Skip to main content

2015 | OriginalPaper | Buchkapitel

Gold Nanoparticle-Reinforced Eco-friendly Polymer Nanocomposites and Their Applications

verfasst von : Sunanda Sain, Dipa Ray

Erschienen in: Eco-friendly Polymer Nanocomposites

Verlag: Springer India

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanocomposites are the most important field of research nowadays. Metal nanoparticles have attracted continuous interest owing to their unusual properties and potential uses in electronics, optics, magnetics, catalysts, and sensors. Green synthesis (for noble metals, such as, gold, silver, platinum, palladium, etc.) and characterization of nanoparticles have emerged as a significant field of nanotechnology. As a well-known noble metal, gold is widely investigated due to its specific impact in the fields of biotechnology and bioscience. Gold nanoparticles (GNP) being the most stable metal nanoparticles have the advantages of (a) easy synthesis, (b) colloidal stability, and (c) ability to be easily conjugated with biological molecules. Gold nanoparticles also present fascinating aspects such as the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. A large number of polymer molecules were selected to decorate the surface of gold nanoparticles in physical or chemical ways for different purposes. Gold nanoparticle-reinforced nanocomposites were prepared using different polymer matrices for different types of applications such as catalytic applications, optoelectronic and magneto-optic applications, biological, medicinal applications, etc.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Amendola V, Meneghetti M (2009) Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 11:3805–3821CrossRef Amendola V, Meneghetti M (2009) Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 11:3805–3821CrossRef
2.
Zurück zum Zitat Bendahou A, Habibi Y, Kaddami H, Dufresne A (2009) physico-chemical characterization of palm from Phoenix Dactylifera-L, preparation of cellulose whiskers and natural rubber-based nanocomposites. J Biobased Mat Bioenerg 3:81–90CrossRef Bendahou A, Habibi Y, Kaddami H, Dufresne A (2009) physico-chemical characterization of palm from Phoenix Dactylifera-L, preparation of cellulose whiskers and natural rubber-based nanocomposites. J Biobased Mat Bioenerg 3:81–90CrossRef
3.
Zurück zum Zitat Cole DH, Shull KR, Baldo P, Rehn L (1999) Dynamic properties of a model polymer/metal nanocomposite: gold particles in Poly(tert-butyl acrylate). Macromolecules 32:771–779CrossRef Cole DH, Shull KR, Baldo P, Rehn L (1999) Dynamic properties of a model polymer/metal nanocomposite: gold particles in Poly(tert-butyl acrylate). Macromolecules 32:771–779CrossRef
4.
Zurück zum Zitat Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRef Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRef
5.
Zurück zum Zitat Dong H, Strawhecker KE, Snyder JF, Orlicki JA, Reiner RS, Rudie AW (2012) Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: Formation, properties and nanomechanical characterization. Carbohydr Polym 87:2488–2495CrossRef Dong H, Strawhecker KE, Snyder JF, Orlicki JA, Reiner RS, Rudie AW (2012) Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: Formation, properties and nanomechanical characterization. Carbohydr Polym 87:2488–2495CrossRef
6.
Zurück zum Zitat Dufresne A, Kellerhals MB, Witholt B (1999) Transcrystallization in Mcl-PHAs/cellulose whiskers composites. Macromolecules 32:7396–7401CrossRef Dufresne A, Kellerhals MB, Witholt B (1999) Transcrystallization in Mcl-PHAs/cellulose whiskers composites. Macromolecules 32:7396–7401CrossRef
7.
Zurück zum Zitat Edwards EW, Chanana M, Wang D (2008) Capping gold nanoparticles with stimuli-responsive polymers to cross water-oil interfaces: in-depth insight to the trans-interfacial activity of nanoparticles. J Phys Chem C 112:15207–15219CrossRef Edwards EW, Chanana M, Wang D (2008) Capping gold nanoparticles with stimuli-responsive polymers to cross water-oil interfaces: in-depth insight to the trans-interfacial activity of nanoparticles. J Phys Chem C 112:15207–15219CrossRef
8.
Zurück zum Zitat Espino-Perez E, Bras J, Ducruet V, Guinault A, Dufresne A, Domenek S (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur Polym J 49:3144–3154CrossRef Espino-Perez E, Bras J, Ducruet V, Guinault A, Dufresne A, Domenek S (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur Polym J 49:3144–3154CrossRef
9.
