Skip to main content

2016 | OriginalPaper | Buchkapitel

Graph Centrality Based Prediction of Cancer Genes

verfasst von : Holger Weishaupt, Patrik Johansson, Christopher Engström, Sven Nelander, Sergei Silvestrov, Fredrik J. Swartling

Erschienen in: Engineering Mathematics II

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Current cancer therapies including surgery, radiotherapy and chemotherapy are often plagued by high failure rates. Designing more targeted and personalized treatment strategies requires a detailed understanding of druggable tumor driver genes. As a consequence, the detection of cancer driver genes has evolved to a critical scientific field integrating both high-throughput experimental screens as well as computational and statistical strategies. Among such approaches, network based prediction tools have recently been accentuated and received major focus due to their potential to model various aspects of the role of cancer genes in a biological system. In this chapter, we focus on how graph centralities obtained from biological networks have been used to predict cancer genes. Specifically, we start by discussing the current problems in cancer therapy and the reasoning behind using network based cancer gene prediction, followed by an outline of biological networks, their generation and properties. Finally, we review major concepts, recent results as well as future challenges regarding the use of graph centralities in cancer gene prediction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
A comprehensive list of centralities can be found in the CentiServer (http://​www.​centiserver.​org/​) [72].
 
Literatur
1.
Zurück zum Zitat Abbott, K.L., Nyre, E.T., Abrahante, J., Ho, Y.Y., Vogel, R.I., Starr, T.K.: The candidate cancer gene database: a database of cancer driver genes from forward genetic screens in mice. Nucleic Acids Res. 43, D844–D848 (2015)CrossRef Abbott, K.L., Nyre, E.T., Abrahante, J., Ho, Y.Y., Vogel, R.I., Starr, T.K.: The candidate cancer gene database: a database of cancer driver genes from forward genetic screens in mice. Nucleic Acids Res. 43, D844–D848 (2015)CrossRef
2.
Zurück zum Zitat Aittokallio, T., Schwikowski, B.: Graph-based methods for analysing networks in cell biology. Brief. Bioinform. 7, 243–255 (2006)CrossRef Aittokallio, T., Schwikowski, B.: Graph-based methods for analysing networks in cell biology. Brief. Bioinform. 7, 243–255 (2006)CrossRef
3.
Zurück zum Zitat Albert, R.: Scale-free networks in cell biology. J. Cell Sci. 118, 4947–4957 (2005)CrossRef Albert, R.: Scale-free networks in cell biology. J. Cell Sci. 118, 4947–4957 (2005)CrossRef
4.
Zurück zum Zitat Altay, G., Emmert-Streib, F.: Inferring the conservative causal core of gene regulatory networks. BMC Syst. Biol. 4, 1–13 (2010)CrossRef Altay, G., Emmert-Streib, F.: Inferring the conservative causal core of gene regulatory networks. BMC Syst. Biol. 4, 1–13 (2010)CrossRef
5.
Zurück zum Zitat Amaral, L.A., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. In: Proceedings of the National Academy of Sciences of the United States of America vol. 97, pp. 11149–11152 (2000) Amaral, L.A., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. In: Proceedings of the National Academy of Sciences of the United States of America vol. 97, pp. 11149–11152 (2000)
6.
Zurück zum Zitat An, O., Dall’Olio, G.M., Mourikis, T.P., Ciccarelli, F.D.: NCG 5.0: updates of a manually curated repository of cancer genes and associated properties from cancer mutational screenings. Nucleic Acids Res. 44, D992–D999 (2016)CrossRef An, O., Dall’Olio, G.M., Mourikis, T.P., Ciccarelli, F.D.: NCG 5.0: updates of a manually curated repository of cancer genes and associated properties from cancer mutational screenings. Nucleic Acids Res. 44, D992–D999 (2016)CrossRef
7.
Zurück zum Zitat Arias, E., Kochanek, K.D., Anderson, R.N.: How does cause of death contribute to the Hispanic mortality advantage in the United States? NCHS Data Brief 221, 1–8 (2015) Arias, E., Kochanek, K.D., Anderson, R.N.: How does cause of death contribute to the Hispanic mortality advantage in the United States? NCHS Data Brief 221, 1–8 (2015)
8.
