Skip to main content

2020 | OriginalPaper | Buchkapitel

3. Governing Equations for Aerodynamics and Acoustics

verfasst von : Tapan K. Sengupta, Yogesh G. Bhumkar

Erschienen in: Computational Aerodynamics and Aeroacoustics

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fluid dynamical governing equations are given by the conservation principles of mass, momentum, and energy as noted in Chap. 1. Although the Navier–Stokes equation is an application of Newton’s second law for fluid flows, one also assumes the relation between the stress and the rate of strain tensor. There are many versions of Navier–Stokes equation (NSE), depending upon the constitutive relation of the fluid medium. In the following, we will focus mainly on what is known as Newtonian fluid, for which the stress and rate of strain have linear relation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat R.L. Ash, A.J. Zuckerwar, Z. Zheng, Second Coefficient of Viscosity in Air. NASA-CR-187783 (1991) R.L. Ash, A.J. Zuckerwar, Z. Zheng, Second Coefficient of Viscosity in Air. NASA-CR-187783 (1991)
3.
Zurück zum Zitat B. Auld, Acoustic Fields and Waves in Solids (Wiley-Interscience, New York, 1973) B. Auld, Acoustic Fields and Waves in Solids (Wiley-Interscience, New York, 1973)
4.
Zurück zum Zitat M.F. Barone, C.J. Roy, Evaluation of detached eddy simulation for turbulent wake applications. AIAA J. 44(12), 3062–3071 (2006)CrossRef M.F. Barone, C.J. Roy, Evaluation of detached eddy simulation for turbulent wake applications. AIAA J. 44(12), 3062–3071 (2006)CrossRef
5.
Zurück zum Zitat S. Bhaumik, Direct Numerical Simulation of Inhomogeneous Transitional and Turbulent Flows. Ph.D. Thesis, I. I. T. Kanpur (2013) S. Bhaumik, Direct Numerical Simulation of Inhomogeneous Transitional and Turbulent Flows. Ph.D. Thesis, I. I. T. Kanpur (2013)
6.
Zurück zum Zitat S. Bhaumik, T.K. Sengupta, Precursor of transition to turbulence: spatio-temporal wave front. Phys. Rev. E 89(4), 043018 (2014)CrossRef S. Bhaumik, T.K. Sengupta, Precursor of transition to turbulence: spatio-temporal wave front. Phys. Rev. E 89(4), 043018 (2014)CrossRef
7.
Zurück zum Zitat S. Bhaumik, T.K. Sengupta, A new velocity-vorticity formulation for direct numerical simulation of 3D transitional and turbulent flows. J. Comput. Phys. 284, 230–260 (2015)MathSciNetMATHCrossRef S. Bhaumik, T.K. Sengupta, A new velocity-vorticity formulation for direct numerical simulation of 3D transitional and turbulent flows. J. Comput. Phys. 284, 230–260 (2015)MathSciNetMATHCrossRef
8.
Zurück zum Zitat Y.G. Bhumkar, High Performance Computing of Bypass Transition. Ph.D. Thesis, I. I. T. Kanpur (2011) Y.G. Bhumkar, High Performance Computing of Bypass Transition. Ph.D. Thesis, I. I. T. Kanpur (2011)
10.
Zurück zum Zitat L. Brillouin, Wave Propagation and Group Velocity (Academic Press, New York, 1960) L. Brillouin, Wave Propagation and Group Velocity (Academic Press, New York, 1960)
12.
Zurück zum Zitat J.G. Charney, R. Fj\(\varnothing \)rtoft, J. Von Neumann, Numerical integration of the barotropic vorticity equation. Tellus 2(4), 237–254 (1950) J.G. Charney, R. Fj\(\varnothing \)rtoft, J. Von Neumann, Numerical integration of the barotropic vorticity equation. Tellus 2(4), 237–254 (1950)
13.
Zurück zum Zitat P.H. Chiu, T.W.H. Sheu, On the development of a dispersion-relation-preserving dual-compact upwind scheme for convection-diffusion equation. J. Comput. Phys. 228, 3640–3655 (2009) P.H. Chiu, T.W.H. Sheu, On the development of a dispersion-relation-preserving dual-compact upwind scheme for convection-diffusion equation. J. Comput. Phys. 228, 3640–3655 (2009)
15.
Zurück zum Zitat M.S. Cramer, Numerical estimates for the bulk viscosity of ideal gases. Phys. Fluids 24(066102), 1–23 (2012)MathSciNet M.S. Cramer, Numerical estimates for the bulk viscosity of ideal gases. Phys. Fluids 24(066102), 1–23 (2012)MathSciNet
16.
