Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2022 | OriginalPaper | Buchkapitel

7. GNSS Data Processing

verfasst von: Clement A. Ogaja

Erschienen in: Introduction to GNSS Geodesy

Verlag: Springer International Publishing

share
TEILEN

Abstract

This chapter discusses the typical processing workflow for estimating geodetic parameters from GNSS data. The scope is limited to post-processed data from relative static positioning, and the processing starts with raw GNSS observables. However, in the case of data reprocessing, normal equations become the starting point of the processing workflow. The chapter starts with preprocessing step that is common in GNSS software packages and is meant for quality control of data before the actual processing occurs. This is followed by a section focused on ambiguity fixing for precise positioning (and other parameter estimations). The chapter concludes with a section on reprocessing and data combinations from normal equations.
Fußnoten
1
Acceptance test, an optional step after integer estimation, consists of deciding whether or not to accept the integer solution once integer estimates of the ambiguities have been computed.
 
Literatur
1.
Zurück zum Zitat Altamimi, Z., Sillard, P., & Boucher, C. (2006). CATREF software: Combination and analysis of terrestrial reference frames. Altamimi, Z., Sillard, P., & Boucher, C. (2006). CATREF software: Combination and analysis of terrestrial reference frames.
2.
Zurück zum Zitat Altamimi, Z., & Collilieux, X. (Eds.) (2013). ITRF combination: Theoretical and practical considerations and lessons from ITRF2008. In Reference Frames for Applications in Geosciences (pp. 7–12). International Association of Geodesy Symposia 138, ISBN 978-3-642-32997-5. Altamimi, Z., & Collilieux, X. (Eds.) (2013). ITRF combination: Theoretical and practical considerations and lessons from ITRF2008. In Reference Frames for Applications in Geosciences (pp. 7–12). International Association of Geodesy Symposia 138, ISBN 978-3-642-32997-5.
4.
Zurück zum Zitat Blewitt, G. (1990). An automatic editing algorithm for GPS data. Geophysical Research Letters, 17(3), 199–202. CrossRef Blewitt, G. (1990). An automatic editing algorithm for GPS data. Geophysical Research Letters, 17(3), 199–202. CrossRef
6.
Zurück zum Zitat Chang, X., Yang, X., & Zhou, T. (2005). MLAMBDA: A modified LAMBDA method for integer least-squares estimation. Journal of Geodesy, 79, 552–565. CrossRef Chang, X., Yang, X., & Zhou, T. (2005). MLAMBDA: A modified LAMBDA method for integer least-squares estimation. Journal of Geodesy, 79, 552–565. CrossRef
7.
Zurück zum Zitat Deo, M. (2015, July 15–16). Cycle slip and clock jump repair with multi-frequency multi-constellation GNSS data for precise point positioning. In IGNSS Symposium, Gold Coast, Australia. Deo, M. (2015, July 15–16). Cycle slip and clock jump repair with multi-frequency multi-constellation GNSS data for precise point positioning. In IGNSS Symposium, Gold Coast, Australia.
8.
Zurück zum Zitat El-Tokhey, M. E., Sorour, T. F., Ragheb, A. E., & Moursy, M. O. (2014). GPS cycle slips detection and repair through various signal combinations. International Journal of Modern Engineering Research (IJMER), 4(11), 247–260. El-Tokhey, M. E., Sorour, T. F., Ragheb, A. E., & Moursy, M. O. (2014). GPS cycle slips detection and repair through various signal combinations. International Journal of Modern Engineering Research (IJMER), 4(11), 247–260.
9.
Zurück zum Zitat Gu, X., & Zhu, B. (2017). Detection and correction of cycle slip in triple-frequency GNSS positioning. IEEE Access, 5, 12584–12595. CrossRef Gu, X., & Zhu, B. (2017). Detection and correction of cycle slip in triple-frequency GNSS positioning. IEEE Access, 5, 12584–12595. CrossRef
11.
Zurück zum Zitat Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle E. (2008). GNSS–Global Navigation Satellite Systems: GPS, GLONASS, Galileo, & more. Vienna: Springer. ISBN 978-3-211-73012-6. Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle E. (2008). GNSS–Global Navigation Satellite Systems: GPS, GLONASS, Galileo, & more. Vienna: Springer. ISBN 978-3-211-73012-6.