Zurück zum Zitat Ascano, M., Hafner, M., Cekan, P., Gerstberger, S., Tuschl, T.: Identification of RNA-protein interaction networks using PAR-CLIP. Wires RNA 3, 159–177 (2012)CrossRef Ascano, M., Hafner, M., Cekan, P., Gerstberger, S., Tuschl, T.: Identification of RNA-protein interaction networks using PAR-CLIP. Wires RNA 3, 159–177 (2012)CrossRef
9.
Zurück zum Zitat Babu, M.M., Luscombe, N.M., Aravind, L., Gerstein, M., Teichmann, S.A.: Structure and evolution of transcriptional regulatory networks. Curr. Opin. Struct. Biol. 14, 283–291 (2004)CrossRef Babu, M.M., Luscombe, N.M., Aravind, L., Gerstein, M., Teichmann, S.A.: Structure and evolution of transcriptional regulatory networks. Curr. Opin. Struct. Biol. 14, 283–291 (2004)CrossRef
10.
Zurück zum Zitat Balkwill, F.R., Capasso, M., Hagemann, T.: The tumor microenvironment at a glance. J. Cell Sci. 125, 5591–5596 (2012)CrossRef Balkwill, F.R., Capasso, M., Hagemann, T.: The tumor microenvironment at a glance. J. Cell Sci. 125, 5591–5596 (2012)CrossRef
11.
Zurück zum Zitat Barabasi, A.L., Bonabeau, E.: Scale-free networks. Sci. Am. 288, 60–69 (2003)CrossRef Barabasi, A.L., Bonabeau, E.: Scale-free networks. Sci. Am. 288, 60–69 (2003)CrossRef
12.
Zurück zum Zitat Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–U115 (2004) Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–U115 (2004)
13.
Zurück zum Zitat Barabasi, A.L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011)CrossRef Barabasi, A.L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011)CrossRef
14.
Zurück zum Zitat Beauchamp, M.A.: An improved index of centrality. Behav. Sci. 10, 161–163 (1965)CrossRef Beauchamp, M.A.: An improved index of centrality. Behav. Sci. 10, 161–163 (1965)CrossRef
15.
Zurück zum Zitat Berggard, T., Linse, S., James, P.: Methods for the detection and analysis of protein-protein interactions. Proteomics 7, 2833–2842 (2007)CrossRef Berggard, T., Linse, S., James, P.: Methods for the detection and analysis of protein-protein interactions. Proteomics 7, 2833–2842 (2007)CrossRef
16.
Zurück zum Zitat Bhattacharyya, M., Chakrabarti, S.: Identification of important interacting proteins (IIPs) in Plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies. Malar. J. 14, 70 (2015)CrossRef Bhattacharyya, M., Chakrabarti, S.: Identification of important interacting proteins (IIPs) in Plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies. Malar. J. 14, 70 (2015)CrossRef
17.
Zurück zum Zitat Björklund, A.K., Light, S., Hedin, L., Elofsson, A.: Quantitative assessment of the structural bias in protein-protein interaction assays. Proteomics 8, 4657–4667 (2008) Björklund, A.K., Light, S., Hedin, L., Elofsson, A.: Quantitative assessment of the structural bias in protein-protein interaction assays. Proteomics 8, 4657–4667 (2008)
19.
Zurück zum Zitat Bonacich, P.: Technique for analyzing overlapping memberships. Sociol. Methodol. 4, 176–185 (1972)CrossRef Bonacich, P.: Technique for analyzing overlapping memberships. Sociol. Methodol. 4, 176–185 (1972)CrossRef
20.
Zurück zum Zitat Bonacich, P., Lloyd, P.: Eigenvector-like measures of centrality for asymmetric relations. Soc. Netw. 23, 191–201 (2001)CrossRef Bonacich, P., Lloyd, P.: Eigenvector-like measures of centrality for asymmetric relations. Soc. Netw. 23, 191–201 (2001)CrossRef
21.
