Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2022 | OriginalPaper | Buchkapitel

5. GNSS Observation Models

verfasst von : Clement A. Ogaja

Erschienen in: Introduction to GNSS Geodesy

Verlag: Springer International Publishing

share
TEILEN

Abstract

This chapter summarizes the necessary information to understand GNSS measurement and observation models. Section 5.1 presents the underlying observation equations for GNSS signals, while signal propagation errors and correction methods are introduced in Sects. 5.2 and 5.3. Specifically, receiver and satellite antenna phase center modeling is summarized in Sect. 5.3.2.3, and other topics such as phase wind-up and Earth deformation effects on station coordinates are also, respectively, discussed in Sects. 5.3.2.4 and 5.3.2.6. Such discussions are provided with the assumption that the reader is primarily interested in understanding the concepts applicable in achieving high precision for geodesy and similar applications. Pertinent references are provided as necessary for further background understanding.
Fußnoten
1
A GNSS receiver determines signal travel time Δt by correlating the received code from satellite with a replica of this code generated in the receiver, so this replica moves in time (Δt) until the maximum correlation is obtained.
 
2
Antenna’s mean electromagnetic reference point, also called electrical antenna phase center (APC), is the transmission or reception point of a carrier wave from satellite to receiver. APCs are unique to each antenna (hardware dependent) and are defined by the electromagnetic properties of the antennas. For example, for one antenna, the L1 APC, L2 APC, and L5 APC are all different.
 
3
Some GNSS navigation codes are encrypted for security reasons. Thus, a direct tracking of these code types is not possible for unauthorized users. However, several methods (receiver tracking modes) have been developed to circumvent the problem. These modes may lead to different signal hardware delays in the receiver.
 
4
“For a receiver with fixed coordinates, the wind-up is due to the satellite orbital motion. As the satellite moves along its orbital path, it must perform a rotation to keep its solar panels pointing to the Sun direction in order to obtain the maximum energy while the satellite antenna keeps pointing to the Earth’s center. This rotation causes a phase variation that the receiver misunderstands as a range variation.” [30]
 
5
The density of the atmospheric layers is not homogeneous. This causes spatial and temporal variations in the refractive index. Snell’s law states that n 1 ⋅ φ 1 = n 2 ⋅ φ 2 if an electromagnetic wave travels from a medium with refractive index n 1 to a second one with refractive index n 2 and crosses the distance between them at an angle φ 1 and deviates (leaves) at an angle φ 2.
 
6
Since multipath error depends on the receiver’s environment, to reduce its effects, (1) good data collection site(s) is necessary to avoid reflective environments, (2) use a good quality antenna that is multipath-resistant and/or can internally digitally filter out the multipath disturbance, and (3) avoid, de-weight, or minimize the use of low elevation satellite data.
 
7
The satellite orbit information is generated from the tracking data collected by the GNSS Control Segment (see Fig. 2.​1 in Chap. 2). The Control Segment updates satellite positions on a regular basis, calculates their predicted paths, and uploads this information to the satellites. The uploaded information includes the almanac and ephemeris data, which contains the predicted positions of the satellites. These are downloaded when GNSS receivers track the satellite signals.
 
8
The noise of a single, double, and triple difference is a factor of \(\sqrt {2}\), \(\sqrt {4}\), and \(\sqrt {8}\) higher compared to the undifferenced observations. All differenced observations are mathematically correlated (see, e.g., [13]).
 
9
Estimating/fixing correct ambiguity depends on the bias term being introduced as additional parameter. If ignored, they are absorbed into ambiguity estimates making it difficult to fix them to correct integers. See Sect. 7.​3 of Chap. 7.
 
10
The GLONASS inter-frequency bias is commonly defined as the difference of bias at frequency number k with respect to the bias at frequency number 0 [29].
 
11
Applies to CDMA-based satellites.
 
12
Code and phase biases (B, b) caused by receiver and satellite hardware delays of signals (see Eqs. (5.3) and (5.4)).
 
13
The precise GPS and GLONASS satellite clocks provided by IGS are accurate to the order of 0.1 ns or better (1 ns of error ≈30 cm in range) [30].
 
14
GLONASS satellites transmit Δ rel within the satellite clock corrections \(\widetilde {\delta } t^{sat}\) [30].
 
15
The rate of advance of two identical clocks, one on the satellite and the other on ground, will differ due to the difference in gravitational potential (general relativity) and the relative speed between them (special relativity).
 