Zurück zum Zitat J. Crank, P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Proc. Camb. Phil. Soc. 43(50), 50–67 (1947)MathSciNetMATHCrossRef J. Crank, P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Proc. Camb. Phil. Soc. 43(50), 50–67 (1947)MathSciNetMATHCrossRef
17.
Zurück zum Zitat J.D. Crouch, A. Garbaruk, D. Magidov, A. Travin, Origin of transonic buffet on aerofoils. J. Fluid Mech. 628, 357–369 (2009)MathSciNetMATHCrossRef J.D. Crouch, A. Garbaruk, D. Magidov, A. Travin, Origin of transonic buffet on aerofoils. J. Fluid Mech. 628, 357–369 (2009)MathSciNetMATHCrossRef
18.
Zurück zum Zitat P.A. Davidson, Turbulence: An Introduction for Scientists and Engineers (Oxford University Press, UK, 2004) P.A. Davidson, Turbulence: An Introduction for Scientists and Engineers (Oxford University Press, UK, 2004)
19.
Zurück zum Zitat G. Emanuel, Bulk viscosity of a dilute polyatomic gas. Phys. Fluids A 2, 2252–2254 (1990)CrossRef G. Emanuel, Bulk viscosity of a dilute polyatomic gas. Phys. Fluids A 2, 2252–2254 (1990)CrossRef
20.
Zurück zum Zitat M. Gad-el-Hak, Questions in fluid mechanics. Stokes’ hypothesis for a Newtonian, isotropic fluid. J. Fluids Eng. 117, 3–5 (Technical Forum) (1995) M. Gad-el-Hak, Questions in fluid mechanics. Stokes’ hypothesis for a Newtonian, isotropic fluid. J. Fluids Eng. 117, 3–5 (Technical Forum) (1995)
21.
Zurück zum Zitat D.V. Gaitonde, J.S. Shang, J.L. Young, Practical aspects of higher-order numerical schemes for wave propagation phenomena. Int. J. Numer. Meth. Eng. 45, 1849 (1999)MATHCrossRef D.V. Gaitonde, J.S. Shang, J.L. Young, Practical aspects of higher-order numerical schemes for wave propagation phenomena. Int. J. Numer. Meth. Eng. 45, 1849 (1999)MATHCrossRef
22.
Zurück zum Zitat D.V. Gaitonde, M.R. Visbal, Further development of a Navier-Stokes solution procedure based on higher order formulas, in 37th Aerospace Sciences Meeting and Exhibition, AIAA 99–0557, Reno, NV (1999) D.V. Gaitonde, M.R. Visbal, Further development of a Navier-Stokes solution procedure based on higher order formulas, in 37th Aerospace Sciences Meeting and Exhibition, AIAA 99–0557, Reno, NV (1999)
23.
Zurück zum Zitat D.V. Gaitonde, M.R. Visbal, Pad\(\acute{e}\)-type higher-order boundary filters for the Navier-Stokes equations. AIAA J. 38(11), 2103 (2000)CrossRef D.V. Gaitonde, M.R. Visbal, Pad\(\acute{e}\)-type higher-order boundary filters for the Navier-Stokes equations. AIAA J. 38(11), 2103 (2000)CrossRef
24.
Zurück zum Zitat T.B. Gatski, Review of incompressible fluid flow computations using the vorticity-velocity formulation. Appl. Numer. Math. 7, 227–239 (1991)MathSciNetMATHCrossRef T.B. Gatski, Review of incompressible fluid flow computations using the vorticity-velocity formulation. Appl. Numer. Math. 7, 227–239 (1991)MathSciNetMATHCrossRef
25.
Zurück zum Zitat T.B. Gatski, C.E. Grosch, M.E. Rose, A numerical study of the two-dimensional Navier-Stokes equations in vorticity-velocity variables. J. Comput. Phys. 48, 1–22 (1982)MATHCrossRef T.B. Gatski, C.E. Grosch, M.E. Rose, A numerical study of the two-dimensional Navier-Stokes equations in vorticity-velocity variables. J. Comput. Phys. 48, 1–22 (1982)MATHCrossRef
26.
Zurück zum Zitat T.B. Gatski, C.E. Grosch, M.E. Rose, A numerical solution of the Navier-Stokes equations for three-dimensional, unsteady, incompressible flows by compact schemes. J. Comput. Phys. 82, 298–329 (1989)MathSciNetMATHCrossRef T.B. Gatski, C.E. Grosch, M.E. Rose, A numerical solution of the Navier-Stokes equations for three-dimensional, unsteady, incompressible flows by compact schemes. J. Comput. Phys. 82, 298–329 (1989)MathSciNetMATHCrossRef
27.
