Skip to main content

2018 | OriginalPaper | Buchkapitel

4. Gradation, Dispersion, and Tribological Behaviors of Nanometric Diamond Particles in Lubricating Oils

verfasst von : Kai Wu, Bo Wu, Chuan Li, Xianguo Hu

Erschienen in: Introduction to Mechanical Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To improve the dispersion characteristics of nanometric diamond in lubricating oil and optimize its tribological properties, the gradation, dispersion, and tribological behaviors of nanometric diamond particles in lubricating oils were studied in this chapter. The dispersion characteristics of modified nanometric diamond in lubricating oils were observed by centrifugal and static methods. The four-ball tribometer was performed to study the tribological properties of the modified nanometric diamond as additive in hydraulic fluid. The morphology, particle size, surface functional groups, and structure composition of diamond powders before and after modification were analyzed and compared by means of FE-SEM, Zeta, FTIR, and XRD. Scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and Raman spectroscopy were selected to characterize the worn scar surface after rubbing process. The results showed that the modified nanometric diamond particle was fined, the surface functional group number was increased, and the steric effect in lubricating oil was produced, so that it exhibited excellent dispersion stability. Modified nanometric diamond as lubricating additives has good anti-wear and friction-reducing performance in hydraulic oil is mainly attributed to a large amount of small nanometric diamond particles, some fined particles fill and repair the rough surfaces of the friction pairs, and part of them enters the interface between the friction pairs to form rolling effect, which improves the anti-wear and friction-reducing properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Glossar
Surface energy
Surface energy is a measure of the destruction of intermolecular bonds when material surfaces are created.
Disaggregation
The agglomeration structure of powder was broken by screening, mechanical grinding, preparation of high dispersion suspension and adding surfactant and so on.
Adsorption
An exotic molecule or atom or ion from an environment adheres to the surface of a solid by physical or chemical action.
Steric hindrance
The steric hindrance effect mainly refers to the spatial hindrance caused by the proximity of certain atoms or groups in the molecule to each other.
Dispersibility
Flocculation or droplets of solid particles in water or other homogeneous liquid medium can be dispersed into small particles suspended in the dispersion medium without precipitation.
Rubbing pair
A system consisting of two objects that move relatively in contact with the surface.
Wear scar
Damage marks left on the friction surface after the friction and wear of the solid surface, which are the important basis for evaluating the type of wear.
Abrasive wear
The wear caused by the act of extruding or moving along the surface of a solid surface by hard particles or rigid bodies. The wear caused by the hard particles or hard body on the solid surface extrusion and along the surface movement.
Ploughing
The softer surface of the two surface of the relative motion results in groove damage due to plastic deformation.
Graphitization
Graphitization refers to the orderly transformation of carbon atoms which are thermodynamically unstable from disordered structure to graphite crystal structure.
Literatur
1.
Zurück zum Zitat Chou, C. C., & Lee, S. H. (2010). Tribological behavior of nanodiamond-dispersed lubricants on carbon steels and aluminum alloy. Wear, 269(11–12), 757–762.CrossRef Chou, C. C., & Lee, S. H. (2010). Tribological behavior of nanodiamond-dispersed lubricants on carbon steels and aluminum alloy. Wear, 269(11–12), 757–762.CrossRef
2.
Zurück zum Zitat Chu, H. Y., Wen, C. H., & Lin, J. F. (2010). Scuffing mechanism during oil-lubricated block-on-ring test with diamond nanoparticles as oil additive. Wear, 268(11), 1423–1433.CrossRef Chu, H. Y., Wen, C. H., & Lin, J. F. (2010). Scuffing mechanism during oil-lubricated block-on-ring test with diamond nanoparticles as oil additive. Wear, 268(11), 1423–1433.CrossRef
3.
