networks by the approach of the same structural functions. Chaos Soliton. Fract. 164, 112655 (2022)MathSciNetCrossRef D. Chen, Z. Zhang, Finite-time synchronization for delayed BAM neural networks by the approach of the same structural functions. Chaos Soliton. Fract. 164, 112655 (2022)MathSciNetCrossRef
5.
Zurück zum Zitat Y. Chen, X. Zhang, Y. Xue, Global exponential synchronization of high-order quaternion Hopfield neural networks with unbounded distributed delays and time-varying discrete delays. Math. Comput. Simul. 193, 173–189 (2022)MathSciNetCrossRef Y. Chen, X. Zhang, Y. Xue, Global exponential synchronization of high-order quaternion Hopfield neural networks with unbounded distributed delays and time-varying discrete delays. Math. Comput. Simul. 193, 173–189 (2022)MathSciNetCrossRef
6.
Zurück zum Zitat Y. Cheng, H. Zhang, I. Stamova, J. Cao, Estimate scheme for fractional order-dependent fixed-time synchronization on Caputo quaternion-valued BAM network systems with time-varying delays. J. Franklin Inst. 360(3), 2379–2403 (2023)MathSciNetCrossRef Y. Cheng, H. Zhang, I. Stamova, J. Cao, Estimate scheme for fractional order-dependent fixed-time synchronization on Caputo quaternion-valued BAM network systems with time-varying delays. J. Franklin Inst. 360(3), 2379–2403 (2023)MathSciNetCrossRef
7.
Zurück zum Zitat E.-Y. Cong, X. Han, X. Zhang, Global exponential stability analysis of discrete-time BAM neural networks with delays: A mathematical induction approach. Neurocomputing 379, 227–235 (2020)CrossRef E.-Y. Cong, X. Han, X. Zhang, Global exponential stability analysis of discrete-time BAM neural networks with delays: A mathematical induction approach. Neurocomputing 379, 227–235 (2020)CrossRef
8.
Zurück zum Zitat Z. Dong, X. Wang, X. Zhang, A nonsingular M-matrix-based global exponential stability analysis of higher-order delayed discrete-time Cohen-Grossberg neural networks. Appl. Math. Comput. 385, 125401 (2020)MathSciNet Z. Dong, X. Wang, X. Zhang, A nonsingular M-matrix-based global exponential stability analysis of higher-order delayed discrete-time Cohen-Grossberg neural networks. Appl. Math. Comput. 385, 125401 (2020)MathSciNet
9.
Zurück zum Zitat Z. Dong, X. Wang, X. Zhang, M. Hu, T.N. Dinh, Global exponential synchronization of discrete-time high-order switched neural networks and its application to multi-channel audio encryption. Nonlinear Anal. Hybrid Syst. 47, 101291 (2023)MathSciNetCrossRef Z. Dong, X. Wang, X. Zhang, M. Hu, T.N. Dinh, Global exponential synchronization of discrete-time high-order switched neural networks and its application to multi-channel audio encryption. Nonlinear Anal. Hybrid Syst. 47, 101291 (2023)MathSciNetCrossRef
10.
Zurück zum Zitat A. Kazemy, J. Lam, X.-M. Zhang, Event-triggered output feedback synchronization of master-slave neural networks under deception attacks. IEEE Trans. Neural Netw. Learn. Syst. 33(3), 952–961 (2020)MathSciNetCrossRef A. Kazemy, J. Lam, X.-M. Zhang, Event-triggered output feedback synchronization of master-slave neural networks under deception attacks. IEEE Trans. Neural Netw. Learn. Syst. 33(3), 952–961 (2020)MathSciNetCrossRef
11.
Zurück zum Zitat F. Kong, Q. Zhu, K. Wang, J.J. Nieto, Stability analysis of almost periodic solutions of discontinuous BAM neural networks with hybrid time-varying delays and D operator. J. Franklin Inst. 356, 11605–11637 (2019)MathSciNetCrossRef F. Kong, Q. Zhu, K. Wang, J.J. Nieto, Stability analysis of almost periodic solutions of discontinuous BAM neural networks with hybrid time-varying delays and D operator. J. Franklin Inst. 356, 11605–11637 (2019)MathSciNetCrossRef
13.
Zurück zum Zitat L. Li, R. Xu, Q. Gan, J. Lin, A switching control for finite-time synchronization of memristor-based BAM neural networks with stochastic disturbances. Nonlinear Anal. Modell. Control 25(6), 958–979 (2020)MathSciNetCrossRef L. Li, R. Xu, Q. Gan, J. Lin, A switching control for finite-time synchronization of memristor-based BAM neural networks with stochastic disturbances. Nonlinear Anal. Modell. Control 25(6), 958–979 (2020)MathSciNetCrossRef
14.
