Skip to main content
Erschienen in: International Journal of Plastics Technology 1/2015

01.06.2015 | Research Article

Glutaraldehyde cross-linked sulphonated poly styrene ethylene butylene poly styrene membranes for methanol fuel cells

verfasst von: Perumal Bhavani, Dharmalingam Sangeetha

Erschienen in: International Journal of Plastics Technology | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

New, cheap proton conducting crosslinked membranes based on sulphonated poly styrene ethylene butylene poly styrene (SPSEBS) and glutaraldehyde (2 to 10 %) were synthesized as substitute for costly Nafion117 membrane. Glutaraldehyde was used as the cross-linking agent in order to improve dimensional stability. The proton conductivity of the crosslinked membranes was in the order of 10−2S/cm at 25 °C. Proton exchange membrane fuel cell achieved the maximum power density of 68 and 58 mW/cm2, at a current density of 200 mA/ cm2for cross-linked membranes with glutaraldehyde content 2 and 10 % respectively. The methanol permeability of the cross-linked membrane (in the range of 16.22 to 11. 89 × 10−7 cm2/s) was much lower than that of Nafion 117 (35.2 × 10−7 cm2/s). Direct methanol fuel cell (2 M concentration at 25 °C) consisting of cross-linked membrane was assembled and systematically examined. The crosslinked membranes containing 2 and 10 % glutaraldehyde showed maximum power density of 56 and 67.5 mW/cm2, respectively. The performance of cross-linked membranes in both the cells was several times higher than that of Nafion 117. Hence the cross-linked membrane is a viable substitute for Nafion 117 for fuel cells applications. In this study the formation of sulphonated PSEBS and cross-linked structure was ascertained through FTIR and X-ray diffraction spectra, scanning electron microscopy and thermal analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Steele BCH, Heinzel A (2001) Materials for fuel cell technologies. Nature 414:345–352CrossRef Steele BCH, Heinzel A (2001) Materials for fuel cell technologies. Nature 414:345–352CrossRef
2.
Zurück zum Zitat Lafitte B, Karlsson LE, Jannasch P (2002) Sulfophenylation of polysulfones for proton—conducting fuel cell membranes. Maccromol Rapid Commun 23:896–900CrossRef Lafitte B, Karlsson LE, Jannasch P (2002) Sulfophenylation of polysulfones for proton—conducting fuel cell membranes. Maccromol Rapid Commun 23:896–900CrossRef
3.
Zurück zum Zitat Wee JH (2006) Which type of fuel cell is more competitive for portable application: direct methanol fuel cells or direct boro hydride fuel cell. J Power Sources 161:1–10CrossRef Wee JH (2006) Which type of fuel cell is more competitive for portable application: direct methanol fuel cells or direct boro hydride fuel cell. J Power Sources 161:1–10CrossRef
4.
Zurück zum Zitat Lee CH et al (2009) Surface-fluorinated proton-exchange membrane with high electrochemical durability for direct methanol fuel cells. ACS Appl Mater Interfaces 1(5):1113–21CrossRef Lee CH et al (2009) Surface-fluorinated proton-exchange membrane with high electrochemical durability for direct methanol fuel cells. ACS Appl Mater Interfaces 1(5):1113–21CrossRef
5.
Zurück zum Zitat Kim DJ, Lee HJ, Nam SY (2013) Sulfonated poly (arylene ether sulfone) membranes blended with hydrophobic polymers for direct methanol fuel cell application. Int J Hydrogen Energy 39:17524–17532CrossRef Kim DJ, Lee HJ, Nam SY (2013) Sulfonated poly (arylene ether sulfone) membranes blended with hydrophobic polymers for direct methanol fuel cell application. Int J Hydrogen Energy 39:17524–17532CrossRef