Zurück zum Zitat Cui, X., Liu, X., Tatton, A. S., Brown, S. P., Ye, H., & Marsh, A. (2012). Nanodiamond promotes surfactant-mediated triglyceride removal from a hydrophobic surface at or below room temperature. ACS Applied Materials & Interfaces, 4(6), 3225–3232.CrossRef Cui, X., Liu, X., Tatton, A. S., Brown, S. P., Ye, H., & Marsh, A. (2012). Nanodiamond promotes surfactant-mediated triglyceride removal from a hydrophobic surface at or below room temperature. ACS Applied Materials & Interfaces, 4(6), 3225–3232.CrossRef
4.
Zurück zum Zitat Dai, W., Kheireddin, B., Gao, H., & Liang, H. (2016). Roles of nanoparticles in oil lubrication. Tribology International, 102, 88–98.CrossRef Dai, W., Kheireddin, B., Gao, H., & Liang, H. (2016). Roles of nanoparticles in oil lubrication. Tribology International, 102, 88–98.CrossRef
5.
Zurück zum Zitat Davidson, J. L., & Bradshaw, D. T. (2005). Compositions with nano-particle size diamond powder and methods of using same for transferring heat between a heat source and a heat sink, U.S. Patent 6858157B2. Davidson, J. L., & Bradshaw, D. T. (2005). Compositions with nano-particle size diamond powder and methods of using same for transferring heat between a heat source and a heat sink, U.S. Patent 6858157B2.
6.
Zurück zum Zitat Dolmatov, V. Y. (2001). Detonation synthesis ultradispersed diamonds: Properties and applications. Russian Chemical reviews, 70(7), 687–708.CrossRef Dolmatov, V. Y. (2001). Detonation synthesis ultradispersed diamonds: Properties and applications. Russian Chemical reviews, 70(7), 687–708.CrossRef
7.
Zurück zum Zitat Elomaa, O., Oksanen, J., Hakala, T. J., Shenderova, O., & Koskinen, J. (2014). A comparison of tribological properties of evenly distributed and agglomerated diamond nanoparticles in lubricated high-load steel–steel contact. Tribology International, 71, 62–68.CrossRef Elomaa, O., Oksanen, J., Hakala, T. J., Shenderova, O., & Koskinen, J. (2014). A comparison of tribological properties of evenly distributed and agglomerated diamond nanoparticles in lubricated high-load steel–steel contact. Tribology International, 71, 62–68.CrossRef
8.
Zurück zum Zitat Grichko, V., Hens, S., & Walch, J. (2007). Detonation nanodiamonds as UV radiation filter Diam. Diamond and Related Materials, 16(12), 2003–2008.CrossRef Grichko, V., Hens, S., & Walch, J. (2007). Detonation nanodiamonds as UV radiation filter Diam. Diamond and Related Materials, 16(12), 2003–2008.CrossRef
9.
Zurück zum Zitat Grichko, V., Tyler, T., Grishko, V. I., & Shenderova, O. (2008). Nanodiamond particles forming photonic structures. Nanotechnology, 19(22), 225201.CrossRef Grichko, V., Tyler, T., Grishko, V. I., & Shenderova, O. (2008). Nanodiamond particles forming photonic structures. Nanotechnology, 19(22), 225201.CrossRef
10.
Zurück zum Zitat Gruen, D. M., Shenderova, O. A., & Vul, A. Y. (2005). Synthesis properties and applications of ultrananocrystalline diamond. Dordrecht, The Netherlands: Springer.CrossRef Gruen, D. M., Shenderova, O. A., & Vul, A. Y. (2005). Synthesis properties and applications of ultrananocrystalline diamond. Dordrecht, The Netherlands: Springer.CrossRef
11.
Zurück zum Zitat Huang, Z. J., Fei, Y. W., & Shang, Z. F. (2005). The application of nanoparticles as additive in lubricants and in lubricants and its development trend. Lubricating Oil, 20(2), 21–25. Huang, Z. J., Fei, Y. W., & Shang, Z. F. (2005). The application of nanoparticles as additive in lubricants and in lubricants and its development trend. Lubricating Oil, 20(2), 21–25.
12.