Zurück zum Zitat Fahma F, Hori N, Iwata T, Takemura A (2013) The morphology and properties of poly(methyl methacrylate)-cellulose nanocomposites prepared by immersion precipitation method. J Appl Polym Sci 128:1563–1568 Fahma F, Hori N, Iwata T, Takemura A (2013) The morphology and properties of poly(methyl methacrylate)-cellulose nanocomposites prepared by immersion precipitation method. J Appl Polym Sci 128:1563–1568
10.
Zurück zum Zitat Favier V, Canova GR, Cavaillé JY, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355CrossRef Favier V, Canova GR, Cavaillé JY, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355CrossRef
11.
Zurück zum Zitat Garcia de Rodriguez NL, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270CrossRef Garcia de Rodriguez NL, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270CrossRef
12.
Zurück zum Zitat Garcia A, Delgado L, Tora JA, Casals E, Gonzalez E, Puntes V, Font X, Carrera J, Sanchez A (2012) Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment. J Hazard Mater 199–200:64–72CrossRef Garcia A, Delgado L, Tora JA, Casals E, Gonzalez E, Puntes V, Font X, Carrera J, Sanchez A (2012) Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment. J Hazard Mater 199–200:64–72CrossRef
13.
Zurück zum Zitat Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315CrossRef Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315CrossRef
14.
Zurück zum Zitat Ginzburg VV, Myers K, Malowinski S, Cieslinski R, Elwell M, Bernius M (2006) High-dielectric-constant self-assembled nodular structures in polymer/gold nanoparticle films. Macromolecules 39:3901–3906CrossRef Ginzburg VV, Myers K, Malowinski S, Cieslinski R, Elwell M, Bernius M (2006) High-dielectric-constant self-assembled nodular structures in polymer/gold nanoparticle films. Macromolecules 39:3901–3906CrossRef
15.
Zurück zum Zitat Han J, Dai J, Li L, Fang P, Guo R (2011) Highly uniform self-assembled conducting polymer/gold fibrous nanocomposites: additive-free controllable synthesis and application as efficient recyclable catalysts. Langmuir 27:2181–2187CrossRef Han J, Dai J, Li L, Fang P, Guo R (2011) Highly uniform self-assembled conducting polymer/gold fibrous nanocomposites: additive-free controllable synthesis and application as efficient recyclable catalysts. Langmuir 27:2181–2187CrossRef
16.
Zurück zum Zitat Huang H, Yuan Q, Yang X (2005) Morphology study of gold-chitosan nanocomposites. J Colloid Interface Sci 282:26–31CrossRef Huang H, Yuan Q, Yang X (2005) Morphology study of gold-chitosan nanocomposites. J Colloid Interface Sci 282:26–31CrossRef
17.
Zurück zum Zitat Li D, He Q, Cui Y, Li J (2007) Fabrication of pH-responsive nanocomposites of gold nanoparticles/Poly(4-vinylpyridine). Chem Mater 19:412–417CrossRef Li D, He Q, Cui Y, Li J (2007) Fabrication of pH-responsive nanocomposites of gold nanoparticles/Poly(4-vinylpyridine). Chem Mater 19:412–417CrossRef
18.
Zurück zum Zitat Li D, He Q, Li J (2009) Smart core/shell nanocomposites: intelligent polymers modified gold nanoparticles. Adv Colloid Interface Sci 149:28–38CrossRef Li D, He Q, Li J (2009) Smart core/shell nanocomposites: intelligent polymers modified gold nanoparticles. Adv Colloid Interface Sci 149:28–38CrossRef
19.
Zurück zum Zitat Lin M-F, Thakur VK, Tan EJ, Lee PS (2011) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504CrossRef Lin M-F, Thakur VK, Tan EJ, Lee PS (2011) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504CrossRef
20.
Zurück zum Zitat Lin M-F, Thakur VK, Tan EJ, Lee PS (2011) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv 1:576–578CrossRef Lin M-F, Thakur VK, Tan EJ, Lee PS (2011) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv 1:576–578CrossRef
21.
Zurück zum Zitat Liu F-K, Hsieh S-Y, Ko F-H, Chu T-C (2003) Synthesis of gold/poly(methyl methacrylate) hybrid nanocomposites. Colloids Surf A 231:31–38CrossRef Liu F-K, Hsieh S-Y, Ko F-H, Chu T-C (2003) Synthesis of gold/poly(methyl methacrylate) hybrid nanocomposites. Colloids Surf A 231:31–38CrossRef
22.
Zurück zum Zitat Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730CrossRef Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730CrossRef
23.