Zurück zum Zitat Borgatti, S.P., Everett, M.G., Johnson, J.C.: Analyzing Social Networks. SAGE Publications Limited, Los Angeles (2013) Borgatti, S.P., Everett, M.G., Johnson, J.C.: Analyzing Social Networks. SAGE Publications Limited, Los Angeles (2013)
22.
Zurück zum Zitat Bossi, A., Lehner, B.: Tissue specificity and the human protein interaction network. Mol. Syst. Biol. 5, 260 (2009)CrossRef Bossi, A., Lehner, B.: Tissue specificity and the human protein interaction network. Mol. Syst. Biol. 5, 260 (2009)CrossRef
23.
Zurück zum Zitat Brandes, U.: On variants of shortest-path betweenness centrality and their generic computation. Soc. Netw. 30, 136–145 (2008)CrossRef Brandes, U.: On variants of shortest-path betweenness centrality and their generic computation. Soc. Netw. 30, 136–145 (2008)CrossRef
24.
Zurück zum Zitat Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN 30, 107–117 (1998)CrossRef Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN 30, 107–117 (1998)CrossRef
25.
Zurück zum Zitat Bulyk, M.L.: Computational prediction of transcription-factor binding site locations. Genome Biol. 5, 201 (2004)CrossRef Bulyk, M.L.: Computational prediction of transcription-factor binding site locations. Genome Biol. 5, 201 (2004)CrossRef
26.
Zurück zum Zitat Burrell, R.A., McGranahan, N., Bartek, J., Swanton, C.: The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338–345 (2013)CrossRef Burrell, R.A., McGranahan, N., Bartek, J., Swanton, C.: The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338–345 (2013)CrossRef
27.
Zurück zum Zitat Butts, C.T.: Social network analysis with SNA. J. Stat. Softw. 24, 1–51 (2008) Butts, C.T.: Social network analysis with SNA. J. Stat. Softw. 24, 1–51 (2008)
28.
Zurück zum Zitat Carter, S.L., Brechbuhler, C.M., Griffin, M., Bond, A.T.: Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 20, 2242–2250 (2004)CrossRef Carter, S.L., Brechbuhler, C.M., Griffin, M., Bond, A.T.: Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 20, 2242–2250 (2004)CrossRef
29.
Zurück zum Zitat Cerami, E.G., Gross, B.E., Demir, E., Rodchenkov, I., Babur, O., Anwar, N., et al.: Pathway commons, a web resource for biological pathway data. Nucleic Acids Res. 39, D685–D690 (2011)CrossRef Cerami, E.G., Gross, B.E., Demir, E., Rodchenkov, I., Babur, O., Anwar, N., et al.: Pathway commons, a web resource for biological pathway data. Nucleic Acids Res. 39, D685–D690 (2011)CrossRef
30.
Zurück zum Zitat Chen, L., Qu, X., Cao, M., Zhou, Y., Li, W., Liang, B., et al.: Identification of breast cancer patients based on human signaling network motifs. Sci. Rep. 3, 3368 (2013) Chen, L., Qu, X., Cao, M., Zhou, Y., Li, W., Liang, B., et al.: Identification of breast cancer patients based on human signaling network motifs. Sci. Rep. 3, 3368 (2013)
31.
Zurück zum Zitat Cohen, R., Havlin, S.: Scale-free networks are ultrasmall. Phys. Rev. Lett. 90, 058701 (2003)CrossRef Cohen, R., Havlin, S.: Scale-free networks are ultrasmall. Phys. Rev. Lett. 90, 058701 (2003)CrossRef
32.
Zurück zum Zitat Coombes, R.C.: Drug testing in the patient: toward personalized cancer treatment. Sci. Transl. Med. 7 (2015) Coombes, R.C.: Drug testing in the patient: toward personalized cancer treatment. Sci. Transl. Med. 7 (2015)
33.
Zurück zum Zitat Csardi, G., Nepusz, T.: The igraph software package for complex network research. Int. J. Complex Syst. 1695, 1–9 (2006) Csardi, G., Nepusz, T.: The igraph software package for complex network research. Int. J. Complex Syst. 1695, 1–9 (2006)
34.