Zurück zum Zitat Y. Li, C. Li, Matrix measure strategies for stabilization and synchronization of delayed BAM neural networks. Nonlinear Dyn. 84(3), 1759–1770 (2016)MathSciNetCrossRef Y. Li, C. Li, Matrix measure strategies for stabilization and synchronization of delayed BAM neural networks. Nonlinear Dyn. 84(3), 1759–1770 (2016)MathSciNetCrossRef
15.
Zurück zum Zitat F. Lin, Z. Zhang, Global asymptotic synchronization of a class of BAM neural networks with time delays via integrating inequality techniques. J. Syst. Sci. Complex. 33, 366–382 (2020)MathSciNetCrossRef F. Lin, Z. Zhang, Global asymptotic synchronization of a class of BAM neural networks with time delays via integrating inequality techniques. J. Syst. Sci. Complex. 33, 366–382 (2020)MathSciNetCrossRef
16.
Zurück zum Zitat H.-C. Lin, H.-B. Zeng, X.-M. Zhang, W. Wang, Stability analysis for delayed neural networks via a generalized reciprocally convex inequality. IEEE Trans. Neural Netw. Learn. Syst. 34(10), 7491–7499 (2022)MathSciNetCrossRef H.-C. Lin, H.-B. Zeng, X.-M. Zhang, W. Wang, Stability analysis for delayed neural networks via a generalized reciprocally convex inequality. IEEE Trans. Neural Netw. Learn. Syst. 34(10), 7491–7499 (2022)MathSciNetCrossRef
17.
Zurück zum Zitat H. Liu, W. Qian, Y. Zhao, New optimization approach of state estimation for neural networks with mixed delays. Circ. Syst. Signal Process. 41(7), 3777–3797 (2022)CrossRef H. Liu, W. Qian, Y. Zhao, New optimization approach of state estimation for neural networks with mixed delays. Circ. Syst. Signal Process. 41(7), 3777–3797 (2022)CrossRef
18.
Zurück zum Zitat K. Mathiyalagan, J.H. Park, R. Sakthivel, Synchronization for delayed memristive BAM neural networks using impulsive control with random nonlinearities. Appl. Math. Comput. 259, 967–979 (2015)MathSciNet K. Mathiyalagan, J.H. Park, R. Sakthivel, Synchronization for delayed memristive BAM neural networks using impulsive control with random nonlinearities. Appl. Math. Comput. 259, 967–979 (2015)MathSciNet
19.
Zurück zum Zitat M. Sader, A. Abdurahman, H. Jiang, General decay synchronization of delayed BAM neural networks via nonlinear feedback control. Appl. Math. Comput. 337, 302–314 (2018)MathSciNet M. Sader, A. Abdurahman, H. Jiang, General decay synchronization of delayed BAM neural networks via nonlinear feedback control. Appl. Math. Comput. 337, 302–314 (2018)MathSciNet
20.
Zurück zum Zitat H. Shen, Z. Huang, Z. Wu, J. Cao, J.H. Park, Nonfragile \({H}_{\infty }\) synchronization of BAM inertial neural networks subject to persistent dwell-time switching regularity. IEEE Trans. Cybern. 52(7), 6591–6602 (2022)CrossRefPubMed H. Shen, Z. Huang, Z. Wu, J. Cao, J.H. Park, Nonfragile \({H}_{\infty }\) synchronization of BAM inertial neural networks subject to persistent dwell-time switching regularity. IEEE Trans. Cybern. 52(7), 6591–6602 (2022)CrossRefPubMed
21.
Zurück zum Zitat R. Tang, X. Yang, X. Wan, Y. Zou, Z. Cheng, H.M. Fardoun, Finite-time synchronization of nonidentical BAM discontinuous fuzzy neural networks with delays and impulsive effects via non-chattering quantized control. Commun. Nonlinear Sci. Numer. Simul. 78, 104893 (2019)MathSciNetCrossRef R. Tang, X. Yang, X. Wan, Y. Zou, Z. Cheng, H.M. Fardoun, Finite-time synchronization of nonidentical BAM discontinuous fuzzy neural networks with delays and impulsive effects via non-chattering quantized control. Commun. Nonlinear Sci. Numer. Simul. 78, 104893 (2019)MathSciNetCrossRef
22.
Zurück zum Zitat J. Wang, X. Wang, X. Zhang, S. Zhu, Global \(h\)-synchronization of high-order delayed inertial neural networks via direct SORS approach. IEEE Trans. Syst. Man Cybern: Syst. 53(11), 6693–6704 (2023)CrossRef J. Wang, X. Wang, X. Zhang, S. Zhu, Global \(h\)-synchronization of high-order delayed inertial neural networks via direct SORS approach. IEEE Trans. Syst. Man Cybern: Syst. 53(11), 6693–6704 (2023)CrossRef
23.
