Skip to main content
Erschienen in:

17.04.2024

Gradient scaling and segmented SoftMax Regression Federated Learning (GDS-SRFFL): a novel methodology for attack detection in industrial internet of things (IIoT) networks

verfasst von: Vijay Anand Rajasekaran, Alagiri Indirajithu, P. Jayalakshmi, Anand Nayyar, Balamurugan Balusamy

Erschienen in: The Journal of Supercomputing | Ausgabe 12/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Industrial internet of things (IIoT) is considered as large-scale IoT-based network comprising of sensors, communication channels, and security protocols used in Industry 4.0 for diverse real-time operations. Industrial IoT (IIoT) networks are vulnerable to diverse cyber threats and attacks. Attack detection is the biggest security issue in the IIoT. Various traditional attack detection methods are proposed by several researchers but all are insufficient to protect privacy and security. To address the issue, a novel Gradient Descent Scaling and Segmented Regression Fine-tuned Federated Learning (GDS-SRFFL) method is introduced for IIoT network attack detection. The aim of the GDS-SRFFL method is to enhance the security of an IIoT network. Initially, the novelty of Gradient Descent Scaling-based preprocessing is applied to the raw dataset for obtaining feature feature-scaled preprocessed network sample. Then, the unwanted intrusions are discovered by using a Segmented Regression Fine-tuned Mini-batch Federated Learning model to ensure the protection of IoT networks with the novelty of SoftMax Regression. In order to validate the proposed methodology, experimentations were conducted on different parameters, namely accuracy, precision, recall, specificity, and attack detection time, and the results concluded that proposed GDS-SRFFL has improved accuracy by 10%, precision by 13%, recall by 10%, specificity by 11% as well as minimum attack detection time by 28% as compared to existing techniques like CNN + LSTM (Altunay and Albayrak in Eng Sci Technol Int J 38:101322, 2023, https://​doi.​org/​10.​1016/​j.​jestch.​2022.​101322), Enhanced Deep and Ensemble learning in SCADA-based IIoT network (Khan et al. in IEEE Trans Ind Inf 19(1):1030–1038, https://​doi.​org/​10.​1109/​TII.​2022.​3190352), RNN (Ullah and Mahmoud in IEEE Access 10:62722–62750, 2022, https://​doi.​org/​10.​1109/​ACCESS.​2022.​3176317), and other CNN methods. The proposed method “GDS-SRFFL” has overall accuracy of 89.42% as compared to other existing methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Metadaten
Titel
Gradient scaling and segmented SoftMax Regression Federated Learning (GDS-SRFFL): a novel methodology for attack detection in industrial internet of things (IIoT) networks
verfasst von
Vijay Anand Rajasekaran
Alagiri Indirajithu
P. Jayalakshmi
Anand Nayyar
Balamurugan Balusamy
Publikationsdatum
17.04.2024
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 12/2024
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-024-06109-6