Zurück zum Zitat Dangalchev, C.: Residual closeness in networks. Phys. A 365, 556–564 (2006)CrossRef Dangalchev, C.: Residual closeness in networks. Phys. A 365, 556–564 (2006)CrossRef
35.
Zurück zum Zitat del Rio, G., Koschützki, D., Coello, G.: How to identify essential genes from molecular networks? BMC Syst. Biol. 3, 1–12 (2009) del Rio, G., Koschützki, D., Coello, G.: How to identify essential genes from molecular networks? BMC Syst. Biol. 3, 1–12 (2009)
36.
Zurück zum Zitat Diamandis, M., White, N.M.A., Yousef, G.M.: Personalized medicine: marking a new epoch in cancer patient management. Mol. Cancer Res. 8, 1175–1187 (2010)CrossRef Diamandis, M., White, N.M.A., Yousef, G.M.: Personalized medicine: marking a new epoch in cancer patient management. Mol. Cancer Res. 8, 1175–1187 (2010)CrossRef
37.
Zurück zum Zitat Dobrin, R., Beg, Q.K., Barabasi, A.L., Oltvai, Z.N.: Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network. BMC Bioinform. 5, 1–8 (2004)CrossRef Dobrin, R., Beg, Q.K., Barabasi, A.L., Oltvai, Z.N.: Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network. BMC Bioinform. 5, 1–8 (2004)CrossRef
39.
Zurück zum Zitat Eirew, P., Steif, A., Khattra, J., Ha, G., Yap, D., Farahani, H., et al.: Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518, 422–426 (2015)CrossRef Eirew, P., Steif, A., Khattra, J., Ha, G., Yap, D., Farahani, H., et al.: Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518, 422–426 (2015)CrossRef
40.
Zurück zum Zitat Estrada, E.: Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics 6, 35–40 (2006)CrossRef Estrada, E.: Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics 6, 35–40 (2006)CrossRef
41.
Zurück zum Zitat Estrada, E.: Protein bipartivity and essentiality in the yeast protein-protein interaction network. J. Proteome Res. 5, 2177–2184 (2006)CrossRef Estrada, E.: Protein bipartivity and essentiality in the yeast protein-protein interaction network. J. Proteome Res. 5, 2177–2184 (2006)CrossRef
42.
Zurück zum Zitat Euskirchen, G.M., Rozowsky, J.S., Wei, C.L., Lee, W.H., Zhang, Z.D.D., Hartman, S., et al.: Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of array- and sequencing-based technologies. Genome Res. 17, 898–909 (2007)CrossRef Euskirchen, G.M., Rozowsky, J.S., Wei, C.L., Lee, W.H., Zhang, Z.D.D., Hartman, S., et al.: Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of array- and sequencing-based technologies. Genome Res. 17, 898–909 (2007)CrossRef
43.
Zurück zum Zitat Fabregat, A., Sidiropoulos, K., Garapati, P., Gillespie, M., Hausmann, K., Haw, R., et al.: The reactome pathway knowledgebase. Nucleic Acids Res. 44, D481–D487 (2016)CrossRef Fabregat, A., Sidiropoulos, K., Garapati, P., Gillespie, M., Hausmann, K., Haw, R., et al.: The reactome pathway knowledgebase. Nucleic Acids Res. 44, D481–D487 (2016)CrossRef
44.
Zurück zum Zitat Faith, J.J., Hayete, B., Thaden, J.T., Mogno, I., Wierzbowski, J., Cottarel, G., et al.: Large- scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5, 54–66 (2007)CrossRef Faith, J.J., Hayete, B., Thaden, J.T., Mogno, I., Wierzbowski, J., Cottarel, G., et al.: Large- scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5, 54–66 (2007)CrossRef
45.
Zurück zum Zitat Forbes, S.A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., et al.: COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–D811 (2015)CrossRef Forbes, S.A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., et al.: COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–D811 (2015)CrossRef
46.
Zurück zum Zitat Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)CrossRef Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)CrossRef
47.
Zurück zum Zitat Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1979)CrossRef Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1979)CrossRef
48.
