Skip to main content

2018 | OriginalPaper | Buchkapitel

Glycoconjugate-Based Inhibitors of Mycobacterium Tuberculosis GlgE

verfasst von : Sri Kumar Veleti, Steven J. Sucheck

Erschienen in: Coupling and Decoupling of Diverse Molecular Units in Glycosciences

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Tuberculosis (TB) is the leading cause of death globally as a result of a single infectious disease. A staggering 6 million new cases were reported in the 2014. In order to eradicate the ongoing threat of TB and combat rising rates of TB drug resistance new therapeutics must be developed. In this chapter, we briefly review the history of TB, Mycobacterium tuberculosis (Mtb) cell wall structure, the enzymes involved in synthesizing cell wall, and the trehalose utilization pathways (TUP). We focus on the recent discovery of enzyme Mtb GlgE, a glycosyl hydrolase-like phosphorylase, which has been found to be essential for Mtb viability and the ongoing efforts to design inhibitors against this target.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Koch R (1882) Lecture on the discovery of Mycobacterium tuberculosis Koch R (1882) Lecture on the discovery of Mycobacterium tuberculosis
2.
Zurück zum Zitat World Health Organisation (2015) The Global tuberculosis report 2015. World Health Organization, Geneva World Health Organisation (2015) The Global tuberculosis report 2015. World Health Organization, Geneva
3.
Zurück zum Zitat Brennan P, Young D, Robertson B (2008) Handbook of anti-tuberculosis agents. Tuberculosis 88(2):85–170CrossRef Brennan P, Young D, Robertson B (2008) Handbook of anti-tuberculosis agents. Tuberculosis 88(2):85–170CrossRef
4.
Zurück zum Zitat Chiang CY, Centis R, Migliori GB (2010) Drug-resistant tuberculosis: past, present, future. Respirology 15(3):413–432CrossRef Chiang CY, Centis R, Migliori GB (2010) Drug-resistant tuberculosis: past, present, future. Respirology 15(3):413–432CrossRef
5.
6.
Zurück zum Zitat Mitchison D (2000) Role of individual drugs in the chemotherapy of tuberculosis. Int J Tuberc Lung Dis 4(9):796–806 Mitchison D (2000) Role of individual drugs in the chemotherapy of tuberculosis. Int J Tuberc Lung Dis 4(9):796–806
7.
Zurück zum Zitat Udwadia ZF, Amale RA, Ajbani KK, Rodrigues C (2012) Totally drug-resistant tuberculosis in India. Clin Infect Dis 54(4):579–581CrossRef Udwadia ZF, Amale RA, Ajbani KK, Rodrigues C (2012) Totally drug-resistant tuberculosis in India. Clin Infect Dis 54(4):579–581CrossRef
8.
Zurück zum Zitat Ginsberg A (2011) Research spotlight: The TB alliance: overcoming challenges to chart the future course of TB drug development. Future Med Chem 3(10):1247–1252CrossRef Ginsberg A (2011) Research spotlight: The TB alliance: overcoming challenges to chart the future course of TB drug development. Future Med Chem 3(10):1247–1252CrossRef
9.
Zurück zum Zitat Jones D, Metzger H, Schatz A, Waksman SA (1944) Control of gram-negative bacteria in experimental animals by streptomycin. Science 100(2588):103–105CrossRef Jones D, Metzger H, Schatz A, Waksman SA (1944) Control of gram-negative bacteria in experimental animals by streptomycin. Science 100(2588):103–105CrossRef
10.
Zurück zum Zitat Waksman SA, Reilly HC, Schatz A (1945) Strain specificity and production of antibiotic substances: V. strain resistance of bacteria to antibiotic substances, especially to streptomycin. P Natl Acad Sci USA 31(6):157 Waksman SA, Reilly HC, Schatz A (1945) Strain specificity and production of antibiotic substances: V. strain resistance of bacteria to antibiotic substances, especially to streptomycin. P Natl Acad Sci USA 31(6):157
11.
Zurück zum Zitat Lehmann J (1946) Para-aminosalicylic acid in the treatment of tuberculosis. The Lancet 247(6384):15–16CrossRef Lehmann J (1946) Para-aminosalicylic acid in the treatment of tuberculosis. The Lancet 247(6384):15–16CrossRef
12.