Zurück zum Zitat Park JH, Lim YT, Park OO, Kim JK, Yu J-W, Kim YC (2004) Polymer/gold nanoparticle nanocomposite light-emitting diodes: enhancement of electroluminescence stability and quantum efficiency of blue-light-emitting polymers. Chem Mater 16:688–692CrossRef Park JH, Lim YT, Park OO, Kim JK, Yu J-W, Kim YC (2004) Polymer/gold nanoparticle nanocomposite light-emitting diodes: enhancement of electroluminescence stability and quantum efficiency of blue-light-emitting polymers. Chem Mater 16:688–692CrossRef
24.
Zurück zum Zitat Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP (2000) Metal nanoparticles and their assemblies. Chem Soc Rev 29:27–35CrossRef Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP (2000) Metal nanoparticles and their assemblies. Chem Soc Rev 29:27–35CrossRef
25.
Zurück zum Zitat Rezic I (2011) Determination of engineered nanoparticles on textiles and in textile wastewaters. TrAC Trends Anal Chem 30:1159–1167CrossRef Rezic I (2011) Determination of engineered nanoparticles on textiles and in textile wastewaters. TrAC Trends Anal Chem 30:1159–1167CrossRef
26.
Zurück zum Zitat Schadler LS (2004) Polymer-based and polymer-filled nanocomposites. In: Ajayan PM, Schadler LS, Braun PV (eds) nanocomposite sciencs and technology. Wiley-VCH, New York, p 153 Schadler LS (2004) Polymer-based and polymer-filled nanocomposites. In: Ajayan PM, Schadler LS, Braun PV (eds) nanocomposite sciencs and technology. Wiley-VCH, New York, p 153
27.
Zurück zum Zitat Schmitt J, Decher G, Dressick WJ, Brandow SL, Geer RE, Shashidhar R, Calvert JM (1997) Metal nanoparticle/polymer superlattice films: fabrication and control of layer structure. Adv Mater 9:61–65CrossRef Schmitt J, Decher G, Dressick WJ, Brandow SL, Geer RE, Shashidhar R, Calvert JM (1997) Metal nanoparticle/polymer superlattice films: fabrication and control of layer structure. Adv Mater 9:61–65CrossRef
28.
Zurück zum Zitat Sharma V, Park K, Srinivasarao M (2009) Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Mat Sci Eng R 65:1–38CrossRef Sharma V, Park K, Srinivasarao M (2009) Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Mat Sci Eng R 65:1–38CrossRef
29.
Zurück zum Zitat Singh BP, Singh D, Mathur RB, Dhami TL (2008) Influence of surface modified MWCNTs on the mechanical, electrical and thermal properties of polyimide nanocomposites. Nanoscale Res Lett 3:444–453CrossRef Singh BP, Singh D, Mathur RB, Dhami TL (2008) Influence of surface modified MWCNTs on the mechanical, electrical and thermal properties of polyimide nanocomposites. Nanoscale Res Lett 3:444–453CrossRef
30.
Zurück zum Zitat Singha AS, Thakur VK (2008) Effect of fibre loading on urea-formaldehyde matrix based green composites. Iran Polym J 17:861–873 Singha AS, Thakur VK (2008) Effect of fibre loading on urea-formaldehyde matrix based green composites. Iran Polym J 17:861–873
31.
Zurück zum Zitat Singha AS, Thakur VK (2008) Saccaharum cilliare fiber reinforced polymer composites. E-J Chem 5:782–791CrossRef Singha AS, Thakur VK (2008) Saccaharum cilliare fiber reinforced polymer composites. E-J Chem 5:782–791CrossRef
32.
Zurück zum Zitat Singha AS, Thakur VK (2009) Physical, chemical and mechanical properties of hibiscus sabdariffa fiber/polymer composite. Int J Polym Mater Polym Biomater 58:217–228CrossRef Singha AS, Thakur VK (2009) Physical, chemical and mechanical properties of hibiscus sabdariffa fiber/polymer composite. Int J Polym Mater Polym Biomater 58:217–228CrossRef
33.
Zurück zum Zitat Singha AS, Thakur VK (2009) Grewia optiva fiber reinforced novel, low cost polymer composites. J Chem 6:71–76 Singha AS, Thakur VK (2009) Grewia optiva fiber reinforced novel, low cost polymer composites. J Chem 6:71–76
34.
Zurück zum Zitat Singha AS, Thakur VK (2009) Synthesis, characterization and analysis of hibiscus sabdariffa fibre reinforced polymer matrix based composites. Polym Polym Compos 17:189–194 Singha AS, Thakur VK (2009) Synthesis, characterization and analysis of hibiscus sabdariffa fibre reinforced polymer matrix based composites. Polym Polym Compos 17:189–194
35.