Zurück zum Zitat J. Wang, X. Zhang, X. Wang, X. Yang, Global h-synchronization of stochastic delayed high-order inertial neural networks subject to Markovian jump parameters. J. Franklin Inst. 360(4), 2848–2866 (2023)MathSciNetCrossRef J. Wang, X. Zhang, X. Wang, X. Yang, Global h-synchronization of stochastic delayed high-order inertial neural networks subject to Markovian jump parameters. J. Franklin Inst. 360(4), 2848–2866 (2023)MathSciNetCrossRef
24.
Zurück zum Zitat S. Wang, Z. Zhang, C. Lin, J. Chen, Fixed-time synchronization for complex-valued BAM neural networks with time-varying delays via pinning control and adaptive pinning control. Chaos Soliton. Fract. 153, 111583 (2021)MathSciNetCrossRef S. Wang, Z. Zhang, C. Lin, J. Chen, Fixed-time synchronization for complex-valued BAM neural networks with time-varying delays via pinning control and adaptive pinning control. Chaos Soliton. Fract. 153, 111583 (2021)MathSciNetCrossRef
25.
Zurück zum Zitat W. Wang, X. Wang, X. Luo, M. Yuan, Finite-time projective synchronization of memristor-based BAM neural networks and applications in image encryption. IEEE Access 6, 56457–56476 (2018)CrossRef W. Wang, X. Wang, X. Luo, M. Yuan, Finite-time projective synchronization of memristor-based BAM neural networks and applications in image encryption. IEEE Access 6, 56457–56476 (2018)CrossRef
26.
Zurück zum Zitat X. Wang, J.H. Park, H. Liu, X. Zhang, Cooperative output-feedback secure control of distributed linear cyber-physical systems resist intermittent DoS attacks. IEEE Trans. Cybern. 51(10), 4924–4933 (2021)CrossRefPubMed X. Wang, J.H. Park, H. Liu, X. Zhang, Cooperative output-feedback secure control of distributed linear cyber-physical systems resist intermittent DoS attacks. IEEE Trans. Cybern. 51(10), 4924–4933 (2021)CrossRefPubMed
27.
Zurück zum Zitat X. Wang, G.H. Yang, Fault-tolerant consensus tracking control for linear multiagent systems under switching directed network. IEEE Trans. Cybernetics 50(5), 1921–1930 (2020)CrossRef X. Wang, G.H. Yang, Fault-tolerant consensus tracking control for linear multiagent systems under switching directed network. IEEE Trans. Cybernetics 50(5), 1921–1930 (2020)CrossRef
28.
Zurück zum Zitat L. Xiong, C. Li, J. Cao, T. Wu, H. Zhang, Stochastic quantized control for memristive neural networks with mixed semi-Markov jump and sampled-data communications using a novel approach. Knowl. Based Syst. 277(9), 110751 (2023)CrossRef L. Xiong, C. Li, J. Cao, T. Wu, H. Zhang, Stochastic quantized control for memristive neural networks with mixed semi-Markov jump and sampled-data communications using a novel approach. Knowl. Based Syst. 277(9), 110751 (2023)CrossRef
29.
Zurück zum Zitat C. Xu, Z. Liu, M. Liao, P. Li, Q. Xiao, S. Yuan, Fractional-order bidirectional associate memory (BAM) neural networks with multiple delays: The case of Hopf bifurcation. Math. Comput. Simul. 182, 471–494 (2021)MathSciNetCrossRef C. Xu, Z. Liu, M. Liao, P. Li, Q. Xiao, S. Yuan, Fractional-order bidirectional associate memory (BAM) neural networks with multiple delays: The case of Hopf bifurcation. Math. Comput. Simul. 182, 471–494 (2021)MathSciNetCrossRef
30.
Zurück zum Zitat J. Yang, G. Chen, S. Zhu, S. Wen, J. Hu, Fixed/prescribed-time synchronization of BAM memristive neural networks with time-varying delays via convex analysis. Neural Networks 163, 53–63 (2023)CrossRefPubMed J. Yang, G. Chen, S. Zhu, S. Wen, J. Hu, Fixed/prescribed-time synchronization of BAM memristive neural networks with time-varying delays via convex analysis. Neural Networks 163, 53–63 (2023)CrossRefPubMed
31.
Zurück zum Zitat Z. Yang, Z. Zhang, Finite-time synchronization analysis for BAM neural networks with time-varying delays by applying the maximum-value approach with new inequalities. Mathematics 10(5), 835 (2022)CrossRef Z. Yang, Z. Zhang, Finite-time synchronization analysis for BAM neural networks with time-varying delays by applying the maximum-value approach with new inequalities. Mathematics 10(5), 835 (2022)CrossRef
32.