Zurück zum Zitat S. Ghosal, P. Moin, The basic equations for the large eddy simulation of turbulent flows in complex geometry. J. Comput. Phys. 118, 24 (1995)MathSciNetMATHCrossRef S. Ghosal, P. Moin, The basic equations for the large eddy simulation of turbulent flows in complex geometry. J. Comput. Phys. 118, 24 (1995)MathSciNetMATHCrossRef
28.
Zurück zum Zitat R.E. Graves, B.M. Argrow, Bulk viscosity: past to present. J. Thermophys. Heat Trans. 13(3), 337–342 (1999)CrossRef R.E. Graves, B.M. Argrow, Bulk viscosity: past to present. J. Thermophys. Heat Trans. 13(3), 337–342 (1999)CrossRef
29.
Zurück zum Zitat W.R. Hamilton, The Collected Mathematical Papers, vol. 4 (Cambridge University Press, 1839) W.R. Hamilton, The Collected Mathematical Papers, vol. 4 (Cambridge University Press, 1839)
30.
Zurück zum Zitat G.J. Hirasaki, J.D. Hellums, A general formulation of the boundary conditions on the vector potential in three-dimensional hydrodynamics. Quart. Appl. Maths. 26(3), 331–342 (1968)MathSciNetMATHCrossRef G.J. Hirasaki, J.D. Hellums, A general formulation of the boundary conditions on the vector potential in three-dimensional hydrodynamics. Quart. Appl. Maths. 26(3), 331–342 (1968)MathSciNetMATHCrossRef
31.
Zurück zum Zitat G.J. Hirasaki, J.D. Hellums, Boundary conditions on the vector and scalar potentials in viscous three-dimensional hydrodynamics. Quart. Appl. Maths. 28(2), 293–296 (1970)MATHCrossRef G.J. Hirasaki, J.D. Hellums, Boundary conditions on the vector and scalar potentials in viscous three-dimensional hydrodynamics. Quart. Appl. Maths. 28(2), 293–296 (1970)MATHCrossRef
32.
Zurück zum Zitat J.T. Holdeman, A velocity-stream function method for three-dimensional incompressible fluid flow. Comput. Methods Appl. Mech. Eng. 209, 66–73 (2012)MathSciNetMATHCrossRef J.T. Holdeman, A velocity-stream function method for three-dimensional incompressible fluid flow. Comput. Methods Appl. Mech. Eng. 209, 66–73 (2012)MathSciNetMATHCrossRef
33.
Zurück zum Zitat F. Jenkins, H. White, Fundamentals of Physical Optics (McGraw-Hill, New York, 1973) F. Jenkins, H. White, Fundamentals of Physical Optics (McGraw-Hill, New York, 1973)
34.
35.
Zurück zum Zitat C.A. Kennedy, M.H. Carpenter, Several new numerical methods for compressible shear-layer simulations. Appl. Numer. Math. 14, 397 (1994)MathSciNetMATHCrossRef C.A. Kennedy, M.H. Carpenter, Several new numerical methods for compressible shear-layer simulations. Appl. Numer. Math. 14, 397 (1994)MathSciNetMATHCrossRef
36.
Zurück zum Zitat Z. Kopal, Numerical Analysis (Springer, New York, USA, 1966) Z. Kopal, Numerical Analysis (Springer, New York, USA, 1966)
37.
Zurück zum Zitat H. Kreiss, J. Oliger, Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24, 199–215 (1972)MathSciNetCrossRef H. Kreiss, J. Oliger, Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24, 199–215 (1972)MathSciNetCrossRef
38.
Zurück zum Zitat L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, New York, 1959) L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, New York, 1959)
39.
40.
Zurück zum Zitat L.N. Liebermann, The second viscosity of liquids. Phys. Rev. 75(9), 1415 (1949)CrossRef L.N. Liebermann, The second viscosity of liquids. Phys. Rev. 75(9), 1415 (1949)CrossRef
41.
Zurück zum Zitat M.J. Lighthill, Fourier Analysis and Generalized Functions (Cambridge University Press, Cambridge, UK, 1978) M.J. Lighthill, Fourier Analysis and Generalized Functions (Cambridge University Press, Cambridge, UK, 1978)
42.
Zurück zum Zitat J. Mathew, R. Lechner, H. Foysi, J. Sesterhenn, R. Friedrich, An explicit filtering ethod for large eddy simulation of compressible flows. J. Comput. Phys. 15(8), 2279 (2003)MATH J. Mathew, R. Lechner, H. Foysi, J. Sesterhenn, R. Friedrich, An explicit filtering ethod for large eddy simulation of compressible flows. J. Comput. Phys. 15(8), 2279 (2003)MATH
43.