Zurück zum Zitat Singha AS, Thakur VK (2009) fabrication and characterization of H. sabdariffa fiber-reinforced green polymer composites. Polym-Plast Technol Eng 48:482–487CrossRef Singha AS, Thakur VK (2009) fabrication and characterization of H. sabdariffa fiber-reinforced green polymer composites. Polym-Plast Technol Eng 48:482–487CrossRef
36.
Zurück zum Zitat Singha AS, Thakur VK (2010) Mechanical, morphological, and thermal characterization of compression-molded polymer biocomposites. Int J Polym Anal Charact 15:87–97CrossRef Singha AS, Thakur VK (2010) Mechanical, morphological, and thermal characterization of compression-molded polymer biocomposites. Int J Polym Anal Charact 15:87–97CrossRef
37.
Zurück zum Zitat Singha AS, Thakur VK (2010) Synthesis, characterization and study of pine needles reinforced polymer matrix based composites. J Reinf Plast Compos 29:700–709CrossRef Singha AS, Thakur VK (2010) Synthesis, characterization and study of pine needles reinforced polymer matrix based composites. J Reinf Plast Compos 29:700–709CrossRef
38.
Zurück zum Zitat Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765CrossRef Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765CrossRef
39.
Zurück zum Zitat Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908CrossRef Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908CrossRef
40.
Zurück zum Zitat Srivastava S, Haridas M, Basu JK (2008) Optical properties of polymer nanocomposites. Bull Mater Sci 31:213–217CrossRef Srivastava S, Haridas M, Basu JK (2008) Optical properties of polymer nanocomposites. Bull Mater Sci 31:213–217CrossRef
41.
Zurück zum Zitat Terech P, Chazeau L, Cavaille JY (1999) A small-angle scattering study of cellulose whiskers in aqueous suspensions. Macromolecules 32:1872–1875CrossRef Terech P, Chazeau L, Cavaille JY (1999) A small-angle scattering study of cellulose whiskers in aqueous suspensions. Macromolecules 32:1872–1875CrossRef
42.
Zurück zum Zitat Thakur VK, Singha AS (2010) Evaluation of GREWIA OPTIVA fibers as reinforcement in polymer biocomposites. Polym Plast Technol Eng 49:1101–1107CrossRef Thakur VK, Singha AS (2010) Evaluation of GREWIA OPTIVA fibers as reinforcement in polymer biocomposites. Polym Plast Technol Eng 49:1101–1107CrossRef
43.
Zurück zum Zitat Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117CrossRef Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117CrossRef
44.
Zurück zum Zitat Thakur VK, Thakur MK (2014) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15CrossRef Thakur VK, Thakur MK (2014) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15CrossRef
45.
Zurück zum Zitat Thakur VK, Thakur MK (2014) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustainable Chem Eng 2:2637–2652CrossRef Thakur VK, Thakur MK (2014) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustainable Chem Eng 2:2637–2652CrossRef
46.
Zurück zum Zitat Thakur VK, Singha AS, Misra BN (2011) Graft copolymerization of methyl methacrylate onto cellulosic biofibers. J Appl Polym Sci 122:532–544CrossRef Thakur VK, Singha AS, Misra BN (2011) Graft copolymerization of methyl methacrylate onto cellulosic biofibers. J Appl Polym Sci 122:532–544CrossRef
47.
Zurück zum Zitat Thakur VK, Tan EJ, Lin M-F, Lee PS (2011) Polystyrene grafted polyvinylidenefluoride copolymers with high capacitive performance. Polym Chem 2:2000–2009CrossRef Thakur VK, Tan EJ, Lin M-F, Lee PS (2011) Polystyrene grafted polyvinylidenefluoride copolymers with high capacitive performance. Polym Chem 2:2000–2009CrossRef
48.
Zurück zum Zitat Thakur VK, Tan EJ, Lin M-F, Lee PS (2011) Poly (vinylidene fluoride)-graft-poly (2-hydroxyethyl methacrylate): a novel material for high energy density capacitors. J Mater Chem 21:3751–3759CrossRef Thakur VK, Tan EJ, Lin M-F, Lee PS (2011) Poly (vinylidene fluoride)-graft-poly (2-hydroxyethyl methacrylate): a novel material for high energy density capacitors. J Mater Chem 21:3751–3759CrossRef
49.
Zurück zum Zitat Thakur VK, Singha AS, Kaur I et al (2011) Studies on analysis and characterization of phenolic composites fabricated from lignocellulosic fibres. Polym Polym Compos 19:505–511 Thakur VK, Singha AS, Kaur I et al (2011) Studies on analysis and characterization of phenolic composites fabricated from lignocellulosic fibres. Polym Polym Compos 19:505–511
50.