Zurück zum Zitat Janin YL (2007) Antituberculosis drugs: ten years of research. Bioorg Med Chem 15(7):2479–2513CrossRef Janin YL (2007) Antituberculosis drugs: ten years of research. Bioorg Med Chem 15(7):2479–2513CrossRef
13.
Zurück zum Zitat Zhang Y, Yew W (2009) Mechanisms of drug resistance in Mycobacterium tuberculosis [State of the art series. Drug-resistant tuberculosis. Edited by CY. Chiang. Number 1 in the series]. Intl J Tuberc Lung Dis 13(11):1320–1330 Zhang Y, Yew W (2009) Mechanisms of drug resistance in Mycobacterium tuberculosis [State of the art series. Drug-resistant tuberculosis. Edited by CY. Chiang. Number 1 in the series]. Intl J Tuberc Lung Dis 13(11):1320–1330
14.
Zurück zum Zitat Falzon D, Jaramillo E, Schünemann H, Arentz M, Bauer M, Bayona J, Blanc L, Caminero J, Daley C, Duncombe C (2011) WHO guidelines for the programmatic management of drug-resistant tuberculosis: 2011 update. Eur Respir J 38(3):516–528CrossRef Falzon D, Jaramillo E, Schünemann H, Arentz M, Bauer M, Bayona J, Blanc L, Caminero J, Daley C, Duncombe C (2011) WHO guidelines for the programmatic management of drug-resistant tuberculosis: 2011 update. Eur Respir J 38(3):516–528CrossRef
15.
Zurück zum Zitat Lamichhane G (2011) Novel targets in M. tuberculosis: search for new drugs. Trends Mol Med 17(1):25–33CrossRef Lamichhane G (2011) Novel targets in M. tuberculosis: search for new drugs. Trends Mol Med 17(1):25–33CrossRef
16.
Zurück zum Zitat Kalscheuer R, Syson K, Veeraraghavan U, Weinrick B, Biermann KE, Liu Z, Sacchettini JC, Besra G, Bornemann S, Jacobs WR Jr (2010) Self-poisoning of Mycobacterium tuberculosis by targeting GlgE in an [alpha]-glucan pathway. Nat Chem Biol 6(5):376–384CrossRef Kalscheuer R, Syson K, Veeraraghavan U, Weinrick B, Biermann KE, Liu Z, Sacchettini JC, Besra G, Bornemann S, Jacobs WR Jr (2010) Self-poisoning of Mycobacterium tuberculosis by targeting GlgE in an [alpha]-glucan pathway. Nat Chem Biol 6(5):376–384CrossRef
17.
Zurück zum Zitat Daffé M, Draper P (1997) The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39:131–203CrossRef Daffé M, Draper P (1997) The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39:131–203CrossRef
18.
Zurück zum Zitat Barsom EK, Hatfull GF (1996) Characterization of a Mycobacterium smegmatis gene that confers resistance to phages L5 and D29 when overexpressed. Mol Microbiol 21(1):159–170CrossRef Barsom EK, Hatfull GF (1996) Characterization of a Mycobacterium smegmatis gene that confers resistance to phages L5 and D29 when overexpressed. Mol Microbiol 21(1):159–170CrossRef
19.
Zurück zum Zitat Tam P-H, Lowary TL (2009) Recent advances in mycobacterial cell wall glycan biosynthesis. Curr Opin Chem Biol 13(5):618–625CrossRef Tam P-H, Lowary TL (2009) Recent advances in mycobacterial cell wall glycan biosynthesis. Curr Opin Chem Biol 13(5):618–625CrossRef
20.
Zurück zum Zitat Crick DC, Mahapatra S, Brennan PJ (2001) Biosynthesis of the arabinogalactan-peptidoglycan complex of Mycobacterium tuberculosis. Glycobiology 11(9):107R–118RCrossRef Crick DC, Mahapatra S, Brennan PJ (2001) Biosynthesis of the arabinogalactan-peptidoglycan complex of Mycobacterium tuberculosis. Glycobiology 11(9):107R–118RCrossRef
21.