6.
Zurück zum Zitat Bhavani P, Sangeetha D (2012) Blend membranes for direct methanol and proton exchange membrane fuel cells. Chin J Polymer Sci 30(4):548–560CrossRef Bhavani P, Sangeetha D (2012) Blend membranes for direct methanol and proton exchange membrane fuel cells. Chin J Polymer Sci 30(4):548–560CrossRef
7.
Zurück zum Zitat Jones DJ, Roziere J (2001) Recent advances in the functionalisation of polybenzimadazole and polyetherketone for fuel cell application. J Membr Sci 185:41–58CrossRef Jones DJ, Roziere J (2001) Recent advances in the functionalisation of polybenzimadazole and polyetherketone for fuel cell application. J Membr Sci 185:41–58CrossRef
8.
Zurück zum Zitat Asensio JA, Borros S, Gomez-Romero P (2002) Proton—conducting polymers based on benzimadazole and sulphonatedbenzimadazole. J Membr Sci 40:3703–3710 Asensio JA, Borros S, Gomez-Romero P (2002) Proton—conducting polymers based on benzimadazole and sulphonatedbenzimadazole. J Membr Sci 40:3703–3710
9.
Zurück zum Zitat Alberti G, Casciola M, Massinelli L, Bauer B (2001) Polymeric proton conducting membrane for medium temperature fuel cells (110–160 C). J Membr Sci 185:73–81CrossRef Alberti G, Casciola M, Massinelli L, Bauer B (2001) Polymeric proton conducting membrane for medium temperature fuel cells (110–160 C). J Membr Sci 185:73–81CrossRef
10.
Zurück zum Zitat Rikykawa M, Sanui K (2000) Proton conducting polymer electrolyte membrane based on hydrocarbon polymers. Prog Polym Sci 25:1463–1502CrossRef Rikykawa M, Sanui K (2000) Proton conducting polymer electrolyte membrane based on hydrocarbon polymers. Prog Polym Sci 25:1463–1502CrossRef
11.
Zurück zum Zitat Wang F, Hickner M, Kim YS, Zawodzinski TA, Mcgrath JE (2002) Direct polymerisation of sulphonated poly ( arylene ether sulfone ) random (statistical) copolymers: candidates for new proton exchange membranes. J Membr Sci 197:231–242CrossRef Wang F, Hickner M, Kim YS, Zawodzinski TA, Mcgrath JE (2002) Direct polymerisation of sulphonated poly ( arylene ether sulfone ) random (statistical) copolymers: candidates for new proton exchange membranes. J Membr Sci 197:231–242CrossRef
12.
Zurück zum Zitat Kerres J, Ullrich A, Meier F, Haring T (1999) Synthesis and characterization of novel acid–base polymer blends for application in membrane fuel cells. Solid State Ion 125:243–249CrossRef Kerres J, Ullrich A, Meier F, Haring T (1999) Synthesis and characterization of novel acid–base polymer blends for application in membrane fuel cells. Solid State Ion 125:243–249CrossRef
13.
Zurück zum Zitat Genies C, Mercier R, Silicon B, Cornet N, Gebel G, Pineri M (2001) Soluble sulphonatednaphthalenic polyimides as materials for proton exchange membranes. Polymer 42:359–373CrossRef Genies C, Mercier R, Silicon B, Cornet N, Gebel G, Pineri M (2001) Soluble sulphonatednaphthalenic polyimides as materials for proton exchange membranes. Polymer 42:359–373CrossRef
14.
Zurück zum Zitat Guo X, Fang J, Warari T, Tanaka K, Kita H, Okamoto K (2002) Non sulphonated polyimides as polyelectrolytes for fuel cell application. 2. Synthesis and proton conductivity of polyimides from 9,9-bis (aminiphenyl) fluorine-2, 7 disulphonic acid. Macromolecules 35:6707–6713CrossRef Guo X, Fang J, Warari T, Tanaka K, Kita H, Okamoto K (2002) Non sulphonated polyimides as polyelectrolytes for fuel cell application. 2. Synthesis and proton conductivity of polyimides from 9,9-bis (aminiphenyl) fluorine-2, 7 disulphonic acid. Macromolecules 35:6707–6713CrossRef