Zurück zum Zitat L. Zhang, Y. Yang, Finite time impulsive synchronization of fractional order memristive BAM neural networks. Neurocomputing 384, 213–224 (2020)CrossRef L. Zhang, Y. Yang, Finite time impulsive synchronization of fractional order memristive BAM neural networks. Neurocomputing 384, 213–224 (2020)CrossRef
33.
Zurück zum Zitat X.-M. Zhang, Q.-L. Han, X. Ge, D. Ding, An overview of recent developments in Lyapunov-Krasovskii functionals and stability criteria for recurrent neural networks with time-varying delays. Neurocomputing 313, 392–401 (2018)CrossRef X.-M. Zhang, Q.-L. Han, X. Ge, D. Ding, An overview of recent developments in Lyapunov-Krasovskii functionals and stability criteria for recurrent neural networks with time-varying delays. Neurocomputing 313, 392–401 (2018)CrossRef
34.
Zurück zum Zitat Y. Zhang, L. Li, H. Peng, J. Xiao, Y. Yang, M. Zheng, H. Zhao, Finite-time synchronization for memristor-based BAM neural networks with stochastic perturbations and time-varying delays. Int. J. Robust Nonlinear Control 28(16), 5118–5139 (2018)MathSciNetCrossRef Y. Zhang, L. Li, H. Peng, J. Xiao, Y. Yang, M. Zheng, H. Zhao, Finite-time synchronization for memristor-based BAM neural networks with stochastic perturbations and time-varying delays. Int. J. Robust Nonlinear Control 28(16), 5118–5139 (2018)MathSciNetCrossRef
35.
Zurück zum Zitat Z. Zhang, J. Cao, Novel finite-time synchronization criteria for inertial neural networks with time delays via integral inequality method. IEEE Trans. Neural Netw. Learn. Syst. 30(5), 1476–1485 (2018)MathSciNetCrossRefPubMed Z. Zhang, J. Cao, Novel finite-time synchronization criteria for inertial neural networks with time delays via integral inequality method. IEEE Trans. Neural Netw. Learn. Syst. 30(5), 1476–1485 (2018)MathSciNetCrossRefPubMed
36.
Zurück zum Zitat Z. Zhang, M. Chen, A. Li, Further study on finite-time synchronization for delayed inertial neural networks via inequality skills. Neurocomputing 373, 15–23 (2020)CrossRef Z. Zhang, M. Chen, A. Li, Further study on finite-time synchronization for delayed inertial neural networks via inequality skills. Neurocomputing 373, 15–23 (2020)CrossRef
37.
Zurück zum Zitat Z. Zhang, R. Guo, X. Liu, M. Zhong, C. Lin, B. Chen, Fixed-time synchronization for complex-valued BAM neural networks with time delays. Asian J. Control 23(1), 298–314 (2021)MathSciNetCrossRef Z. Zhang, R. Guo, X. Liu, M. Zhong, C. Lin, B. Chen, Fixed-time synchronization for complex-valued BAM neural networks with time delays. Asian J. Control 23(1), 298–314 (2021)MathSciNetCrossRef
38.
Zurück zum Zitat Z. Zhang, A. Li, S. Yu, Finite-time synchronization for delayed complex-valued neural networks via integrating inequality method. Neurocomputing 318, 248–260 (2018)CrossRef Z. Zhang, A. Li, S. Yu, Finite-time synchronization for delayed complex-valued neural networks via integrating inequality method. Neurocomputing 318, 248–260 (2018)CrossRef
39.
Zurück zum Zitat F. Zhou, Global exponential synchronization of a class of BAM neural networks with time-varying delays. WSEAS Trans. Math. 12(2), 138–148 (2013) F. Zhou, Global exponential synchronization of a class of BAM neural networks with time-varying delays. WSEAS Trans. Math. 12(2), 138–148 (2013)
40.
Zurück zum Zitat Z. Zhou, Z. Zhang, M. Chen, Finite-time synchronization for fuzzy delayed neutral-type inertial Bam neural networks via the figure analysis approach. Int. J. Fuzzy Syst. 24(1), 229–246 (2022)CrossRef Z. Zhou, Z. Zhang, M. Chen, Finite-time synchronization for fuzzy delayed neutral-type inertial Bam neural networks via the figure analysis approach. Int. J. Fuzzy Syst. 24(1), 229–246 (2022)CrossRef
Metadaten
Titel
Global Robust Exponential Synchronization of Interval BAM Neural Networks with Multiple Time-Varying Delays
verfasst von
Jinbao Lan
Xin Wang
Xian Zhang
Publikationsdatum
04.01.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing / Ausgabe 4/2024
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-023-02584-z