Zurück zum Zitat Kremer L, Dover LG, Morehouse C, Hitchin P, Everett M, Morris HR, Dell A, Brennan PJ, McNeil MR, Flaherty C (2001) Galactan biosynthesis in Mycobacterium tuberculosis Identification of a bifunctional UDP-galactofuranosyltransferase. J Biol Chem 276(28): 26430–26440 Kremer L, Dover LG, Morehouse C, Hitchin P, Everett M, Morris HR, Dell A, Brennan PJ, McNeil MR, Flaherty C (2001) Galactan biosynthesis in Mycobacterium tuberculosis Identification of a bifunctional UDP-galactofuranosyltransferase. J Biol Chem 276(28): 26430–26440
22.
Zurück zum Zitat Alderwick L, Birch H, Mishra A, Eggeling L, Besra G (2007) Structure, function and biosynthesis of the Mycobacterium tuberculosis cell wall: arabinogalactan and lipoarabinomannan assembly with a view to discovering new drug targets. Biochem Soc T 35(5):1325–1328CrossRef Alderwick L, Birch H, Mishra A, Eggeling L, Besra G (2007) Structure, function and biosynthesis of the Mycobacterium tuberculosis cell wall: arabinogalactan and lipoarabinomannan assembly with a view to discovering new drug targets. Biochem Soc T 35(5):1325–1328CrossRef
23.
Zurück zum Zitat Besra GS, Brennan PJ (1997) The mycobacterial cell envelope. J Pharm Pharmacol 49(S1):25–30CrossRef Besra GS, Brennan PJ (1997) The mycobacterial cell envelope. J Pharm Pharmacol 49(S1):25–30CrossRef
24.
Zurück zum Zitat Dover LG, Alderwick LJ, Brown AK, Futterer K, Besra GS (2007) Regulation of cell wall synthesis and growth. Curr Mol Med 7(3):247–276CrossRef Dover LG, Alderwick LJ, Brown AK, Futterer K, Besra GS (2007) Regulation of cell wall synthesis and growth. Curr Mol Med 7(3):247–276CrossRef
25.
Zurück zum Zitat Besra GS, Khoo K-H, McNeil MR, Dell A, Morris HR, Brennan PJ (1995) A new interpretation of the structure of the mycolyl-arabinogalactan complex of Mycobacterium tuberculosis as revealed through characterization of oligoglycosylalditol fragments by fast-atom bombardment mass spectrometry and 1H nuclear magnetic resonance spectroscopy. Biochemistry 34(13):4257–4266CrossRef Besra GS, Khoo K-H, McNeil MR, Dell A, Morris HR, Brennan PJ (1995) A new interpretation of the structure of the mycolyl-arabinogalactan complex of Mycobacterium tuberculosis as revealed through characterization of oligoglycosylalditol fragments by fast-atom bombardment mass spectrometry and 1H nuclear magnetic resonance spectroscopy. Biochemistry 34(13):4257–4266CrossRef
26.
Zurück zum Zitat Kaur D, Guerin ME, Škovierová H, Brennan PJ, Jackson M (2009) Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. Adv Appl Microbiol 69:23–78CrossRef Kaur D, Guerin ME, Škovierová H, Brennan PJ, Jackson M (2009) Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. Adv Appl Microbiol 69:23–78CrossRef
27.
Zurück zum Zitat Favrot L, Ronning DR (2012) Targeting the mycobacterial envelope for tuberculosis drug development. Expert Rev Anti Infect Ther 10(9):1023–1036CrossRef Favrot L, Ronning DR (2012) Targeting the mycobacterial envelope for tuberculosis drug development. Expert Rev Anti Infect Ther 10(9):1023–1036CrossRef
28.
Zurück zum Zitat Nigou J, Gilleron M, Puzo G (2003) Lipoarabinomannans: from structure to biosynthesis. Biochimie 85(1):153–166CrossRef Nigou J, Gilleron M, Puzo G (2003) Lipoarabinomannans: from structure to biosynthesis. Biochimie 85(1):153–166CrossRef
29.
Zurück zum Zitat Kaur D, Berg S, Dinadayala P, Gicquel B, Chatterjee D, McNeil MR, Vissa VD, Crick DC, Jackson M, Brennan PJ (2006) Biosynthesis of mycobacterial lipoarabinomannan: role of a branching mannosyltransferase. P Natl Acad Sci 103(37):13664–13669CrossRef Kaur D, Berg S, Dinadayala P, Gicquel B, Chatterjee D, McNeil MR, Vissa VD, Crick DC, Jackson M, Brennan PJ (2006) Biosynthesis of mycobacterial lipoarabinomannan: role of a branching mannosyltransferase. P Natl Acad Sci 103(37):13664–13669CrossRef
30.