Zurück zum Zitat F.M. Najjar, D.K. Tafti, Study of discrete test filters and finite difference approximations for the dynamic subgrid-scale stress model. J. Comput. Phys. 8(4), 1076 (1996)MATH F.M. Najjar, D.K. Tafti, Study of discrete test filters and finite difference approximations for the dynamic subgrid-scale stress model. J. Comput. Phys. 8(4), 1076 (1996)MATH
44.
Zurück zum Zitat J. Ortega-Casanova, R. Fernandez-Feria, A numerical method for the study of nonlinear stability of axisymmetric flows based on the vector potential. J. Comput. Phys. 227(6), 3307–3321 (2008) J. Ortega-Casanova, R. Fernandez-Feria, A numerical method for the study of nonlinear stability of axisymmetric flows based on the vector potential. J. Comput. Phys. 227(6), 3307–3321 (2008)
45.
Zurück zum Zitat G.A. Oswald, K.N. Ghia, U. Ghia, Direct solution methodologies for the unsteady dynamics of an incompressible fluid, in International Conference of Computing in Engineering, Science, vol. 2, Atlanta, ed. by S.N. Atluri, G. Yagawa (Springer, Berlin, 1988) G.A. Oswald, K.N. Ghia, U. Ghia, Direct solution methodologies for the unsteady dynamics of an incompressible fluid, in International Conference of Computing in Engineering, Science, vol. 2, Atlanta, ed. by S.N. Atluri, G. Yagawa (Springer, Berlin, 1988)
46.
Zurück zum Zitat K. Oberleithner, M. Sieber, C.N. Nayeri, C.O. Paschereit, C. Petz, H.-C. Hege, B.R. Noack, I. Wygnanski, Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383–414 (2011)MATHCrossRef K. Oberleithner, M. Sieber, C.N. Nayeri, C.O. Paschereit, C. Petz, H.-C. Hege, B.R. Noack, I. Wygnanski, Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383–414 (2011)MATHCrossRef
47.
Zurück zum Zitat T. Poinsot, D. Veynante, Theoretical and Numerical Combustion, 2nd edn. (Edwards, PA, 2005) T. Poinsot, D. Veynante, Theoretical and Numerical Combustion, 2nd edn. (Edwards, PA, 2005)
48.
Zurück zum Zitat J. Pradhan, B. Mahato, S.D. Dhandole, Y.G. Bhumkar, Construction, analysis and application of coupled compact difference scheme in computational acoustics and fluid flow problems. Commun. Comput. Phys. 18(4), 957–984 (2015)MathSciNetMATHCrossRef J. Pradhan, B. Mahato, S.D. Dhandole, Y.G. Bhumkar, Construction, analysis and application of coupled compact difference scheme in computational acoustics and fluid flow problems. Commun. Comput. Phys. 18(4), 957–984 (2015)MathSciNetMATHCrossRef
49.
Zurück zum Zitat K.R. Rajagopal, A new development and interpretation of the Navier-Stokes fluid which reveals why the “Stokes assumption” is inapt. Int. J. Non-Linear Mech. 50, 141–151 (2013)CrossRef K.R. Rajagopal, A new development and interpretation of the Navier-Stokes fluid which reveals why the “Stokes assumption” is inapt. Int. J. Non-Linear Mech. 50, 141–151 (2013)CrossRef
50.
Zurück zum Zitat M.K. Rajpoot, T.K. Sengupta, P.K. Dutt, Optimal time advancing dispersion relation preserving schemes. J. Comput. Phys. 229(10), 3623–3651 (2010)MathSciNetMATHCrossRef M.K. Rajpoot, T.K. Sengupta, P.K. Dutt, Optimal time advancing dispersion relation preserving schemes. J. Comput. Phys. 229(10), 3623–3651 (2010)MathSciNetMATHCrossRef
51.
Zurück zum Zitat L. Rayleigh, Scientific Papers 1 (Cambridge University Press, Cambridge, 1889) L. Rayleigh, Scientific Papers 1 (Cambridge University Press, Cambridge, 1889)
52.
Zurück zum Zitat L. Rayleigh, Scientific Papers 2 (Cambridge University Press, Cambridge, 1890) L. Rayleigh, Scientific Papers 2 (Cambridge University Press, Cambridge, 1890)
53.