16
The clock on the satellite appears to run faster by ≈ 38 μs∕day than on ground (since Δff = ΔTT). This effect is corrected (in the factory) by decreasing the oscillating frequency of the satellite by the amount 4.57 ⋅ 10−3 Hz.
 
17
The ionosphere is dispersive for GNSS signals, which means that the signal delays differ depending on the carrier frequency employed.
 
18
GNSS carrier waves propagate with the phase velocity, whereas code measurements are considered to propagate with group velocity (i.e., pseudoranges obtained from the codes modulated in the carriers); the carrier waves speed up in the ionosphere, affected by what is known as the phase delay, while code measurements appear to be delayed or slowed by what is known as the group delay.
 
19
TEC is the number of free electrons expressed in TEC units (TECUs), where 1 TECU = 1016 electrons per m2.
 
20
The water vapor part only covers the lowest layer of the troposphere below 13 km above the surface of the Earth, while the dry part extends to about 45 km above the surface of the Earth [9].
 
21
The electrical phase center of the antenna is the point to which all measurements derived from GNSS signals are referred. This point cannot be accessed (e.g., by physical measurement). Therefore, a geometrical point on the antenna denoted as antenna reference point (ARP) is introduced for the purpose of defining a phase center offset (PCO)—the difference between ARP and the mean electrical phase center [13].
 
22
GNSS baseline lengths of tens of kilometers or less.
 
23
GNSS “satellites transmit right circularly polarized (RCP) radio waves and therefore, the observed carrier phase depends on the mutual orientation of the satellite and receiver antennas. A rotation of either receiver or satellite antenna around its bore (vertical) axis will change the carrier-phase”[16]. The change in phase can be up to one cycle (one wavelength), which corresponds to one complete revolution of the antenna. Mostly, the receiving antenna is fixed (unless mobile), and satellite antennas undergo slow rotations as their solar panels are being oriented toward the Sun, and thus the station-satellite geometry changes causing the phase wind-up.
 
24
A unit vector pointing from satellite’s CoM to the geocenter is \({\mathbf {r}}^{s_{CoM}} / ||{\mathbf {r}}^{s_{CoM}}||\).
 
25
The station position vector r P is computed by subtracting the ARP offset vector (Δ ARP), defining ARP positioning relative to the station point P (monument marker), and the APC offset vector (Δ APC ≡ PCO in Fig. 5.5), defining the APC position relative to the ARP, from the receiver’s APC position r. Thus r P = r −Δ ARP −Δ APC. It is also noted that if ARP is the same as the monument marker position, then r P = r −Δ APC.
 