Zurück zum Zitat Besra GS, Morehouse CB, Rittner CM, Waechter CJ, Brennan PJ (1997) Biosynthesis of mycobacterial lipoarabinomannan. J Biol Chem 272(29):18460–18466CrossRef Besra GS, Morehouse CB, Rittner CM, Waechter CJ, Brennan PJ (1997) Biosynthesis of mycobacterial lipoarabinomannan. J Biol Chem 272(29):18460–18466CrossRef
31.
Zurück zum Zitat Mishra AK, Driessen NN, Appelmelk BJ, Besra GS (2011) Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host–pathogen interaction. FEMS Microbiol Rev 35(6):1126–1157CrossRef Mishra AK, Driessen NN, Appelmelk BJ, Besra GS (2011) Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host–pathogen interaction. FEMS Microbiol Rev 35(6):1126–1157CrossRef
32.
Zurück zum Zitat Strohmeier GR, Fenton MJ (1999) Roles of lipoarabinomannan in the pathogenesis of tuberculosis. Microbes Infect 1(9):709–717CrossRef Strohmeier GR, Fenton MJ (1999) Roles of lipoarabinomannan in the pathogenesis of tuberculosis. Microbes Infect 1(9):709–717CrossRef
33.
Zurück zum Zitat Gaitonde V, Sucheck SJ (2015) Antitubercular drugs based on carbohydrate derivatives. carbohydrate chemistry: state of the art and challenges for drug development: an overview on structure, biological roles, synthetic methods and application as therapeutics, 441 Gaitonde V, Sucheck SJ (2015) Antitubercular drugs based on carbohydrate derivatives. carbohydrate chemistry: state of the art and challenges for drug development: an overview on structure, biological roles, synthetic methods and application as therapeutics, 441
34.
Zurück zum Zitat Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1(5):639–648CrossRef Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1(5):639–648CrossRef
35.
Zurück zum Zitat Erdei É, Molnár M, Gyémánt G, Antal K, Emri T, Pócsi I, Nagy J (2011) Trehalose overproduction affects the stress tolerance of Kluyveromyces marxianus ambiguously. Bioresource Technol 102(14):7232–7235CrossRef Erdei É, Molnár M, Gyémánt G, Antal K, Emri T, Pócsi I, Nagy J (2011) Trehalose overproduction affects the stress tolerance of Kluyveromyces marxianus ambiguously. Bioresource Technol 102(14):7232–7235CrossRef
36.
Zurück zum Zitat Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441CrossRef Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441CrossRef
37.
Zurück zum Zitat Gavalda S, Bardou F, Laval F, Bon C, Malaga W, Chalut C, Guilhot C, Mourey L, Daffé M, Quémard A (2014) The polyketide synthase Pks13 catalyzes a novel mechanism of lipid transfer in mycobacteria. Chem Bio 21(12):1660–1669CrossRef Gavalda S, Bardou F, Laval F, Bon C, Malaga W, Chalut C, Guilhot C, Mourey L, Daffé M, Quémard A (2014) The polyketide synthase Pks13 catalyzes a novel mechanism of lipid transfer in mycobacteria. Chem Bio 21(12):1660–1669CrossRef
38.
Zurück zum Zitat Li W, Upadhyay A, Fontes FL, North EJ, Wang Y, Crans DC, Grzegorzewicz AE, Jones V, Franzblau SG, Lee RE (2014) Novel insights into the mechanism of inhibition of MmpL3, a target of multiple pharmacophores in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58(11):6413–6423CrossRef Li W, Upadhyay A, Fontes FL, North EJ, Wang Y, Crans DC, Grzegorzewicz AE, Jones V, Franzblau SG, Lee RE (2014) Novel insights into the mechanism of inhibition of MmpL3, a target of multiple pharmacophores in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58(11):6413–6423CrossRef
39.