12.
Zurück zum Zitat IERS Conventions. (2010). Terrestrial reference systems and frames. In G. Petit & B. Luzum (Eds.), IERS Technical Note No. 36 (Chap. 4). ISBN 3-89888-989-6. IERS Conventions. (2010). Terrestrial reference systems and frames. In G. Petit & B. Luzum (Eds.), IERS Technical Note No. 36 (Chap. 4). ISBN 3-89888-989-6.
14.
Zurück zum Zitat NASA. (1992). SOLVE Mathematical Formulation. NASA. (1992). SOLVE Mathematical Formulation.
16.
Zurück zum Zitat Ostini, L. (2012). Analysis and quality assessment of GNSS-derived parameter time series (180p.). Ostini, L. (2012). Analysis and quality assessment of GNSS-derived parameter time series (180p.).
17.
Zurück zum Zitat Steigenberger, P. (2009). Reprocessing of a global GPS network. Munchen: Deutsche Geodatische Kommission. ISBN 978-3-7696-5052-5. Steigenberger, P. (2009). Reprocessing of a global GPS network. Munchen: Deutsche Geodatische Kommission. ISBN 978-3-7696-5052-5.
18.
Zurück zum Zitat Teunissen, P. (1996). GPS carrier phase ambiguity fixing concepts. In GPS for geodesy (pp. 263–335). Lecture Notes in Earth Sciences. Springer. Teunissen, P. (1996). GPS carrier phase ambiguity fixing concepts. In GPS for geodesy (pp. 263–335). Lecture Notes in Earth Sciences. Springer.
19.
Zurück zum Zitat Teunissen, P. (1998). Success probability of integer GPS ambiguity rounding and bootstrapping. Journal of Geodesy, 72, 606–612. CrossRef Teunissen, P. (1998). Success probability of integer GPS ambiguity rounding and bootstrapping. Journal of Geodesy, 72, 606–612. CrossRef
20.
Zurück zum Zitat Teunissen, P. (2000). The success rate and precision of GPS ambiguities. Journal of Geodesy, 74, 321–326. CrossRef Teunissen, P. (2000). The success rate and precision of GPS ambiguities. Journal of Geodesy, 74, 321–326. CrossRef
21.
Zurück zum Zitat Teunissen, P. J. G. (2001, June 5–8). GNSS ambiguity bootstrapping: Theory and application. In Proc. of KIS2001, Banff, Canada (pp. 246–254). Teunissen, P. J. G. (2001, June 5–8). GNSS ambiguity bootstrapping: Theory and application. In Proc. of KIS2001, Banff, Canada (pp. 246–254).
22.
Zurück zum Zitat Teunissen, P., & Verhagen, S. (2008). GNSS ambiguity resolution: When and how to fix or not to fix? International Association of Geodesy Symposia, 132, 143–148. ISBN 978-3-540-74583-9. CrossRef Teunissen, P., & Verhagen, S. (2008). GNSS ambiguity resolution: When and how to fix or not to fix? International Association of Geodesy Symposia, 132, 143–148. ISBN 978-3-540-74583-9. CrossRef
23.
Zurück zum Zitat Teunissen, P. J. G., & Verhagen, S. (2009). The GNSS ambiguity ratio-test revisited: A better way of using it. Survey Review, 41(312), 138–151. CrossRef Teunissen, P. J. G., & Verhagen, S. (2009). The GNSS ambiguity ratio-test revisited: A better way of using it. Survey Review, 41(312), 138–151. CrossRef
24.
Zurück zum Zitat Thaller, D. (2008). Inter-technique Combination Based on Homogeneous Normal Equation Systems Including Station Coordinates, Earth Orientation and Troposphere Parameters. Dissertation, Technische Universität München. Thaller, D. (2008). Inter-technique Combination Based on Homogeneous Normal Equation Systems Including Station Coordinates, Earth Orientation and Troposphere Parameters. Dissertation, Technische Universität München.
25.
Zurück zum Zitat Zhao, D., Roberts, G. W., Hancock, C. M., Lau, L., & Bai, R. (2019) A triple-frequency cycle slip detection and correction method based on modified HMW combinations applied on GPS and BDS. GPS Solutions, 23, 22. CrossRef Zhao, D., Roberts, G. W., Hancock, C. M., Lau, L., & Bai, R. (2019) A triple-frequency cycle slip detection and correction method based on modified HMW combinations applied on GPS and BDS. GPS Solutions, 23, 22. CrossRef
Metadaten
Titel
GNSS Data Processing
verfasst von
Clement A. Ogaja
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-91821-7_7