Literatur
2.
Zurück zum Zitat Ashby, N. (2004). The Sagnac effect in the global positioning system. In Relativity in rotating frames. ISBN: 978-1-40-201805-3. Ashby, N. (2004). The Sagnac effect in the global positioning system. In Relativity in rotating frames. ISBN: 978-1-40-201805-3.
3.
Zurück zum Zitat Bilich, A., & Larson, K. M. (2009). It’s not all bad: Understanding and using GNSS multipath. GPS World, 20(10), 31–39. Bilich, A., & Larson, K. M. (2009). It’s not all bad: Understanding and using GNSS multipath. GPS World, 20(10), 31–39.
4.
Zurück zum Zitat Bilich, A., & Mader, G. (2010, September 21–24). GNSS absolute antenna calibration at the National Geodetic Survey. In Proc. of the 23rd Intl. Technical Meeting of the Satellite Division of The Institute of Navigation, Portland, OR, USA. Bilich, A., & Mader, G. (2010, September 21–24). GNSS absolute antenna calibration at the National Geodetic Survey. In Proc. of the 23rd Intl. Technical Meeting of the Satellite Division of The Institute of Navigation, Portland, OR, USA.
5.
Zurück zum Zitat Bilich, A., Schmitz, M., Görres, B., Zeimetz, P., Mader, G., & Wübbena, G. (2012, July 23–27). Three-Method Absolute Antenna Calibration Comparison. IGS Workshop University of Warmia and Mazury (UWM), Olsztyn, Poland. Bilich, A., Schmitz, M., Görres, B., Zeimetz, P., Mader, G., & Wübbena, G. (2012, July 23–27). Three-Method Absolute Antenna Calibration Comparison. IGS Workshop University of Warmia and Mazury (UWM), Olsztyn, Poland.
9.
Zurück zum Zitat Hakansson, M. (2017). Hardware Biases and Their Impact on GNSS Positioning. Licentiate dissertation, Stockholm. Hakansson, M. (2017). Hardware Biases and Their Impact on GNSS Positioning. Licentiate dissertation, Stockholm.
10.
Zurück zum Zitat Håkansson, M. (2020). GNSS hardware biases in code and carrier phase observables. KTH School of Architecture and the Built Environment, Stockholm, Sweden. ISBN 978-91-7873-454-2. Håkansson, M. (2020). GNSS hardware biases in code and carrier phase observables. KTH School of Architecture and the Built Environment, Stockholm, Sweden. ISBN 978-91-7873-454-2.
11.
Zurück zum Zitat Håkansson, M., Jensen, A. B. O., Horemuz, M., et al. (2017). Review of code and phase biases in multi-GNSS positioning. GPS Solution 21, 849–860. CrossRef Håkansson, M., Jensen, A. B. O., Horemuz, M., et al. (2017). Review of code and phase biases in multi-GNSS positioning. GPS Solution 21, 849–860. CrossRef
12.
Zurück zum Zitat Hernandez-Pajares, M., Juan, M., & Sanz, J. (2007). Second-order ionospheric term in GPS: Implementation and impact on geodetic estimates. Journal of Geophysical Research, 112, 1–16. CrossRef Hernandez-Pajares, M., Juan, M., & Sanz, J. (2007). Second-order ionospheric term in GPS: Implementation and impact on geodetic estimates. Journal of Geophysical Research, 112, 1–16. CrossRef
13.
Zurück zum Zitat Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2008). GNSS–Global Navigation Satellite Systems: GPS, GLONASS, Galileo & More. Berlin: Springer. ISBN 978-3-211-73012-6. Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2008). GNSS–Global Navigation Satellite Systems: GPS, GLONASS, Galileo & More. Berlin: Springer. ISBN 978-3-211-73012-6.
14.
Zurück zum Zitat Hoque, M., & Jakowsky, N. (2008). Estimate of higher order ionospheric errors in GNSS positioning. Radio Science, 43, 1–15. CrossRef Hoque, M., & Jakowsky, N. (2008). Estimate of higher order ionospheric errors in GNSS positioning. Radio Science, 43, 1–15. CrossRef
15.
Zurück zum Zitat Julien, O., Issler, J.-L., Lestarquit, L., Ries, L., & Hein, G. (2015, March/April). Estimating ionospheric delay using GPS/Galileo signals in the E5 Band. In Inside GNSS (pp. 54–64). Julien, O., Issler, J.-L., Lestarquit, L., Ries, L., & Hein, G. (2015, March/April). Estimating ionospheric delay using GPS/Galileo signals in the E5 Band. In Inside GNSS (pp. 54–64).
16.
Zurück zum Zitat Kouba, J. (2009). A guide to using International GNSS Service (IGS) products. National Resources Canada. Kouba, J. (2009). A guide to using International GNSS Service (IGS) products. National Resources Canada.
17.
Zurück zum Zitat Leick, A., Papoport, L., & Tatarnikov, D. (2015). GPS satellite surveying (4 ed.). Hoboken, NJ: John Wiley & Sons, Inc. ISBN 978-1-118-67557-1. CrossRef Leick, A., Papoport, L., & Tatarnikov, D. (2015). GPS satellite surveying (4 ed.). Hoboken, NJ: John Wiley & Sons, Inc. ISBN 978-1-118-67557-1. CrossRef