Zurück zum Zitat Harth G, Lee B-Y, Wang J, Clemens DL, Horwitz MA (1996) Novel insights into the genetics, biochemistry, and immunocytochemistry of the 30-kilodalton major extracellular protein of Mycobacterium tuberculosis. Infect Immun 64(8):3038–3047 Harth G, Lee B-Y, Wang J, Clemens DL, Horwitz MA (1996) Novel insights into the genetics, biochemistry, and immunocytochemistry of the 30-kilodalton major extracellular protein of Mycobacterium tuberculosis. Infect Immun 64(8):3038–3047
40.
Zurück zum Zitat Jackson M, Raynaud C, Lanéelle M A, Guilhot C, Laurent‐Winter C, Ensergueix D, Gicquel B, Daffé M Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope. Mol Microbiol 31(5):1573–1587 Jackson M, Raynaud C, Lanéelle M A, Guilhot C, Laurent‐Winter C, Ensergueix D, Gicquel B, Daffé M Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope. Mol Microbiol 31(5):1573–1587
41.
Zurück zum Zitat De Smet KA, Weston A, Brown IN, Young DB, Robertson BD (2000) Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146(1):199–208CrossRef De Smet KA, Weston A, Brown IN, Young DB, Robertson BD (2000) Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146(1):199–208CrossRef
42.
Zurück zum Zitat Gibson RP, Turkenburg JP, Charnock SJ, Lloyd R, Davies GJ (2002) Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA. Chem Biol 9(12):1337–1346CrossRef Gibson RP, Turkenburg JP, Charnock SJ, Lloyd R, Davies GJ (2002) Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA. Chem Biol 9(12):1337–1346CrossRef
43.
Zurück zum Zitat Cole S, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon S, Eiglmeier K, Gas S, Barry CR (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544CrossRef Cole S, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon S, Eiglmeier K, Gas S, Barry CR (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544CrossRef
44.
Zurück zum Zitat Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48(1):77–84CrossRef Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48(1):77–84CrossRef
45.
Zurück zum Zitat Murphy HN, Stewart GR, Mischenko VV, Apt AS, Harris R, McAlister MS, Driscoll PC, Young DB, Robertson BD (2005) The OtsAB pathway is essential for trehalose biosynthesis in Mycobacterium tuberculosis. J Biol Chem 280(15):14524–14529CrossRef Murphy HN, Stewart GR, Mischenko VV, Apt AS, Harris R, McAlister MS, Driscoll PC, Young DB, Robertson BD (2005) The OtsAB pathway is essential for trehalose biosynthesis in Mycobacterium tuberculosis. J Biol Chem 280(15):14524–14529CrossRef
46.
Zurück zum Zitat Kalscheuer R, Weinrick B, Veeraraghavan U, Besra GS, Jacobs WR (2010) Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of Mycobacterium tuberculosis. P Natl Acad Sci 107(50):21761–21766CrossRef Kalscheuer R, Weinrick B, Veeraraghavan U, Besra GS, Jacobs WR (2010) Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of Mycobacterium tuberculosis. P Natl Acad Sci 107(50):21761–21766CrossRef
47.
Zurück zum Zitat Portevin D, de Sousa-D’Auria C, Houssin C, Grimaldi C, Chami M, Daffé M, Guilhot C (2004) A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. P Natl Acad Sci 101(1):314–319CrossRef Portevin D, de Sousa-D’Auria C, Houssin C, Grimaldi C, Chami M, Daffé M, Guilhot C (2004) A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. P Natl Acad Sci 101(1):314–319CrossRef
48.
Zurück zum Zitat Fraga J, Maranha A, Mendes V, Pereira PJB, Empadinhas N, Macedo-Ribeiro S (2015) Structure of mycobacterial maltokinase, the missing link in the essential GlgE-pathway. Sci Rep 5 Fraga J, Maranha A, Mendes V, Pereira PJB, Empadinhas N, Macedo-Ribeiro S (2015) Structure of mycobacterial maltokinase, the missing link in the essential GlgE-pathway. Sci Rep 5
49.
Zurück zum Zitat Kalscheuer R, Jacobs WR Jr (2010) The significance of GlgE as a new target for tuberculosis. Drug News Perspect 23(10):619–624CrossRef Kalscheuer R, Jacobs WR Jr (2010) The significance of GlgE as a new target for tuberculosis. Drug News Perspect 23(10):619–624CrossRef
50.
