Skip to main content
main-content

Über dieses Buch

Gradually-varied flow (GVF) is a steady non-uniform flow in an open channel with gradual changes in its water surface elevation. The evaluation of GVF profiles under a specific flow discharge is very important in hydraulic engineering. This book proposes a novel approach to analytically solve the GVF profiles by using the direct integration and Gaussian hypergeometric function. Both normal-depth- and critical-depth-based dimensionless GVF profiles are presented. The novel approach has laid the foundation to compute at one sweep the GVF profiles in a series of sustaining and adverse channels, which may have horizontal slopes sandwiched in between them.

Inhaltsverzeichnis

Frontmatter

Chapter 1. Basic Equations for the Gradually-Varied Flow

The one-dimensional gradually-varied flow (GVF) is a steady non-uniform flow in a prismatic channel with gradual changes in its water surface elevation.

Chyan-Deng Jan

Chapter 2. Conventional Integral Solutions of the GVF Equation

The gradually-varied flow (GVF) equation for flow in open channels is normalized using the normal depth,

hn

, before it can be analytically solved by the direct integration method.

Chyan-Deng Jan

Chapter 3. Normal-Depth-Based Dimensionless GVF Solutions Using the Gaussian Hypergeometric Function

The literature survey as shown in Chapter 2 recaps two general ways (i.e., VFF-based and ETF-based methods) to obtain the exact solutions of the GVF equation through the two integrals of a proper fraction.

Chyan-Deng Jan

Chapter 4. Critical-Depth-Based Dimensionless GVF Solutions Using the GHF

As mentioned in the previous chapters, many hydraulic engineering works involve the computation of surface profiles of gradually-varied flow (GVF) that is a steady non-uniform flow in an open channel with gradually changes in its water surface elevation.

Chyan-Deng Jan

Chapter 5. Analysis of the GHF-Based Solutions of $$h_c$$ -Based GVF Profiles

The equation of one-dimensional gradually-varied flow (GVF) in sustaining and non-sustaining open channels is normalized using the critical depth,

$$h_c$$

, and then solved by the direct integration method with the use of the Gaussian hypergeometric functions (GHF), as shown in Chap.

4

.

Chyan-Deng Jan

Backmatter

Weitere Informationen

Premium Partner

in-adhesivesMKVSNeuer Inhalt

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Technisches Interface Design - Beispiele aus der Praxis

Eine gute Theorie besticht nur darin, dass am Ende einer Entwicklung sinnvolle und nutzergerechte Produkte herauskommen. Das Forschungs- und Lehrgebiet Technisches Design legt einen starken Wert auf die direkte Anwendung der am Institut generierten wissenschaftlichen Erkenntnisse. Die grundlegenden und trendunabhängigen Erkenntnisse sind Grundlage und werden in der Produktentwicklung angewendet. Nutzen Sie die Erkenntnisse aus den hier ausführlich dargestellten Praxisbespielen jetzt auch für Ihr Unternehmen.
Jetzt gratis downloaden!

Marktübersichten

Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

Bildnachweise