19.
Zurück zum Zitat Meindl, M. (2011). Combined analysis of observations from different Global Navigation Satellite Systems (Vol. 83). Geodätisch-geophysikalische Arbeiten in der Schweiz. Schweizerische Geodätische Kommission. ISBN: 978-3-908440-27-7. Meindl, M. (2011). Combined analysis of observations from different Global Navigation Satellite Systems (Vol. 83). Geodätisch-geophysikalische Arbeiten in der Schweiz. Schweizerische Geodätische Kommission. ISBN: 978-3-908440-27-7.
20.
Zurück zum Zitat Parkinson, B., Spilker, J., & Enge, P. (1996). Global positioning system, theory and applications (Vols I and II). Reston, VA, USA: American Institute of Aeronautics. Parkinson, B., Spilker, J., & Enge, P. (1996). Global positioning system, theory and applications (Vols I and II). Reston, VA, USA: American Institute of Aeronautics.
21.
Zurück zum Zitat Paziewski, J., & Wielgosz, P. (2014). Accounting for Galileo–GPS intersystem biases in precise satellite positioning. Journal of Geodesy, 89(1), 81–93. CrossRef Paziewski, J., & Wielgosz, P. (2014). Accounting for Galileo–GPS intersystem biases in precise satellite positioning. Journal of Geodesy, 89(1), 81–93. CrossRef
23.
Zurück zum Zitat Petovello, M. (2011, March/April). Clock offsets in GNSS receivers. In Inside GNSS (pp. 23–25). Petovello, M. (2011, March/April). Clock offsets in GNSS receivers. In Inside GNSS (pp. 23–25).
25.
Zurück zum Zitat RINEX: The Receiver Independent Exchange Format Version 3.04. International GNSS Service (IGS), RINEX Working Group and Radio Technical Commission for Maritime Services Special Committee 104 (RTCM-SC104). RINEX: The Receiver Independent Exchange Format Version 3.04. International GNSS Service (IGS), RINEX Working Group and Radio Technical Commission for Maritime Services Special Committee 104 (RTCM-SC104).
26.
Zurück zum Zitat Rothacher, M., Gurtner, W., Schaer, S., Weber, R., Schluter, W., & Hase, H. O. (1996). Azimuth- and elevation-dependent phase center corrections for geodetic GPS antennas estimated from GPS Calibration campaigns. In G. Beutler et al. (Eds.), GPS trends in precise terrestrial, airborne, and spaceborne applications, IAG Symposium (Vol. 115, pp. 333–338). Springer. Rothacher, M., Gurtner, W., Schaer, S., Weber, R., Schluter, W., & Hase, H. O. (1996). Azimuth- and elevation-dependent phase center corrections for geodetic GPS antennas estimated from GPS Calibration campaigns. In G. Beutler et al. (Eds.), GPS trends in precise terrestrial, airborne, and spaceborne applications, IAG Symposium (Vol. 115, pp. 333–338). Springer.
28.
29.
Zurück zum Zitat Sleewaegen, J.-M., Simsky, A., De Wilde, W., Boon, F., & Willems, T. (2012, May/June). Demystifying GLONASS inter-frequency carrier phase biases. In Inside GNSS (pp. 57–61). Sleewaegen, J.-M., Simsky, A., De Wilde, W., Boon, F., & Willems, T. (2012, May/June). Demystifying GLONASS inter-frequency carrier phase biases. In Inside GNSS (pp. 57–61).
30.
Zurück zum Zitat Subirana, S. J., Juan Zornoza, J. M., & Hernández-Pajares, M. (2013). GNSS Data Processing: Vol I: Fundamentals and Algorithms. ESA. Subirana, S. J., Juan Zornoza, J. M., & Hernández-Pajares, M. (2013). GNSS Data Processing: Vol I: Fundamentals and Algorithms. ESA.
31.
Zurück zum Zitat Teunissen, P. J. G., & Kleusberg, A. (Eds.) (1998). GPS for geodesy (2nd ed.). Berlin, Germany: Springer. ISBN 3-540-63661-7. Teunissen, P. J. G., & Kleusberg, A. (Eds.) (1998). GPS for geodesy (2nd ed.). Berlin, Germany: Springer. ISBN 3-540-63661-7.
32.
Zurück zum Zitat Teunissen, P., & Montenbruck, O. (2017). Springer handbook of global navigation satellite systems. Springer. ISBN 978-3-31-942926-7. CrossRef Teunissen, P., & Montenbruck, O. (2017). Springer handbook of global navigation satellite systems. Springer. ISBN 978-3-31-942926-7. CrossRef
34.
Zurück zum Zitat Wu, J., Wu, S., Hajj, G., Bertiguer, W., & Lichten, S. (1993). Effects of Antenna orientation on GPS carrier phase measurements. Manuscripta Geodaetica, 18, 91–98. Wu, J., Wu, S., Hajj, G., Bertiguer, W., & Lichten, S. (1993). Effects of Antenna orientation on GPS carrier phase measurements. Manuscripta Geodaetica, 18, 91–98.
Metadaten
Titel
GNSS Observation Models
verfasst von
Clement A. Ogaja
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-91821-7_5