Zurück zum Zitat Syson K, Stevenson CE, Rejzek M, Fairhurst SA, Nair A, Bruton CJ, Field RA, Chater KF, Lawson DM, Bornemann S (2011) Structure of Streptomyces maltosyltransferase GlgE, a homologue of a genetically validated anti-tuberculosis target. J Biol Chem 286(44):38298–38310CrossRef Syson K, Stevenson CE, Rejzek M, Fairhurst SA, Nair A, Bruton CJ, Field RA, Chater KF, Lawson DM, Bornemann S (2011) Structure of Streptomyces maltosyltransferase GlgE, a homologue of a genetically validated anti-tuberculosis target. J Biol Chem 286(44):38298–38310CrossRef
51.
Zurück zum Zitat Syson K, Stevenson CE, Rashid AM, Saalbach G, Tang M, Tuukkanen A, Svergun DI, Withers SG, Lawson DM, Bornemann S (2014) Structural insight into how streptomyces coelicolor maltosyl transferase GlgE binds α-Maltose-1-phosphate and forms a maltosyl-enzyme intermediate. Biochemistry 53(15):2494–2504CrossRef Syson K, Stevenson CE, Rashid AM, Saalbach G, Tang M, Tuukkanen A, Svergun DI, Withers SG, Lawson DM, Bornemann S (2014) Structural insight into how streptomyces coelicolor maltosyl transferase GlgE binds α-Maltose-1-phosphate and forms a maltosyl-enzyme intermediate. Biochemistry 53(15):2494–2504CrossRef
52.
Zurück zum Zitat Veleti SK, Lindenberger JJ, Ronning DR, Sucheck SJ (2014) Synthesis of a C-phosphonate mimic of maltose-1-phosphate and inhibition studies on Mycobacterium tuberculosis GlgE. Bioorg Med Chem 22(4):1404–1411CrossRef Veleti SK, Lindenberger JJ, Ronning DR, Sucheck SJ (2014) Synthesis of a C-phosphonate mimic of maltose-1-phosphate and inhibition studies on Mycobacterium tuberculosis GlgE. Bioorg Med Chem 22(4):1404–1411CrossRef
53.
Zurück zum Zitat Lindenberger JJ, Veleti SK, Wilson BN, Sucheck SJ, Ronning DR (2015) Crystal structures of Mycobacterium tuberculosis GlgE and complexes with non-covalent inhibitors. Sci Rep 5 Lindenberger JJ, Veleti SK, Wilson BN, Sucheck SJ, Ronning DR (2015) Crystal structures of Mycobacterium tuberculosis GlgE and complexes with non-covalent inhibitors. Sci Rep 5
54.
Zurück zum Zitat Provencher L, Steensma DH, Wong C-H (1994) Five-membered ring azasugars as potent inhibitors of α-L-rhamnosidase (naringinase) from Penicillium decumbens. Bioorg Med Chem 2(11):1179–1188CrossRef Provencher L, Steensma DH, Wong C-H (1994) Five-membered ring azasugars as potent inhibitors of α-L-rhamnosidase (naringinase) from Penicillium decumbens. Bioorg Med Chem 2(11):1179–1188CrossRef
55.
Zurück zum Zitat de Melo EB, da Silveira Gomes A, Carvalho I (2006) α- and β-Glucosidase inhibitors: chemical structure and biological activity. Tetrahedron 62(44):10277–10302CrossRef de Melo EB, da Silveira Gomes A, Carvalho I (2006) α- and β-Glucosidase inhibitors: chemical structure and biological activity. Tetrahedron 62(44):10277–10302CrossRef
56.
Zurück zum Zitat Izquierdo I, Plaza MT, Yáñez V (2007) Polyhydroxylated pyrrolidines: synthesis from d-fructose of new tri-orthogonally protected 2, 5-dideoxy-2, 5-iminohexitols. Tetrahedron 63(6):1440–1447CrossRef Izquierdo I, Plaza MT, Yáñez V (2007) Polyhydroxylated pyrrolidines: synthesis from d-fructose of new tri-orthogonally protected 2, 5-dideoxy-2, 5-iminohexitols. Tetrahedron 63(6):1440–1447CrossRef
57.