Zurück zum Zitat Ivanov, G., Kharlamov, V. V., Buznik, V. M., Ivanov, D. M., Pavlyshko, S. G., & Tsvetkov, A. K. (2004). Tribological properties of the grease containing polytetrafluorethylene and ultrafine diamond. Friction & Wear, 25(1), 99–103. Ivanov, G., Kharlamov, V. V., Buznik, V. M., Ivanov, D. M., Pavlyshko, S. G., & Tsvetkov, A. K. (2004). Tribological properties of the grease containing polytetrafluorethylene and ultrafine diamond. Friction & Wear, 25(1), 99–103.
13.
Zurück zum Zitat Ivanov, M. G., Pavlyshko, S. V., Ivanov, D. M., Petrov, I., & Shenderova, O. (2010). Synergistic compositions of colloidal nanodiamond as lubricant-additive. JVST B, 28(4), 869–877. Ivanov, M. G., Pavlyshko, S. V., Ivanov, D. M., Petrov, I., & Shenderova, O. (2010). Synergistic compositions of colloidal nanodiamond as lubricant-additive. JVST B, 28(4), 869–877.
14.
Zurück zum Zitat Kim, H. S., Park, J. W., Park, S. M., Lee, J. S., & Lee, Y. Z. (2013). Tribological characteristics of paraffin liquid with nanodiamond based on the scuffing life and wear amount. Wear, 301(1–2), 763–767.CrossRef Kim, H. S., Park, J. W., Park, S. M., Lee, J. S., & Lee, Y. Z. (2013). Tribological characteristics of paraffin liquid with nanodiamond based on the scuffing life and wear amount. Wear, 301(1–2), 763–767.CrossRef
15.
Zurück zum Zitat Krueger, A. (2008). Diamond nanoparticles: Jewels for chemistry and physics. Advanced Materials, 20(12), 2445–2449.CrossRef Krueger, A. (2008). Diamond nanoparticles: Jewels for chemistry and physics. Advanced Materials, 20(12), 2445–2449.CrossRef
16.
Zurück zum Zitat Krüger, A., Liang, Y., Jarry, G., & Stegk, J. (2006). Surface functionalisation of detonation diamond suitable for biological applications. Journal of Materials Chemistry, 16(24), 2322–2328.CrossRef Krüger, A., Liang, Y., Jarry, G., & Stegk, J. (2006). Surface functionalisation of detonation diamond suitable for biological applications. Journal of Materials Chemistry, 16(24), 2322–2328.CrossRef
17.
Zurück zum Zitat Lee, G. J., Park, J. J., Lee, M. K., & Rhee, C. K. (2017). Stable dispersion of nanodiamonds in oil and their tribological properties as lubricant additives. Applied Surface Science, 415, 24–27.CrossRef Lee, G. J., Park, J. J., Lee, M. K., & Rhee, C. K. (2017). Stable dispersion of nanodiamonds in oil and their tribological properties as lubricant additives. Applied Surface Science, 415, 24–27.CrossRef
18.
Zurück zum Zitat Liu, W. M., Xu, J., Feng, D. P., & Wang, X. P. (2013). The research status and prospect synthetic lubricating oils. Tribology, 33(1), 91–104. Liu, W. M., Xu, J., Feng, D. P., & Wang, X. P. (2013). The research status and prospect synthetic lubricating oils. Tribology, 33(1), 91–104.
19.
Zurück zum Zitat Michail, I. G., Pavlyshko, V. S., Ivanov, D. M., Petrov, I., McGuire, G., & Shenderova, O. (2009). Nanodiamonds particles as additives in lubricants. MRS Proceedings, 1203, 89–94.CrossRef Michail, I. G., Pavlyshko, V. S., Ivanov, D. M., Petrov, I., McGuire, G., & Shenderova, O. (2009). Nanodiamonds particles as additives in lubricants. MRS Proceedings, 1203, 89–94.CrossRef
20.
Zurück zum Zitat Mochalin, V. N., & Gogotsi, Y. (2015). Nanodiamond–polymer composites. Diamond and Related Materials, 58, 161–171.CrossRef Mochalin, V. N., & Gogotsi, Y. (2015). Nanodiamond–polymer composites. Diamond and Related Materials, 58, 161–171.CrossRef
21.
