Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Computational Mechanics 6/2015

01.06.2015 | Original Paper

Goal-oriented model adaptivity for viscous incompressible flows

verfasst von: T. M. van Opstal, P. T. Bauman, S. Prudhomme, E. H. van Brummelen

Erschienen in: Computational Mechanics | Ausgabe 6/2015

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

In van Opstal et al. (Comput Mech 50:779–788, 2012) airbag inflation simulations were performed where the flow was approximated by Stokes flow. Inside the intricately folded initial geometry the Stokes assumption is argued to hold. This linearity assumption leads to a boundary-integral representation, the key to bypassing mesh generation and remeshing. It therefore enables very large displacements with near-contact. However, such a coarse assumption cannot hold throughout the domain, where it breaks down one needs to revert to the original model. The present work formalizes this idea. A model adaptive approach is proposed, in which the coarse model (a Stokes boundary-integral equation) is locally replaced by the original high-fidelity model (Navier–Stokes) based on a-posteriori estimates of the error in a quantity of interest. This adaptive modeling framework aims at taking away the burden and heuristics of manually partitioning the domain while providing new insight into the physics. We elucidate how challenges pertaining to model disparity can be addressed. Essentially, the solution in the interior of the coarse model domain is reconstructed as a post-processing step. We furthermore present a two-dimensional numerical experiments to show that the error estimator is reliable.
Fußnoten
1
This is similar to a residual evaluation at a function with support on (part of) \({\partial \varOmega }_D\), see also [27].
 