Zurück zum Zitat Thakur VK, Singha AS, Thakur MK (2012) Modification of natural biomass by graft copolymerization. Int J Polym Anal Charact 17:547–555CrossRef Thakur VK, Singha AS, Thakur MK (2012) Modification of natural biomass by graft copolymerization. Int J Polym Anal Charact 17:547–555CrossRef
51.
Zurück zum Zitat Thakur VK, Singha AS, Thakur MK (2012) Rapid synthesis of MMA grafted pine needles using microwave radiation. Polym Plast Technol Eng 51:1598–1604CrossRef Thakur VK, Singha AS, Thakur MK (2012) Rapid synthesis of MMA grafted pine needles using microwave radiation. Polym Plast Technol Eng 51:1598–1604CrossRef
52.
Zurück zum Zitat Thakur VK, Singha AS, Thakur MK (2013) Ecofriendly biocomposites from natural fibers: mechanical and weathering study. Int J Polym Anal Charact 18:64–72CrossRef Thakur VK, Singha AS, Thakur MK (2013) Ecofriendly biocomposites from natural fibers: mechanical and weathering study. Int J Polym Anal Charact 18:64–72CrossRef
53.
Zurück zum Zitat Thakur VK, Thakur MK, Singha AS (2013) Free radical-induced graft copolymerization onto natural fibers. Int J Polym Anal Charact 18:430–438CrossRef Thakur VK, Thakur MK, Singha AS (2013) Free radical-induced graft copolymerization onto natural fibers. Int J Polym Anal Charact 18:430–438CrossRef
54.
Zurück zum Zitat Thakur VK, Thakur MK, Gupta RK (2014) Review: raw natural fiber-based polymer composites. Int J Polym Anal Charact 19:256–271CrossRef Thakur VK, Thakur MK, Gupta RK (2014) Review: raw natural fiber-based polymer composites. Int J Polym Anal Charact 19:256–271CrossRef
55.
Zurück zum Zitat Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustainable Chem Eng 2:1072–1092CrossRef Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustainable Chem Eng 2:1072–1092CrossRef
56.
Zurück zum Zitat Wessling B (1996) Corrosion prevention with an organic metal (polyaniline): surface ennobling, passivation, corrosion test results. Mater Corros 47:439–445CrossRef Wessling B (1996) Corrosion prevention with an organic metal (polyaniline): surface ennobling, passivation, corrosion test results. Mater Corros 47:439–445CrossRef
57.
Zurück zum Zitat Yonezawa T, Kunitake T (1999) Practical preparation of anionic mercapto ligand-stabilized gold nanoparticles and their immobilization. Colloids Surf A 149:193–199CrossRef Yonezawa T, Kunitake T (1999) Practical preparation of anionic mercapto ligand-stabilized gold nanoparticles and their immobilization. Colloids Surf A 149:193–199CrossRef
58.
Zurück zum Zitat Zeng S, Yong K-T, Roy I, Dinh X-Q, Yu X, Luan F (2011) A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 6:491–506CrossRef Zeng S, Yong K-T, Roy I, Dinh X-Q, Yu X, Luan F (2011) A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 6:491–506CrossRef
59.
Zurück zum Zitat Zhang T, Wang W, Zhang D, Zhang X, Ma Y, Zhou Y, Qi L (2010) Biotemplated synthesis of gold nanoparticle-bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv Funct Mater 20:1152–1160CrossRef Zhang T, Wang W, Zhang D, Zhang X, Ma Y, Zhou Y, Qi L (2010) Biotemplated synthesis of gold nanoparticle-bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv Funct Mater 20:1152–1160CrossRef
60.
Zurück zum Zitat Zhu H, Lu X, Li M, Shao Y, Zhu Z (2009) Nonenzymatic glucose voltammetric sensor based on gold nanoparticles/carbon nanotubes/ionic liquid nanocomposite. Talanta 79:1446–1453CrossRef Zhu H, Lu X, Li M, Shao Y, Zhu Z (2009) Nonenzymatic glucose voltammetric sensor based on gold nanoparticles/carbon nanotubes/ionic liquid nanocomposite. Talanta 79:1446–1453CrossRef
Metadaten
Titel
Gold Nanoparticle-Reinforced Eco-friendly Polymer Nanocomposites and Their Applications
verfasst von
Sunanda Sain
Dipa Ray
Copyright-Jahr
2015
Verlag
Springer India
DOI
https://doi.org/10.1007/978-81-322-2473-0_17

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.