Zurück zum Zitat Motahari, H., & Spectroscopic, Malekfar R. (2017). Investigation for purity evaluation of detonation nanodiamonds: experimental approach in absorbance and scattering. Journal of Cluster Science, 28(4), 1923–1935.CrossRef Motahari, H., & Spectroscopic, Malekfar R. (2017). Investigation for purity evaluation of detonation nanodiamonds: experimental approach in absorbance and scattering. Journal of Cluster Science, 28(4), 1923–1935.CrossRef
22.
Zurück zum Zitat Mou, G. J., & Zhao, B. (2004). Research advances of inorganic nano additives in lubricating oil. Lubricating Oil, 19(1), 59–61. Mou, G. J., & Zhao, B. (2004). Research advances of inorganic nano additives in lubricating oil. Lubricating Oil, 19(1), 59–61.
23.
Zurück zum Zitat Neville, A., Morina, A., Haque, T., & Voong, M. (2007). Compatibility between tribological surfaces and lubricant additives—How friction and wear reduction can be controlled by surface/lube synergies. Tribology International, 39(10), 1680–1695.CrossRef Neville, A., Morina, A., Haque, T., & Voong, M. (2007). Compatibility between tribological surfaces and lubricant additives—How friction and wear reduction can be controlled by surface/lube synergies. Tribology International, 39(10), 1680–1695.CrossRef
24.
Zurück zum Zitat Novak, C., Kingman, D., Stern, K., Zou, Q., & Gara, L. (2014). Tribological properties of paraffinic oil with nanodiamond particles. Tribology Transactions, 57(5), 831–837.CrossRef Novak, C., Kingman, D., Stern, K., Zou, Q., & Gara, L. (2014). Tribological properties of paraffinic oil with nanodiamond particles. Tribology Transactions, 57(5), 831–837.CrossRef
25.
Zurück zum Zitat Nunn, N., Torelli, M., McGuire, G., & Shenderova, O. (2017). Nanodiamond: A high impact nanomaterial. Current Opinion in Solid State and Materials Science, 21(1), 1–9.CrossRef Nunn, N., Torelli, M., McGuire, G., & Shenderova, O. (2017). Nanodiamond: A high impact nanomaterial. Current Opinion in Solid State and Materials Science, 21(1), 1–9.CrossRef
26.
Zurück zum Zitat Osswald, S., Yushin, G., Mochalin, V., Kucheyev, S. O., & Gogotsi, Y. (2006). Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. Journal of the American Chemical Society, 128(35), 11635–11642.CrossRef Osswald, S., Yushin, G., Mochalin, V., Kucheyev, S. O., & Gogotsi, Y. (2006). Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. Journal of the American Chemical Society, 128(35), 11635–11642.CrossRef
27.
Zurück zum Zitat Puzyr, A. P., Selyutin, G. E., Vorobyov, V. B., & Fedorova, E. N. (2006). Prospects for detonation nanodiamonds with colloidal stability in the technical field. Nanotechnique, 4, 96–105. Puzyr, A. P., Selyutin, G. E., Vorobyov, V. B., & Fedorova, E. N. (2006). Prospects for detonation nanodiamonds with colloidal stability in the technical field. Nanotechnique, 4, 96–105.
28.
Zurück zum Zitat Red’Kin, V. E. (2004). Lubricants with Ultradisperse diamond–graphite powder. Chemistry and Technology of Fuels and Oils, 40(3), 164–170.CrossRef Red’Kin, V. E. (2004). Lubricants with Ultradisperse diamond–graphite powder. Chemistry and Technology of Fuels and Oils, 40(3), 164–170.CrossRef
29.
Zurück zum Zitat Shen, M. Z., Luo, J. B., & Wen, S. Z. (2001). Influence of diamond nano-particles on the tribological properties. Chinese Journal of Mechanical Engineering, 37(1), 14–16.CrossRef Shen, M. Z., Luo, J. B., & Wen, S. Z. (2001). Influence of diamond nano-particles on the tribological properties. Chinese Journal of Mechanical Engineering, 37(1), 14–16.CrossRef
30.