2
Except possibly locally if one chooses to define the test function \(({\varvec{v}},q)\) using a mesh.
 
Literatur
1.
Zurück zum Zitat Barnett AH (2014) Evaluation of layer potentials close to the boundary for Laplace and Helmholtz problems on analytic planar domains. SIAM J Sci Comput 36(2):A427–A451 CrossRef Barnett AH (2014) Evaluation of layer potentials close to the boundary for Laplace and Helmholtz problems on analytic planar domains. SIAM J Sci Comput 36(2):A427–A451 CrossRef
2.
Zurück zum Zitat Bauman PT, Oden JT, Prudhomme S (2009) Adaptive multiscale modeling of polymeric materials with Arlequin coupling and goals algorithms. Comput Methods Appl Mech Eng 198(5–8):799–818 MATHCrossRef Bauman PT, Oden JT, Prudhomme S (2009) Adaptive multiscale modeling of polymeric materials with Arlequin coupling and goals algorithms. Comput Methods Appl Mech Eng 198(5–8):799–818 MATHCrossRef
3.
Zurück zum Zitat Braack M, Ern A (2003) A posteriori control of modeling errors and discretization errors. Multiscale Model Simul 1(2):221–238 MATHMathSciNetCrossRef Braack M, Ern A (2003) A posteriori control of modeling errors and discretization errors. Multiscale Model Simul 1(2):221–238 MATHMathSciNetCrossRef
5.
Zurück zum Zitat Carstensen C, Funken SA, Stephan EP (1997) On the adaptive coupling of FEM and BEM in 2D elasticity. Numer Math 77:187–221 MATHMathSciNetCrossRef Carstensen C, Funken SA, Stephan EP (1997) On the adaptive coupling of FEM and BEM in 2D elasticity. Numer Math 77:187–221 MATHMathSciNetCrossRef
6.
Zurück zum Zitat Delfour MC, Zolésio J-P (2011) Shapes and geometries: metrics, analysis, differential calculus, and optimization. In: Advances in design and control, 2nd edn, SIAM Delfour MC, Zolésio J-P (2011) Shapes and geometries: metrics, analysis, differential calculus, and optimization. In: Advances in design and control, 2nd edn, SIAM
7.
Zurück zum Zitat Dörfler W (1996) A convergent adaptive algorithm for Poisson’s equation. SIAM J Numer Anal 30:1106–1124 CrossRef Dörfler W (1996) A convergent adaptive algorithm for Poisson’s equation. SIAM J Numer Anal 30:1106–1124 CrossRef
8.
Zurück zum Zitat Ern A, Guermond JL (2004) Applied mathematical sciences. Theory and practice of finite elements. Springer, Berlin CrossRef Ern A, Guermond JL (2004) Applied mathematical sciences. Theory and practice of finite elements. Springer, Berlin CrossRef
9.
Zurück zum Zitat Ern A, Perotto S, Veneziani A (2008) Hierarchical model reduction for advection-diffusion-reaction problems. In: Kunisch Karl, Of Günther, Steinbach Olaf (eds) Numericalmathematics and advanced applications. Springer, Berlin/Heidelberg, pp 703–710 Ern A, Perotto S, Veneziani A (2008) Hierarchical model reduction for advection-diffusion-reaction problems. In: Kunisch Karl, Of Günther, Steinbach Olaf (eds) Numericalmathematics and advanced applications. Springer, Berlin/Heidelberg, pp 703–710
11.
Zurück zum Zitat Fatone L, Gervasio P, Quarteroni A (2001) Multimodels for incompressible flows: iterative solutions for the Navier-Stokes/Oseen coupling. Math Model Numer Anal 35(3):549–574 MATHMathSciNetCrossRef Fatone L, Gervasio P, Quarteroni A (2001) Multimodels for incompressible flows: iterative solutions for the Navier-Stokes/Oseen coupling. Math Model Numer Anal 35(3):549–574 MATHMathSciNetCrossRef
12.
Zurück zum Zitat Geuzaine C, Remacle J-F (2009) Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331 MATHMathSciNetCrossRef Geuzaine C, Remacle J-F (2009) Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331 MATHMathSciNetCrossRef
13.
Zurück zum Zitat Hoffman J, Jansson J, De Abreu RV (2011) Adaptive modeling of turbulent flow with residual based turbulent kinetic energy dissipation. Comput Methods Appl Mech Eng 200(37–40):2758–2767. Special issue on modeling error estimation and adaptive modeling Hoffman J, Jansson J, De Abreu RV (2011) Adaptive modeling of turbulent flow with residual based turbulent kinetic energy dissipation. Comput Methods Appl Mech Eng 200(37–40):2758–2767. Special issue on modeling error estimation and adaptive modeling
14.
Zurück zum Zitat Ladyzhenskaya OA (1963) The mathematical theory of viscous incompressible flows. Mathematics and its applications. Gordon and Breach, New York (Revised english edition) Ladyzhenskaya OA (1963) The mathematical theory of viscous incompressible flows. Mathematics and its applications. Gordon and Breach, New York (Revised english edition)
15.
Zurück zum Zitat McLean WCH (2000) Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge MATH McLean WCH (2000) Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge MATH
16.
Zurück zum Zitat Moghadam ME, Bazilevs Y, Hsia T-Y, Vignon-Clementel IE, Marsden AL, MOCHA (2011) A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulation. Comput Mech 48:277–291 MATHMathSciNetCrossRef Moghadam ME, Bazilevs Y, Hsia T-Y, Vignon-Clementel IE, Marsden AL, MOCHA (2011) A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulation. Comput Mech 48:277–291 MATHMathSciNetCrossRef
17.
18.
Zurück zum Zitat Oden JT, Vemaganti KS (2000) Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. J Comput Phys 164:22–47 MATHMathSciNetCrossRef Oden JT, Vemaganti KS (2000) Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. J Comput Phys 164:22–47 MATHMathSciNetCrossRef
19.
Zurück zum Zitat van Opstal TM, van Brummelen EH, van Zwieten GJ (2014) A finite-element/boundary-element method for three-dimensional, large-displacement fluid-structure-interaction. Comput Methods Appl Mech Eng 284:637–663 CrossRef van Opstal TM, van Brummelen EH, van Zwieten GJ (2014) A finite-element/boundary-element method for three-dimensional, large-displacement fluid-structure-interaction. Comput Methods Appl Mech Eng 284:637–663 CrossRef
