Skip to main content

24.01.2025 | Vision and Sensors

GPENS: Ground Plane Estimation and Navigation System for Autonomous Mining Trucks

verfasst von: Eren Aydemir, Mustafa Unel

Erschienen in: International Journal of Automotive Technology

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we introduce the Ground Plane Estimation and Navigation System (GPENS) designed for autonomous mining trucks operating in unstructured environments. GPENS employs an efficient method for modeling unstructured terrain, which enhances the segmentation of 3D point clouds and improves the accuracy of ground versus non-ground classification. The integrated system facilitates real-time processing from ground plane estimation through to road boundary detection, motion planning, and control, enabling the autonomous navigation and parking of mining trucks. Additionally, we present a unique dataset comprising annotated point clouds, collected from a real mining area using an actual mining truck. Our state-of-the-art algorithms demonstrate a performance increase over current ground plane estimation solutions, achieving a 2% improvement in precision. Utilizing GPENS, we successfully showcase a truck-trailer combination capable of both navigating and parking autonomously in the challenging conditions of a real-world mine.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., & Gall, J. (2019). SemanticKITTI: A dataset for semantic scene understanding of LiDAR sequences. In Proc. of the IEEE/CVF international conference on computer vision (ICCV). Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., & Gall, J. (2019). SemanticKITTI: A dataset for semantic scene understanding of LiDAR sequences. In Proc. of the IEEE/CVF international conference on computer vision (ICCV).
Zurück zum Zitat Caldas, K. A., Barbosa, F. M., Silva, J. A., Santos, T. C., Gomes, I. P., Rosero, L. A., & Grassi, V., Jr. (2023). Autonomous driving of trucks in off-road environment. Journal of Control, Automation and Electrical Systems, 34, 1179–1193.CrossRef Caldas, K. A., Barbosa, F. M., Silva, J. A., Santos, T. C., Gomes, I. P., Rosero, L. A., & Grassi, V., Jr. (2023). Autonomous driving of trucks in off-road environment. Journal of Control, Automation and Electrical Systems, 34, 1179–1193.CrossRef
Zurück zum Zitat Chavez-Garcia, R. O., Guzzi, J., Gambardella, L. M., & Giusti, A. (2017). Image classification for ground traversability estimation in robotics. In Advanced concepts for intelligent vision systems: 18th international conference, ACIVS 2017, Antwerp, Belgium, September 18–21, 2017, Proceedings 18 (pp. 325–336). Chavez-Garcia, R. O., Guzzi, J., Gambardella, L. M., & Giusti, A. (2017). Image classification for ground traversability estimation in robotics. In Advanced concepts for intelligent vision systems: 18th international conference, ACIVS 2017, Antwerp, Belgium, September 18–21, 2017, Proceedings 18 (pp. 325–336).
Zurück zum Zitat Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24, 381–395.MathSciNetCrossRefMATH Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24, 381–395.MathSciNetCrossRefMATH
Zurück zum Zitat Guan, T., He, Z., Song, R., Manocha, D., & Zhang, L. (2021). Tns: Terrain traversability mapping and navigation system for autonomous excavators. arXiv:2109.06250. Guan, T., He, Z., Song, R., Manocha, D., & Zhang, L. (2021). Tns: Terrain traversability mapping and navigation system for autonomous excavators. arXiv:​2109.​06250.
Zurück zum Zitat Helmick, D., Angelova, A., & Matthies, L. (2009). Terrain adaptive navigation for planetary rovers. Journal of Field Robotics, 26, 391–410.CrossRefMATH Helmick, D., Angelova, A., & Matthies, L. (2009). Terrain adaptive navigation for planetary rovers. Journal of Field Robotics, 26, 391–410.CrossRefMATH
Zurück zum Zitat Himmelsbach, M., Hundelshausen, F. V., & Wuensche, H.-J. (2010). Fast segmentation of 3D point clouds for ground vehicles. In 2010 IEEE intelligent vehicles symposium (pp. 560–565). Himmelsbach, M., Hundelshausen, F. V., & Wuensche, H.-J. (2010). Fast segmentation of 3D point clouds for ground vehicles. In 2010 IEEE intelligent vehicles symposium (pp. 560–565).
Zurück zum Zitat Hirose, N., Sadeghian, A., Vázquez, M., Goebel, P., & Savarese, S. (2018). Gonet: A semi-supervised deep learning approach for traversability estimation. In 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3044–3051). Hirose, N., Sadeghian, A., Vázquez, M., Goebel, P., & Savarese, S. (2018). Gonet: A semi-supervised deep learning approach for traversability estimation. In 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3044–3051).
