Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

19.09.2016 | Methodologies and Application | Ausgabe 2/2018

Soft Computing 2/2018

Granular description of data in a non-stationary environment

Zeitschrift:
Soft Computing > Ausgabe 2/2018
Autoren:
Rami Al-Hmouz, Witold Pedrycz, Abdullah Saeed Balamash, Ali Morfeq
Wichtige Hinweise
Communicated by V. Loia.

Abstract

When developing models of non-stationary data, it becomes imperative to endow them with some meaningful update mechanisms, viz to provide with sufficient capabilities to accommodate changing characteristics of the environment. These mechanisms make the models of data evolvable. In the study, we introduce and discuss a class of evolvable models of data with the main objective to describe and interpret the incoming data. We advocate that information granularity and ensuing information granules are central to the characterization and interpretation of the dynamics and variability of numeric data. The relevance of information granules describing the data is evaluated in their abilities to construct the associated Takagi–Sugeno rule-based models. It is shown how the condition part of the rules formed by information granules changes when exposed to data of varying characteristics. Along with the structural facet of evolvability discussed is its parametric manifestation present in terms of the changes (updates) of the parameters of the local models standing in the conclusion part of the rules. The continuity of the evolving information granules (being crucial to their interpretability) is assured by running the clustering scheme initialized on the basis of the previously formed clusters (conditions of the rules) rather than starting FCM from some random configuration. We introduce some graph-oriented visualization means to provide a concise insight into the dynamics of information granules. As an interesting alternative, we introduce a granular fuzzy model where the added granularity of the parameters of a stationary fuzzy model is considered as a way to compensate for the non-stationary of the described system. A series of experiments is reported on with intent to demonstrate the performance of the model, analyze mechanisms of evolution of information granules, and deliver some useful comparative analysis.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2018

Soft Computing 2/2018 Zur Ausgabe

Premium Partner

    Bildnachweise