Zurück zum Zitat Veleti SK, Lindenberger JJ, Thanna S, Ronning DR, Sucheck SJ (2014) Synthesis of a Poly-hydroxypyrolidine-Based inhibitor of Mycobacterium tuberculosis GlgE. J Org Chem 79(20):9444–9450CrossRef Veleti SK, Lindenberger JJ, Thanna S, Ronning DR, Sucheck SJ (2014) Synthesis of a Poly-hydroxypyrolidine-Based inhibitor of Mycobacterium tuberculosis GlgE. J Org Chem 79(20):9444–9450CrossRef
58.
Zurück zum Zitat Thanna S, Lindenberger JJ, Gaitonde VV, Ronning DR, Sucheck SJ (2015) Synthesis of 2-deoxy-2, 2-difluoro-α-maltosyl fluoride and its X-ray structure in complex with Streptomyces coelicolor GlgEI-V279S. Org Biomol Chem 13(27):7542–7550CrossRef Thanna S, Lindenberger JJ, Gaitonde VV, Ronning DR, Sucheck SJ (2015) Synthesis of 2-deoxy-2, 2-difluoro-α-maltosyl fluoride and its X-ray structure in complex with Streptomyces coelicolor GlgEI-V279S. Org Biomol Chem 13(27):7542–7550CrossRef
59.
Zurück zum Zitat Veleti SK, Petit C, Ronning DR, Sucheck SJ (2016) Synthesis and inhibition studies of proline and pyrolidene-based phosphonates to inhibit Streptomyces Coelicolor (Sco) GlgE (manuscript in preparation) Veleti SK, Petit C, Ronning DR, Sucheck SJ (2016) Synthesis and inhibition studies of proline and pyrolidene-based phosphonates to inhibit Streptomyces Coelicolor (Sco) GlgE (manuscript in preparation)
60.
Zurück zum Zitat Sengupta S, Roy D, Bandyopadhyay S (2014) Modeling of a new tubercular maltosyl transferase, GlgE, study of its binding sites and virtual screening. Mol Biol Rep 41(6):3549–3560CrossRef Sengupta S, Roy D, Bandyopadhyay S (2014) Modeling of a new tubercular maltosyl transferase, GlgE, study of its binding sites and virtual screening. Mol Biol Rep 41(6):3549–3560CrossRef
61.
Zurück zum Zitat Arooj M, Sakkiah S, Kim S, Arulalapperumal V, Lee KW (2013) A combination of receptor-based pharmacophore modeling & QM techniques for identification of human chymase inhibitors. PLoS One 8(4):e63030CrossRef Arooj M, Sakkiah S, Kim S, Arulalapperumal V, Lee KW (2013) A combination of receptor-based pharmacophore modeling & QM techniques for identification of human chymase inhibitors. PLoS One 8(4):e63030CrossRef
62.
Zurück zum Zitat Silverman RB, Holladay MW (2014) The organic chemistry of drug design and drug action Silverman RB, Holladay MW (2014) The organic chemistry of drug design and drug action
63.
Zurück zum Zitat Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2012) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 64:4–17CrossRef Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2012) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 64:4–17CrossRef
64.
Zurück zum Zitat Cramer CJ (2013) Essentials of computational chemistry: theories and models. Wiley, New Jersey Cramer CJ (2013) Essentials of computational chemistry: theories and models. Wiley, New Jersey
65.
Zurück zum Zitat Billones JB, Valle AMF (2014) Structure-based design of inhibitors against maltosyltransferase GlgE. Orient J Chem 30(3):1137–1145CrossRef Billones JB, Valle AMF (2014) Structure-based design of inhibitors against maltosyltransferase GlgE. Orient J Chem 30(3):1137–1145CrossRef
66.
Zurück zum Zitat Sengupta S, Roy D, Bandyopadhyay S (2015) Structural insight into Mycobacterium tuberculosis maltosyl transferase inhibitors: pharmacophore-based virtual screening, docking, and molecular dynamics simulations. J Biomol Struct Dyn 33(12):2655–2666CrossRef Sengupta S, Roy D, Bandyopadhyay S (2015) Structural insight into Mycobacterium tuberculosis maltosyl transferase inhibitors: pharmacophore-based virtual screening, docking, and molecular dynamics simulations. J Biomol Struct Dyn 33(12):2655–2666CrossRef
Metadaten
Titel
Glycoconjugate-Based Inhibitors of Mycobacterium Tuberculosis GlgE
verfasst von
Sri Kumar Veleti
Steven J. Sucheck
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-65587-1_4