Zurück zum Zitat Kuwata, Y., Teo, J., Fiore, G., Karaman, S., Frazzoli, E., & How, J. P. (2009). Real-time motion planning with applications to autonomous urban driving. IEEE Transactions on Control Systems Technology, 17, 1105–1118.CrossRefMATH Kuwata, Y., Teo, J., Fiore, G., Karaman, S., Frazzoli, E., & How, J. P. (2009). Real-time motion planning with applications to autonomous urban driving. IEEE Transactions on Control Systems Technology, 17, 1105–1118.CrossRefMATH
Zurück zum Zitat Lalonde, J.-F., Vandapel, N., Huber, D. F., & Hebert, M. (2006). Natural terrain classification using three-dimensional ladar data for ground robot mobility. Journal of Field Robotics, 23, 839–861.CrossRefMATH Lalonde, J.-F., Vandapel, N., Huber, D. F., & Hebert, M. (2006). Natural terrain classification using three-dimensional ladar data for ground robot mobility. Journal of Field Robotics, 23, 839–861.CrossRefMATH
Zurück zum Zitat Lee, S., Lim, H., & Myung, H. (2022). Patchwork++: Fast and robust ground segmentation solving partial under-segmentation using 3D point cloud. In 2022 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 13276–13283). Lee, S., Lim, H., & Myung, H. (2022). Patchwork++: Fast and robust ground segmentation solving partial under-segmentation using 3D point cloud. In 2022 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 13276–13283).
Zurück zum Zitat Lever, P. J. (2001). An automated digging control for a wheel loader. Robotica, 19, 497–511.CrossRefMATH Lever, P. J. (2001). An automated digging control for a wheel loader. Robotica, 19, 497–511.CrossRefMATH
Zurück zum Zitat Li, Y., Li, Z., Teng, S., Zhang, Y., Zhou, Y., Zhu, Y., et al. (2022). AutoMine: An unmanned mine dataset. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 21308–21317). Li, Y., Li, Z., Teng, S., Zhang, Y., Zhou, Y., Zhu, Y., et al. (2022). AutoMine: An unmanned mine dataset. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 21308–21317).
Zurück zum Zitat Lim, H., Hwang, S., & Myung, H. (2021a). ERASOR: Egocentric ratio of pseudo occupancy-based dynamic object removal for static 3D point cloud map building. IEEE Robotics and Automation Letters, 6, 2272–2279.CrossRefMATH Lim, H., Hwang, S., & Myung, H. (2021a). ERASOR: Egocentric ratio of pseudo occupancy-based dynamic object removal for static 3D point cloud map building. IEEE Robotics and Automation Letters, 6, 2272–2279.CrossRefMATH
Zurück zum Zitat Lim, H., Oh, M., & Myung, H. (2021b). Patchwork: Concentric zone-based region-wise ground segmentation with ground likelihood estimation using a 3D LiDAR sensor. IEEE Robotics and Automation Letters, 6, 6458–6465.CrossRefMATH Lim, H., Oh, M., & Myung, H. (2021b). Patchwork: Concentric zone-based region-wise ground segmentation with ground likelihood estimation using a 3D LiDAR sensor. IEEE Robotics and Automation Letters, 6, 6458–6465.CrossRefMATH
Zurück zum Zitat Moosmann, F., Pink, O., & Stiller, C. (2009). Segmentation of 3D lidar data in non-flat urban environments using a local convexity criterion. In 2009 IEEE intelligent vehicles symposium (pp. 215–220). Moosmann, F., Pink, O., & Stiller, C. (2009). Segmentation of 3D lidar data in non-flat urban environments using a local convexity criterion. In 2009 IEEE intelligent vehicles symposium (pp. 215–220).
Zurück zum Zitat Narksri, P., Takeuchi, E., Ninomiya, Y., Morales, Y., Akai, N., & Kawaguchi, N. (2018). A slope-robust cascaded ground segmentation in 3D point cloud for autonomous vehicles. In 2018 21st international conference on intelligent transportation systems (ITSC) (pp. 497–504). Narksri, P., Takeuchi, E., Ninomiya, Y., Morales, Y., Akai, N., & Kawaguchi, N. (2018). A slope-robust cascaded ground segmentation in 3D point cloud for autonomous vehicles. In 2018 21st international conference on intelligent transportation systems (ITSC) (pp. 497–504).
Zurück zum Zitat Nath, N. D., & Behzadan, A. H. (2020). Deep convolutional networks for construction object detection under different visual conditions. Frontiers in Built Environment, 6, 97.CrossRefMATH Nath, N. D., & Behzadan, A. H. (2020). Deep convolutional networks for construction object detection under different visual conditions. Frontiers in Built Environment, 6, 97.CrossRefMATH
Zurück zum Zitat Paigwar, A., Erkent, Ö., Sierra-Gonzalez, D., & Laugier, C. (2020). GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles. In 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2150–2156). Paigwar, A., Erkent, Ö., Sierra-Gonzalez, D., & Laugier, C. (2020). GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles. In 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2150–2156).