20.
Zurück zum Zitat Perotto S (2006) Adaptive modeling for free-surface flows. ESAIM Math Model Numer Anal 40(3):469–499 Perotto S (2006) Adaptive modeling for free-surface flows. ESAIM Math Model Numer Anal 40(3):469–499
21.
Zurück zum Zitat Prudhomme S, Ben H (2008) Dhia, P.T. Bauman, N. Elkhodja, and J.T. Oden. Computational analysis of modeling error for the coupling of particle and continuum models by the arlequin method. Comput Methods Appl Mech Eng 197(41–42):3399–3409 Prudhomme S, Ben H (2008) Dhia, P.T. Bauman, N. Elkhodja, and J.T. Oden. Computational analysis of modeling error for the coupling of particle and continuum models by the arlequin method. Comput Methods Appl Mech Eng 197(41–42):3399–3409
22.
Zurück zum Zitat Prudhomme S, Oden JT (2002) Computable error estimators and adaptive techniques for fluid flow problems. In: Lecture notes in computational science and engineering, vol 25. Springer-Verlag, pp 207–268 Prudhomme S, Oden JT (2002) Computable error estimators and adaptive techniques for fluid flow problems. In: Lecture notes in computational science and engineering, vol 25. Springer-Verlag, pp 207–268
23.
Zurück zum Zitat Schwab C (1998) \(p\)- and \(hp\)- finite element methods. Oxford Science Publications, Oxford Schwab C (1998) \(p\)- and \(hp\)- finite element methods. Oxford Science Publications, Oxford
24.
Zurück zum Zitat Stein E, Rüter M (2004) Encyclopedia of computational mechanics, volume 2 structures, chapter 2 finite element methods for elasticity with error-controlled discretization and model adaptivity, Wiley, pp 5–58 Stein E, Rüter M (2004) Encyclopedia of computational mechanics, volume 2 structures, chapter 2 finite element methods for elasticity with error-controlled discretization and model adaptivity, Wiley, pp 5–58
25.
Zurück zum Zitat Stein E, Rüter M, Ohnimus S (2011) Implicit upper bound error estimates for combined expansive model and discretization adaptivity. Comput Methods Appl Mech Eng 200(37–40):2626–2638. Special issue on modeling error estimation and adaptive modeling Stein E, Rüter M, Ohnimus S (2011) Implicit upper bound error estimates for combined expansive model and discretization adaptivity. Comput Methods Appl Mech Eng 200(37–40):2626–2638. Special issue on modeling error estimation and adaptive modeling
26.
Zurück zum Zitat Steinbach O (2008) Numerical approximation methods for elliptic boundary value problems: finite and boundary elements. Springer, Berlin CrossRef Steinbach O (2008) Numerical approximation methods for elliptic boundary value problems: finite and boundary elements. Springer, Berlin CrossRef
27.
Zurück zum Zitat van Brummelen EH, van der Zee KG, Garg VV, Prudhomme S (2012) Flux evaluation in primal and dual boundary-coupled problems. J Appl Mech 79(1):010904 CrossRef van Brummelen EH, van der Zee KG, Garg VV, Prudhomme S (2012) Flux evaluation in primal and dual boundary-coupled problems. J Appl Mech 79(1):010904 CrossRef
28.
Zurück zum Zitat van der Zee KG, van Brummelen EH, Akkerman I, de Borst R (2011) Goal-oriented error estimation and adaptivity for fluid-structure interaction using exact linearized adjoints. Comput Methods Appl Mech Eng 200(37–40):2738–2757. Special issue on modeling error estimation and adaptive modeling van der Zee KG, van Brummelen EH, Akkerman I, de Borst R (2011) Goal-oriented error estimation and adaptivity for fluid-structure interaction using exact linearized adjoints. Comput Methods Appl Mech Eng 200(37–40):2738–2757. Special issue on modeling error estimation and adaptive modeling
29.
Zurück zum Zitat van Opstal TM, van Brummelen EH (2013) A potential boundary element method for large-displacement fluid–structure interaction. Comput Methods Appl Mech Eng 193:1–23 MathSciNet van Opstal TM, van Brummelen EH (2013) A potential boundary element method for large-displacement fluid–structure interaction. Comput Methods Appl Mech Eng 193:1–23 MathSciNet
30.
Zurück zum Zitat van Opstal TM, van Brummelen EH, de Borst R, Lewis MR (2012) A finite-element/boundary-element method for large-displacement fluid–structure interaction. Comput Mech 50(6):779–788 MATHMathSciNetCrossRef van Opstal TM, van Brummelen EH, de Borst R, Lewis MR (2012) A finite-element/boundary-element method for large-displacement fluid–structure interaction. Comput Mech 50(6):779–788 MATHMathSciNetCrossRef
31.
Zurück zum Zitat Wendland WL, Stephan EP, Hsiao GC (1979) On the integral equation methods for plane mixed boundary value problems for the Laplacian. Math Methods Appl Sci 1:265–321 MATHMathSciNetCrossRef Wendland WL, Stephan EP, Hsiao GC (1979) On the integral equation methods for plane mixed boundary value problems for the Laplacian. Math Methods Appl Sci 1:265–321 MATHMathSciNetCrossRef
32.
Zurück zum Zitat Zienkiewicz OC, Kelly DW, Bettess P (1979) Marriage à la mode: the best of both worlds (Finite elements and boundary integrals), Wiley, pp 59–80 Zienkiewicz OC, Kelly DW, Bettess P (1979) Marriage à la mode: the best of both worlds (Finite elements and boundary integrals), Wiley, pp 59–80
Metadaten
Titel
Goal-oriented model adaptivity for viscous incompressible flows
verfasst von
T. M. van Opstal
P. T. Bauman
S. Prudhomme
E. H. van Brummelen
Publikationsdatum
01.06.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 6/2015
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-015-1146-1

Weitere Artikel der Ausgabe 6/2015

Computational Mechanics 6/2015 Zur Ausgabe