Zurück zum Zitat Freeman, L.C., Borgatti, S.P., White, D.R.: Centrality in valued graphs - a measure of betweenness based on network flow. Soc. Netw. 13, 141–154 (1991)MathSciNetCrossRef Freeman, L.C., Borgatti, S.P., White, D.R.: Centrality in valued graphs - a measure of betweenness based on network flow. Soc. Netw. 13, 141–154 (1991)MathSciNetCrossRef
49.
Zurück zum Zitat Fronza, R., Vasciaveo, A., Benso, A., Schmidt, M.: A graph based framework to model virus integration sites. Comput. Struct. Biotechnol. J. 14, 69–77 (2016)CrossRef Fronza, R., Vasciaveo, A., Benso, A., Schmidt, M.: A graph based framework to model virus integration sites. Comput. Struct. Biotechnol. J. 14, 69–77 (2016)CrossRef
50.
Zurück zum Zitat Giam, M., Rancati, G.: Aneuploidy and chromosomal instability in cancer: a jackpot to chaos. Cell Div. 10, 3 (2015)CrossRef Giam, M., Rancati, G.: Aneuploidy and chromosomal instability in cancer: a jackpot to chaos. Cell Div. 10, 3 (2015)CrossRef
51.
Zurück zum Zitat Gillis, J., Ballouz, S., Pavlidis, P.: Bias tradeoffs in the creation and analysis of protein- protein interaction networks. J. Proteomics 100, 44–54 (2014)CrossRef Gillis, J., Ballouz, S., Pavlidis, P.: Bias tradeoffs in the creation and analysis of protein- protein interaction networks. J. Proteomics 100, 44–54 (2014)CrossRef
52.
Zurück zum Zitat Giot, L., Bader, J.S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., et al.: A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003)CrossRef Giot, L., Bader, J.S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., et al.: A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003)CrossRef
53.
Zurück zum Zitat Gleich, D.F.: Chapter 7 on MatlabBGL. Models and Algorithms for PageRank Sensitivity. Stanford University (2009) Gleich, D.F.: Chapter 7 on MatlabBGL. Models and Algorithms for PageRank Sensitivity. Stanford University (2009)
54.
Zurück zum Zitat Goh, K.I., Kahng, B., Kim, D.: Universal behavior of load distribution in scale-free networks. Phys. Rev. Lett. 87, 278701 (2001)CrossRef Goh, K.I., Kahng, B., Kim, D.: Universal behavior of load distribution in scale-free networks. Phys. Rev. Lett. 87, 278701 (2001)CrossRef
55.
Zurück zum Zitat Goh, K.I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., Barabasi, A.L.: The human disease network. In: Proceedings of the National Academy of Sciences of the United States of America vol. 104, pp. 8685–8690 (2007) Goh, K.I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., Barabasi, A.L.: The human disease network. In: Proceedings of the National Academy of Sciences of the United States of America vol. 104, pp. 8685–8690 (2007)
56.
Zurück zum Zitat Gonzalez-Perez, A., Perez-Llamas, C., Deu-Pons, J., Tamborero, D., Schroeder, M.P., Jene-Sanz, A., et al.: IntOGen-mutations identifies cancer drivers across tumor types. Nat. Methods 10, 1081–1082 (2013)CrossRef Gonzalez-Perez, A., Perez-Llamas, C., Deu-Pons, J., Tamborero, D., Schroeder, M.P., Jene-Sanz, A., et al.: IntOGen-mutations identifies cancer drivers across tumor types. Nat. Methods 10, 1081–1082 (2013)CrossRef
57.
Zurück zum Zitat Grassler, J., Koschützki, D., Schreiber, F.: CentiLib: comprehensive analysis and exploration of network centralities. Bioinformatics 28, 1178–1179 (2012) Grassler, J., Koschützki, D., Schreiber, F.: CentiLib: comprehensive analysis and exploration of network centralities. Bioinformatics 28, 1178–1179 (2012)
58.
Zurück zum Zitat Gu, Z.G., Wang, J.: CePa: an R package for finding significant pathways weighted by multiple network centralities. Bioinformatics 29, 658–660 (2013) Gu, Z.G., Wang, J.: CePa: an R package for finding significant pathways weighted by multiple network centralities. Bioinformatics 29, 658–660 (2013)
59.