Zurück zum Zitat Shamshiri, R., Weltzien, C., Hameed, I. A., Yule, J. I., Grift, E. T., Balasundram, S. K., Chowdhary, G. (2018). Research and development in agricultural robotics: A perspective of digital farming. Shamshiri, R., Weltzien, C., Hameed, I. A., Yule, J. I., Grift, E. T., Balasundram, S. K., Chowdhary, G. (2018). Research and development in agricultural robotics: A perspective of digital farming.
Zurück zum Zitat Shariati, H., Yeraliyev, A., Terai, B., Tafazoli, S., & Ramezani, M. (2019). Towards autonomous mining via intelligent excavators. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) workshops. Shariati, H., Yeraliyev, A., Terai, B., Tafazoli, S., & Ramezani, M. (2019). Towards autonomous mining via intelligent excavators. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) workshops.
Zurück zum Zitat Sharma, S., Dabbiru, L., Hannis, T., Mason, G., Carruth, D. W., Doude, M., et al. (2022). Cat: Cavs traversability dataset for off-road autonomous driving. IEEE Access, 10, 24759–24768.CrossRef Sharma, S., Dabbiru, L., Hannis, T., Mason, G., Carruth, D. W., Doude, M., et al. (2022). Cat: Cavs traversability dataset for off-road autonomous driving. IEEE Access, 10, 24759–24768.CrossRef
Zurück zum Zitat Sinha, A., & Papadakis, P. (2013). Mind the gap: Detection and traversability analysis of terrain gaps using LIDAR for safe robot navigation. Robotica, 31, 1085–1101.CrossRef Sinha, A., & Papadakis, P. (2013). Mind the gap: Detection and traversability analysis of terrain gaps using LIDAR for safe robot navigation. Robotica, 31, 1085–1101.CrossRef
Zurück zum Zitat Thangavelautham, J., Law, K., Fu, T., Samid, E. A., Smith, A. D., & DÉleuterio, G. M. (2017). Autonomous multirobot excavation for lunar applications. Robotica, 35, 2330–2362.CrossRef Thangavelautham, J., Law, K., Fu, T., Samid, E. A., Smith, A. D., & DÉleuterio, G. M. (2017). Autonomous multirobot excavation for lunar applications. Robotica, 35, 2330–2362.CrossRef
Zurück zum Zitat Tian, F., Zhou, R., Li, Z., Li, L., Gao, Y., Cao, D., & Chen, L. (2021). Trajectory planning for autonomous mining trucks considering terrain constraints. IEEE Transactions on Intelligent Vehicles, 6, 772–786.CrossRefMATH Tian, F., Zhou, R., Li, Z., Li, L., Gao, Y., Cao, D., & Chen, L. (2021). Trajectory planning for autonomous mining trucks considering terrain constraints. IEEE Transactions on Intelligent Vehicles, 6, 772–786.CrossRefMATH
Zurück zum Zitat Vulpi, F., Marani, R., Petitti, A., Reina, G., & Milella, A. (2022). An RGB-D multi-view perspective for autonomous agricultural robots. Computers and Electronics in Agriculture, 202, 107419.CrossRef Vulpi, F., Marani, R., Petitti, A., Reina, G., & Milella, A. (2022). An RGB-D multi-view perspective for autonomous agricultural robots. Computers and Electronics in Agriculture, 202, 107419.CrossRef
Zurück zum Zitat Yang, Q., Ai, Y., Teng, S., Gao, Y., Cui, C., Tian, B., & Chen, L. (2023). Decoupled real-time trajectory planning for multiple autonomous mining trucks in unloading areas. IEEE Transactions on Intelligent Vehicles. Yang, Q., Ai, Y., Teng, S., Gao, Y., Cui, C., Tian, B., & Chen, L. (2023). Decoupled real-time trajectory planning for multiple autonomous mining trucks in unloading areas. IEEE Transactions on Intelligent Vehicles.
Zurück zum Zitat Zermas, D., Izzat, I., & Papanikolopoulos, N. (2017). Fast segmentation of 3d point clouds: A paradigm on lidar data for autonomous vehicle applications. In 2017 IEEE International conference on robotics and automation (ICRA) (pp. 5067–5073). Zermas, D., Izzat, I., & Papanikolopoulos, N. (2017). Fast segmentation of 3d point clouds: A paradigm on lidar data for autonomous vehicle applications. In 2017 IEEE International conference on robotics and automation (ICRA) (pp. 5067–5073).
Zurück zum Zitat Zhu, Z., Li, N., Sun, R., Xu, D., & Zhao, H. (2020). Off-road autonomous vehicles traversability analysis and trajectory planning based on deep inverse reinforcement learning. In 2020 IEEE intelligent vehicles symposium (IV) (pp. 971–977). Zhu, Z., Li, N., Sun, R., Xu, D., & Zhao, H. (2020). Off-road autonomous vehicles traversability analysis and trajectory planning based on deep inverse reinforcement learning. In 2020 IEEE intelligent vehicles symposium (IV) (pp. 971–977).
Metadaten
Titel
GPENS: Ground Plane Estimation and Navigation System for Autonomous Mining Trucks
verfasst von
Eren Aydemir
Mustafa Unel
Publikationsdatum
24.01.2025
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-025-00214-y