15.
Zurück zum Zitat Vishnupriya B, Ramya K, Dhathathreyan KS (2002) Synthesis and characterization of sulfonated poly (phenylene oxides) as membranes for polymer electrolyte membranes fuel cells. J Appl Polym Sci 83:1792–1797CrossRef Vishnupriya B, Ramya K, Dhathathreyan KS (2002) Synthesis and characterization of sulfonated poly (phenylene oxides) as membranes for polymer electrolyte membranes fuel cells. J Appl Polym Sci 83:1792–1797CrossRef
16.
Zurück zum Zitat Jorissen L, Gogel V, Kerres J, Garche J (2002) New membrane for direct methanol fuel cells. J Power Sources 105:267–273CrossRef Jorissen L, Gogel V, Kerres J, Garche J (2002) New membrane for direct methanol fuel cells. J Power Sources 105:267–273CrossRef
17.
Zurück zum Zitat Kerres K, Ulrich A, Hein M, Gogel V, Friedrich KA (2004) Cross-linked polyaryl blend membranes for polymer electrolyte fuel cells. Fuel Cells 105–112 Kerres K, Ulrich A, Hein M, Gogel V, Friedrich KA (2004) Cross-linked polyaryl blend membranes for polymer electrolyte fuel cells. Fuel Cells 105–112
18.
Zurück zum Zitat Yamada M, Honma I (2003) Proton conducting acid base mixed materials under water free condition. Electrochim Acta 48:2411–2415CrossRef Yamada M, Honma I (2003) Proton conducting acid base mixed materials under water free condition. Electrochim Acta 48:2411–2415CrossRef
19.
Zurück zum Zitat Gao Y, Robertson GP, Guiver MD, Jian X, Mikhailenk SD, Kaliguine S (2005) proton exchange membranes based on sulfonated poly (phthalazinone ether ketone)s/aminated polymer blends. Solid State Ion 176:409–415CrossRef Gao Y, Robertson GP, Guiver MD, Jian X, Mikhailenk SD, Kaliguine S (2005) proton exchange membranes based on sulfonated poly (phthalazinone ether ketone)s/aminated polymer blends. Solid State Ion 176:409–415CrossRef
20.
Zurück zum Zitat Nolte R, Ledjeff K, Bauer M, Mulhaupt R (1993) Partially sulfonepoly(arylene ether sulfone)- a versatile proton conducting membrane material for modern energy conversion technologies. J Membr Sci 83:211–220CrossRef Nolte R, Ledjeff K, Bauer M, Mulhaupt R (1993) Partially sulfonepoly(arylene ether sulfone)- a versatile proton conducting membrane material for modern energy conversion technologies. J Membr Sci 83:211–220CrossRef
21.
Zurück zum Zitat Kerres J, Cui W, Junginger M (1998) Development and characterization crosslinkedionomer membranes based upon sulfonated and sulfonated PSU; cross-linked PSU blend membranes by alkylation of sulfinate groups with dihalogenoalkanes. J Membr Sci 139:227–241CrossRef Kerres J, Cui W, Junginger M (1998) Development and characterization crosslinkedionomer membranes based upon sulfonated and sulfonated PSU; cross-linked PSU blend membranes by alkylation of sulfinate groups with dihalogenoalkanes. J Membr Sci 139:227–241CrossRef
22.
Zurück zum Zitat Mikhailenko SD, Wang K, Kaliaguine S, Xing P, Robertson GP, Guiver MD (2004) Proton conducting membranes based on cross-linked sulfonated Poly (ether ether ketone) (SPEEK). J Membr Sci 233:93–99CrossRef Mikhailenko SD, Wang K, Kaliaguine S, Xing P, Robertson GP, Guiver MD (2004) Proton conducting membranes based on cross-linked sulfonated Poly (ether ether ketone) (SPEEK). J Membr Sci 233:93–99CrossRef
23.
Zurück zum Zitat Rhim JW, Park HB, Lee C, Jun J, Kim DS, Lee YM (2004) Crosslinked Poly(vinyl alcohol) membranes containing sulfonic acid groups; proton and methanol transport through membranes. J Membr Sci 238:143–151CrossRef Rhim JW, Park HB, Lee C, Jun J, Kim DS, Lee YM (2004) Crosslinked Poly(vinyl alcohol) membranes containing sulfonic acid groups; proton and methanol transport through membranes. J Membr Sci 238:143–151CrossRef