Zurück zum Zitat Shi, P. J., Xu, Y., & Xu, B. S. (2006). Application of nano friction-reducing lubricant on engine. Lubrication Engineering-Huangpu, 7, 73–76. Shi, P. J., Xu, Y., & Xu, B. S. (2006). Application of nano friction-reducing lubricant on engine. Lubrication Engineering-Huangpu, 7, 73–76.
31.
Zurück zum Zitat Sundar, L. S., & Singh, M. K. (2016). Experimental thermal conductivity and viscosity of nanodiamond-based propylene glycol and water mixtures. Diamond and Related Materials, 69, 49–60.CrossRef Sundar, L. S., & Singh, M. K. (2016). Experimental thermal conductivity and viscosity of nanodiamond-based propylene glycol and water mixtures. Diamond and Related Materials, 69, 49–60.CrossRef
32.
Zurück zum Zitat Taylor, A. C., Edgington, R., & Jackman, R. B. (2015). Patterning of nanodiamond tracks and nanocrystalline diamond films using a micropipette for additive direct-write processing. ACS Applied Materials & Interfaces, 7(12), 6490–6495.CrossRef Taylor, A. C., Edgington, R., & Jackman, R. B. (2015). Patterning of nanodiamond tracks and nanocrystalline diamond films using a micropipette for additive direct-write processing. ACS Applied Materials & Interfaces, 7(12), 6490–6495.CrossRef
33.
Zurück zum Zitat Wang, F. F., Zhang, L. Q., Peng, J., & Zhou, W. J. (2015). Research progress in nano-diamond surface modification. Superhard Material Engineering, 27(3), 36–39. Wang, F. F., Zhang, L. Q., Peng, J., & Zhou, W. J. (2015). Research progress in nano-diamond surface modification. Superhard Material Engineering, 27(3), 36–39.
34.
Zurück zum Zitat Xie, H., Yu, W., Li, Y., & Chen, L. (2011). Discussion on the thermal conductivity enhancement of nanofluids. Nanoscale Research Letters, 6(1), 1–12.CrossRef Xie, H., Yu, W., Li, Y., & Chen, L. (2011). Discussion on the thermal conductivity enhancement of nanofluids. Nanoscale Research Letters, 6(1), 1–12.CrossRef
35.
Zurück zum Zitat Yang, C. J., Chen, G. X., & Zhao, L. T. (2009). Research progress of soft metal nanoparticles as self-repairing lubricating oil additive. Lubrication Engineering, 34(5), 115–117. Yang, C. J., Chen, G. X., & Zhao, L. T. (2009). Research progress of soft metal nanoparticles as self-repairing lubricating oil additive. Lubrication Engineering, 34(5), 115–117.
36.
Zurück zum Zitat Zhang, D., Hu, X. G., Tong, Y., & Hung, F. (2006). The research development of nanodiamond as a lubricating additives. Lubricating Oil, 21(1), 50–54. Zhang, D., Hu, X. G., Tong, Y., & Hung, F. (2006). The research development of nanodiamond as a lubricating additives. Lubricating Oil, 21(1), 50–54.
37.
Zurück zum Zitat Zhang, J. X., Liu, K., & Hu, X. G. (2002). Effect of ultra-dispersed diamond nanoparticles as additive on the tribological properties of 15W30 engine oil. Tribology, 22(1), 44–48. Zhang, J. X., Liu, K., & Hu, X. G. (2002). Effect of ultra-dispersed diamond nanoparticles as additive on the tribological properties of 15W30 engine oil. Tribology, 22(1), 44–48.
Metadaten
Titel
Gradation, Dispersion, and Tribological Behaviors of Nanometric Diamond Particles in Lubricating Oils
verfasst von
Kai Wu
Bo Wu
Chuan Li
Xianguo Hu
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-78488-5_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.