Zurück zum Zitat W.C. Reynolds, A.K.M.F. Hussain, The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54(2), 263–288 (1972) W.C. Reynolds, A.K.M.F. Hussain, The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54(2), 263–288 (1972)
54.
Zurück zum Zitat D.P. Rizzetta, M.R. Visbal, G.A. Blaisddell, A time-implicit high-order compact differencing and filtering scheme for large-eddy simulation. Int. J. Numer. Meth. Fluids 42, 655 (2003)CrossRef D.P. Rizzetta, M.R. Visbal, G.A. Blaisddell, A time-implicit high-order compact differencing and filtering scheme for large-eddy simulation. Int. J. Numer. Meth. Fluids 42, 655 (2003)CrossRef
55.
Zurück zum Zitat D.P. Rizzetta, M.R. Visbal, P.E. Morgan, A high-order compact finite-difference scheme for large-eddy simulation of active flow control, in 46th Aerospace Sciences Meeting and Exhibition, AIAA 2008-526, Reno, NV (2008) D.P. Rizzetta, M.R. Visbal, P.E. Morgan, A high-order compact finite-difference scheme for large-eddy simulation of active flow control, in 46th Aerospace Sciences Meeting and Exhibition, AIAA 2008-526, Reno, NV (2008)
57.
Zurück zum Zitat P. Sagaut, Large Eddy Simulation for Incompressible Flows (Springer, Berlin, 2002) P. Sagaut, Large Eddy Simulation for Incompressible Flows (Springer, Berlin, 2002)
58.
Zurück zum Zitat A. Sengupta, V.K. Suman, T.K. Sengupta, S. Bhaumik, An enstrophy-based linear and nonlinear receptivity theory. Phys. Fluids 30, 054016 (2018) A. Sengupta, V.K. Suman, T.K. Sengupta, S. Bhaumik, An enstrophy-based linear and nonlinear receptivity theory. Phys. Fluids 30, 054016 (2018)
59.
Zurück zum Zitat T.K. Sengupta, Fundamentals of Computational Fluid Dynamics (University Press, Hyderabad, India, 2004) T.K. Sengupta, Fundamentals of Computational Fluid Dynamics (University Press, Hyderabad, India, 2004)
60.
Zurück zum Zitat T.K. Sengupta, Instabilities of Flows and Transition to Turbulence (CRC Press, Taylor & Francis Group, Florida, USA, 2012) T.K. Sengupta, Instabilities of Flows and Transition to Turbulence (CRC Press, Taylor & Francis Group, Florida, USA, 2012)
61.
Zurück zum Zitat T.K. Sengupta, High Accuracy Computing Methods: Fluid Flows and Wave Phenomenon (Cambridge University Press, USA, 2013) T.K. Sengupta, High Accuracy Computing Methods: Fluid Flows and Wave Phenomenon (Cambridge University Press, USA, 2013)
62.
Zurück zum Zitat T.K. Sengupta, S. Bhaumik, Onset of turbulence from the receptivity stage of fluid flows. Phys. Rev. Lett. 154501, 1–5 (2011) T.K. Sengupta, S. Bhaumik, Onset of turbulence from the receptivity stage of fluid flows. Phys. Rev. Lett. 154501, 1–5 (2011)
63.
Zurück zum Zitat T.K. Sengupta, S. Bhaumik, DNS of Wall-Bounded Turbulent Flows: A First Principle Approach (Springer-Nature, Singapore, 2019) T.K. Sengupta, S. Bhaumik, DNS of Wall-Bounded Turbulent Flows: A First Principle Approach (Springer-Nature, Singapore, 2019)
64.
Zurück zum Zitat T.K. Sengupta, S. Bhaumik, Y.G. Bhumkar, Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage. Phys. Rev. E 85(2), 026308 (2012)CrossRef T.K. Sengupta, S. Bhaumik, Y.G. Bhumkar, Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage. Phys. Rev. E 85(2), 026308 (2012)CrossRef
65.
Zurück zum Zitat T.K. Sengupta, S. Bhaumik, R. Bose, Direct numerical simulation of transitional mixed convection flows: viscous and inviscid instability mechanisms. Phys. Fluids 25, 094102 (2013)CrossRef T.K. Sengupta, S. Bhaumik, R. Bose, Direct numerical simulation of transitional mixed convection flows: viscous and inviscid instability mechanisms. Phys. Fluids 25, 094102 (2013)CrossRef
66.
Zurück zum Zitat T.K. Sengupta, Y.G. Bhumkar, New explicit two-dimensional higher order filters. Comput. Fluids 39, 1848–1863 (2010)MATHCrossRef T.K. Sengupta, Y.G. Bhumkar, New explicit two-dimensional higher order filters. Comput. Fluids 39, 1848–1863 (2010)MATHCrossRef
67.