24.
Zurück zum Zitat Kerres JA (2005) Blended and cross-linked ionomer membranes for application in membrane fuel cells. Fuel Cells 5:230–247CrossRef Kerres JA (2005) Blended and cross-linked ionomer membranes for application in membrane fuel cells. Fuel Cells 5:230–247CrossRef
25.
Zurück zum Zitat Sangeetha D (2004) Sulphonated polystyrene–block – poly (ethylene –ran –butylene)-block polystyrene as polymer electrolytes for proton exchange membrane fuel cell. Int J Plast Technol 8:313–321 Sangeetha D (2004) Sulphonated polystyrene–block – poly (ethylene –ran –butylene)-block polystyrene as polymer electrolytes for proton exchange membrane fuel cell. Int J Plast Technol 8:313–321
26.
Zurück zum Zitat Ong A-L, Jung G-B, Chia-Ching W, Wei-Mon Y (2010) Single-step fabrication of ABPBI-based GDE and study of its MEA characteristics for high-temperature PEM fuel cells. Int J Hydrogen Energy 35:7866–7873CrossRef Ong A-L, Jung G-B, Chia-Ching W, Wei-Mon Y (2010) Single-step fabrication of ABPBI-based GDE and study of its MEA characteristics for high-temperature PEM fuel cells. Int J Hydrogen Energy 35:7866–7873CrossRef
27.
Zurück zum Zitat Bussayajarn N, Ming H, Hoong KK, Wan SYM, Chan SH (2009) Planar air breathing PEMFC with self-humidifying MEA and open cathode geometry design for portable applications. Int J Hydrogen Energy 34:7761–7767CrossRef Bussayajarn N, Ming H, Hoong KK, Wan SYM, Chan SH (2009) Planar air breathing PEMFC with self-humidifying MEA and open cathode geometry design for portable applications. Int J Hydrogen Energy 34:7761–7767CrossRef
28.
Zurück zum Zitat Helen M, Visvanathan B, Srinivasamurthy S (2006) Fabrication and properties of hybrid membranes based on salts of heteropolyacid, zirconium phosphate and poly vinyl alcohol. J Power Sources 163:433–439CrossRef Helen M, Visvanathan B, Srinivasamurthy S (2006) Fabrication and properties of hybrid membranes based on salts of heteropolyacid, zirconium phosphate and poly vinyl alcohol. J Power Sources 163:433–439CrossRef
29.
Zurück zum Zitat Vinoth R, Ilakiya A, Elamathi S, Sangeetha D (2010) A novel exchange membrane from polystyrene (ethylene butylene) polystyrene: synthesis and characterization. Mat Sci Eng B 167:43–50CrossRef Vinoth R, Ilakiya A, Elamathi S, Sangeetha D (2010) A novel exchange membrane from polystyrene (ethylene butylene) polystyrene: synthesis and characterization. Mat Sci Eng B 167:43–50CrossRef
30.
Zurück zum Zitat Kim et al (2007) Influence of silica content in cross linked PVA/PSSA-MA/silica hybrid membranefor direct methanol fuel cell(DMFC). Micromol Res 15:PP 412–417CrossRef Kim et al (2007) Influence of silica content in cross linked PVA/PSSA-MA/silica hybrid membranefor direct methanol fuel cell(DMFC). Micromol Res 15:PP 412–417CrossRef
Metadaten
Titel
Glutaraldehyde cross-linked sulphonated poly styrene ethylene butylene poly styrene membranes for methanol fuel cells
verfasst von
Perumal Bhavani
Dharmalingam Sangeetha
Publikationsdatum
01.06.2015
Verlag
Springer India
Erschienen in
International Journal of Plastics Technology / Ausgabe 1/2015
Print ISSN: 0972-656X
Elektronische ISSN: 0975-072X
DOI
https://doi.org/10.1007/s12588-015-9103-6

Weitere Artikel der Ausgabe 1/2015

International Journal of Plastics Technology 1/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.