Zurück zum Zitat T.K. Sengupta, Y. Bhumkar, V. Lakshmanan, Design and analysis of a new filter for LES and DES. Comput. Struct. 87, 735–750 (2009)CrossRef T.K. Sengupta, Y. Bhumkar, V. Lakshmanan, Design and analysis of a new filter for LES and DES. Comput. Struct. 87, 735–750 (2009)CrossRef
68.
Zurück zum Zitat T.K. Sengupta, Y. Bhumkar, M.K. Rajpoot, V.K. Suman, S. Saurabh, Spurious waves in discrete computation of wave phenomena and flow problems. Appl. Math. Comput. 218, 9035–9065 (2012)MathSciNetMATH T.K. Sengupta, Y. Bhumkar, M.K. Rajpoot, V.K. Suman, S. Saurabh, Spurious waves in discrete computation of wave phenomena and flow problems. Appl. Math. Comput. 218, 9035–9065 (2012)MathSciNetMATH
69.
Zurück zum Zitat T.K. Sengupta, S. Dey, Proper orthogonal decomposition of direct numerical simulation data of by-pass transition. Comput. Struct. 82, 2693–2703 (2004)CrossRef T.K. Sengupta, S. Dey, Proper orthogonal decomposition of direct numerical simulation data of by-pass transition. Comput. Struct. 82, 2693–2703 (2004)CrossRef
70.
Zurück zum Zitat T.K. Sengupta, A. Dipankar, A comparative study of time advancement methods for solving Navier-Stokes equations. J. Sci. Comput. 21(2), 225–250 (2004)MathSciNetMATHCrossRef T.K. Sengupta, A. Dipankar, A comparative study of time advancement methods for solving Navier-Stokes equations. J. Sci. Comput. 21(2), 225–250 (2004)MathSciNetMATHCrossRef
71.
72.
Zurück zum Zitat T.K. Sengupta, G. Ganeriwal, S. De, Analysis of central and upwind compact schemes. J. Comput. Phys. 192, 677–694 (2003)MATHCrossRef T.K. Sengupta, G. Ganeriwal, S. De, Analysis of central and upwind compact schemes. J. Comput. Phys. 192, 677–694 (2003)MATHCrossRef
73.
Zurück zum Zitat T.K. Sengupta, V. Lakshmanan, V.V.S.N. Vijay, A new combined stable and dispersion relation preserving compact scheme for non-periodic problems. J. Comput. Phys. 228(8), 3048–3071 (2009)MathSciNetMATHCrossRef T.K. Sengupta, V. Lakshmanan, V.V.S.N. Vijay, A new combined stable and dispersion relation preserving compact scheme for non-periodic problems. J. Comput. Phys. 228(8), 3048–3071 (2009)MathSciNetMATHCrossRef
74.
Zurück zum Zitat T.K. Sengupta, M.T. Nair, A new class of waves for Blasius boundary layer, in Proceeding of 7th Asian Congress of Fluid Mechanics (Allied Publishers, Chennai, India, 1997), pp. 785–788 T.K. Sengupta, M.T. Nair, A new class of waves for Blasius boundary layer, in Proceeding of 7th Asian Congress of Fluid Mechanics (Allied Publishers, Chennai, India, 1997), pp. 785–788
75.
Zurück zum Zitat T.K. Sengupta, Y.G. Bhumkar, M. Rajpoot, V.K. Suman, S. Saurabh, Spurious waves in discrete computation of wave phenomena and flow problems. Appl. Math. Comput. 218, 9035–9065 (2012)MathSciNetMATH T.K. Sengupta, Y.G. Bhumkar, M. Rajpoot, V.K. Suman, S. Saurabh, Spurious waves in discrete computation of wave phenomena and flow problems. Appl. Math. Comput. 218, 9035–9065 (2012)MathSciNetMATH
76.
Zurück zum Zitat T.K. Sengupta, A.K. Rao, K. Venkatasubbaiah, Spatio-temporal growing wave fronts in spatially stable boundary layers. Phys. Rev. Lett. 96(22), 224504 (2006)CrossRef T.K. Sengupta, A.K. Rao, K. Venkatasubbaiah, Spatio-temporal growing wave fronts in spatially stable boundary layers. Phys. Rev. Lett. 96(22), 224504 (2006)CrossRef
77.
Zurück zum Zitat T.K. Sengupta, A. Sengupta, S. Sengupta, A. Bhole, K.S. Shruti, Non-equilibrium thermodynamics of Rayleigh-Taylor instability. Int. J. Thermophys. 37(4), 1–25 (2016)CrossRef T.K. Sengupta, A. Sengupta, S. Sengupta, A. Bhole, K.S. Shruti, Non-equilibrium thermodynamics of Rayleigh-Taylor instability. Int. J. Thermophys. 37(4), 1–25 (2016)CrossRef
78.
Zurück zum Zitat T.K. Sengupta, A. Sengupta, N. Sharma, S. Sengupta, A. Bhole, K.S. Shruti, Roles of bulk viscosity on Rayleigh-Taylor instability: non-equilibrium thermodynamics due to spatio-temporal pressure fronts. Phys. Fluids 28, 094102 (2016)CrossRef T.K. Sengupta, A. Sengupta, N. Sharma, S. Sengupta, A. Bhole, K.S. Shruti, Roles of bulk viscosity on Rayleigh-Taylor instability: non-equilibrium thermodynamics due to spatio-temporal pressure fronts. Phys. Fluids 28, 094102 (2016)CrossRef
79.
Zurück zum Zitat T.K. Sengupta, H. Singh, S. Bhaumik, R. Roy Chowdhury, Diffusion in inhomogeneous flows: unique equilibrium state in an internal flow. Comp. Fluids 88, 440–451 (2013) T.K. Sengupta, H. Singh, S. Bhaumik, R. Roy Chowdhury, Diffusion in inhomogeneous flows: unique equilibrium state in an internal flow. Comp. Fluids 88, 440–451 (2013)
80.
81.
Zurück zum Zitat T.K. Sengupta, S.K. Sircar, A. Dipankar, High accuracy compact schemes for DNS and acoustics. J. Sci. Comput. 26(2), 151–193 (2006)MathSciNetMATHCrossRef T.K. Sengupta, S.K. Sircar, A. Dipankar, High accuracy compact schemes for DNS and acoustics. J. Sci. Comput. 26(2), 151–193 (2006)MathSciNetMATHCrossRef
82.
Zurück zum Zitat T.K. Sengupta, V.V.S.N. Vijay, S. Bhaumilk, Further improvement and analysis of CCD scheme: dissipation discretization and de-aliasing properties. J. Comput. Phys. 228(17), 6150–6168 (2009)MATHCrossRef T.K. Sengupta, V.V.S.N. Vijay, S. Bhaumilk, Further improvement and analysis of CCD scheme: dissipation discretization and de-aliasing properties. J. Comput. Phys. 228(17), 6150–6168 (2009)MATHCrossRef
83.
Zurück zum Zitat N. Sharma, T.K. Sengupta, Vorticity dynamics of the three-dimensional Taylor-Green vortex problem. Phys. Fluids 31, 035106 (2019)CrossRef N. Sharma, T.K. Sengupta, Vorticity dynamics of the three-dimensional Taylor-Green vortex problem. Phys. Fluids 31, 035106 (2019)CrossRef
84.
Zurück zum Zitat Y.I. Shokin, The Method of Differential Approximation (Springer, Berlin, 1983) Y.I. Shokin, The Method of Differential Approximation (Springer, Berlin, 1983)
85.
Zurück zum Zitat S. Stoltz, N.A. Adams, L. Kleiser, An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids 13(4), 997 (2001)MATHCrossRef S. Stoltz, N.A. Adams, L. Kleiser, An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids 13(4), 997 (2001)MATHCrossRef
86.
Zurück zum Zitat B. Swartz, B. Wendroff, The relation between the Galerkin and collocation methods using smooth splines. SIAM J. Num. Anal. 11(5), 994–996 (1974)MathSciNetMATHCrossRef B. Swartz, B. Wendroff, The relation between the Galerkin and collocation methods using smooth splines. SIAM J. Num. Anal. 11(5), 994–996 (1974)MathSciNetMATHCrossRef
87.
Zurück zum Zitat C.K.W. Tam, K. Viswanathan, K.K. Ahuja, J. Panda, The sources of jet noise: experimental evidence. J. Fluid Mech. 615, 253–292 (2008) C.K.W. Tam, K. Viswanathan, K.K. Ahuja, J. Panda, The sources of jet noise: experimental evidence. J. Fluid Mech. 615, 253–292 (2008)
88.
Zurück zum Zitat H. Tennekes, J.L. Lumley, First Course in Turbulence (MIT Press, Cambridge, MA, 1971) H. Tennekes, J.L. Lumley, First Course in Turbulence (MIT Press, Cambridge, MA, 1971)
89.
Zurück zum Zitat L. Tisza, Supersonic absorption and Stokes’ viscosity relation. Phys. Rev. 61, 531 (1942)CrossRef L. Tisza, Supersonic absorption and Stokes’ viscosity relation. Phys. Rev. 61, 531 (1942)CrossRef
90.
Zurück zum Zitat E. Touber, N.D. Sandham, Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theo. Comput. Fluid Dyns. 23(2), 79–107 (2009) E. Touber, N.D. Sandham, Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theo. Comput. Fluid Dyns. 23(2), 79–107 (2009)
92.
Zurück zum Zitat P.G. Tucker, Differential equation-based wall distance computation for DES and RANS. J. Comput. Phys. 190, 229–248 (2003)MATHCrossRef P.G. Tucker, Differential equation-based wall distance computation for DES and RANS. J. Comput. Phys. 190, 229–248 (2003)MATHCrossRef
93.
Zurück zum Zitat O.V. Vasilyev, T.S. Lund, P. Moin, A general class of commutative filters for LES in complex geometries. J. Comput. Phys. 146, 82 (1998)MathSciNetMATHCrossRef O.V. Vasilyev, T.S. Lund, P. Moin, A general class of commutative filters for LES in complex geometries. J. Comput. Phys. 146, 82 (1998)MathSciNetMATHCrossRef
94.
Zurück zum Zitat R. Vichnevetsky, J.B. Bowles, Fourier Analysis of Numerical Approximations of Hyperbolic Equations (SIAM Studies of Applied Mathematics, Philadelphia, USA, 1982) R. Vichnevetsky, J.B. Bowles, Fourier Analysis of Numerical Approximations of Hyperbolic Equations (SIAM Studies of Applied Mathematics, Philadelphia, USA, 1982)
95.
Zurück zum Zitat M.R. Visbal, D.V. Gaitonde, High-order-accurate methods for complex unsteady subsonic flows. AIAA J. 37(10), 1231 (1999)CrossRef M.R. Visbal, D.V. Gaitonde, High-order-accurate methods for complex unsteady subsonic flows. AIAA J. 37(10), 1231 (1999)CrossRef
96.
Zurück zum Zitat M.R. Visbal, D.V. Gaitonde, On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181, 155 (2002)MathSciNetMATHCrossRef M.R. Visbal, D.V. Gaitonde, On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181, 155 (2002)MathSciNetMATHCrossRef
97.
Zurück zum Zitat H.A.V. der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992) H.A.V. der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)
98.
Zurück zum Zitat E. Weinan, J.-G. Liu, Vorticity boundary condition and related issues for finite difference schemes. J. Comput. Phys. 124(2), 368–382 (1996) E. Weinan, J.-G. Liu, Vorticity boundary condition and related issues for finite difference schemes. J. Comput. Phys. 124(2), 368–382 (1996)
99.
Zurück zum Zitat G.B. Whitham, Linear and Nonlinear Waves (Wiley-Interscience, New York, 1974) G.B. Whitham, Linear and Nonlinear Waves (Wiley-Interscience, New York, 1974)
100.
Zurück zum Zitat A.K. Wong, J.A. Reizes, An effective vorticity-vector potential formulation for the numerical solution of three-dimensional duct flow problems. J. Comput. Phys. 55(1), 98–114 (1984)MathSciNetMATHCrossRef A.K. Wong, J.A. Reizes, An effective vorticity-vector potential formulation for the numerical solution of three-dimensional duct flow problems. J. Comput. Phys. 55(1), 98–114 (1984)MathSciNetMATHCrossRef
101.
Zurück zum Zitat A.K. Wong, J.A. Reizes, The vector potential in the numerical solution of three-dimensional fluid dynamics problems in multiply connected regions. J. Comput. Phys. 62(1), 124–142 (1986)MathSciNetMATHCrossRef A.K. Wong, J.A. Reizes, The vector potential in the numerical solution of three-dimensional fluid dynamics problems in multiply connected regions. J. Comput. Phys. 62(1), 124–142 (1986)MathSciNetMATHCrossRef
102.
Zurück zum Zitat D.W. Zingg, Comparison of high-accuracy finite-difference schemes for linear wave propagation. SIAM J. Sci. Comput. 22(2), 476–502 (2000)MathSciNetMATHCrossRef D.W. Zingg, Comparison of high-accuracy finite-difference schemes for linear wave propagation. SIAM J. Sci. Comput. 22(2), 476–502 (2000)MathSciNetMATHCrossRef
Metadaten
Titel
Governing Equations for Aerodynamics and Acoustics
verfasst von
Tapan K. Sengupta
Yogesh G. Bhumkar
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4284-8_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.