Zurück zum Zitat Guan, Y.F., Gorenshteyn, D., Burmeister, M., Wong, A.K., Schimenti, J.C., Handel, M.A., et al.: Tissue- specific functional networks for prioritizing phenotype and disease genes. PLoS Comput. Biol. 8, e1002694 (2012)CrossRef Guan, Y.F., Gorenshteyn, D., Burmeister, M., Wong, A.K., Schimenti, J.C., Handel, M.A., et al.: Tissue- specific functional networks for prioritizing phenotype and disease genes. PLoS Comput. Biol. 8, e1002694 (2012)CrossRef
60.
Zurück zum Zitat Guelzim, N., Bottani, S., Bourgine, P., Kepes, F.: Topological and causal structure of the yeast transcriptional regulatory network. Nat. Genet. 31, 60–63 (2002)CrossRef Guelzim, N., Bottani, S., Bourgine, P., Kepes, F.: Topological and causal structure of the yeast transcriptional regulatory network. Nat. Genet. 31, 60–63 (2002)CrossRef
61.
Zurück zum Zitat Guinney, J., Dienstmann, R., Wang, X., de Reynies, A., Schlicker, A., Soneson, C., et al.: The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015)CrossRef Guinney, J., Dienstmann, R., Wang, X., de Reynies, A., Schlicker, A., Soneson, C., et al.: The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015)CrossRef
62.
Zurück zum Zitat Hage, P., Harary, F.: Eccentricity and centrality in networks. Soc. Netw. 17, 57–63 (1995)CrossRef Hage, P., Harary, F.: Eccentricity and centrality in networks. Soc. Netw. 17, 57–63 (1995)CrossRef
63.
Zurück zum Zitat Hahn, M.W., Kern, A.D.: Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol. Biol. Evol. 22, 803–806 (2005)CrossRef Hahn, M.W., Kern, A.D.: Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol. Biol. Evol. 22, 803–806 (2005)CrossRef
64.
Zurück zum Zitat Hardy, S., Legagneux, V., Audic, Y., Paillard, L.: Reverse genetics in eukaryotes. Biol. Cell 102, 561–580 (2010)CrossRef Hardy, S., Legagneux, V., Audic, Y., Paillard, L.: Reverse genetics in eukaryotes. Biol. Cell 102, 561–580 (2010)CrossRef
65.
Zurück zum Zitat Haury, A.C., Mordelet, F., Vera-Licona, P., Vert, J.P.: TIGRESS: trustful inference of gene regulation using stability selection. BMC Syst. Biol. 6, 1–17 (2012)CrossRef Haury, A.C., Mordelet, F., Vera-Licona, P., Vert, J.P.: TIGRESS: trustful inference of gene regulation using stability selection. BMC Syst. Biol. 6, 1–17 (2012)CrossRef
66.
Zurück zum Zitat Hirschhorn, J.N., Daly, M.J.: Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 6, 95–108 (2005)CrossRef Hirschhorn, J.N., Daly, M.J.: Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 6, 95–108 (2005)CrossRef
67.
Zurück zum Zitat Hu, P.Z., Bader, G., Wigle, D.A., Emili, A.: Computational prediction of cancer-gene function. Nat. Rev. Cancer 7, 23–34 (2007)CrossRef Hu, P.Z., Bader, G., Wigle, D.A., Emili, A.: Computational prediction of cancer-gene function. Nat. Rev. Cancer 7, 23–34 (2007)CrossRef
68.
Zurück zum Zitat Huang, X., Zi, Z.K.: Inferring cellular regulatory networks with Bayesian model averaging for linear regression (BMALR). Mol. Biosyst. 10, 2023–2030 (2014)CrossRef Huang, X., Zi, Z.K.: Inferring cellular regulatory networks with Bayesian model averaging for linear regression (BMALR). Mol. Biosyst. 10, 2023–2030 (2014)CrossRef
69.
Zurück zum Zitat Huynh-Thu, V.A., Irrthum, A., Wehenkel, L., Geurts, P.: Inferring regulatory networks from expression data using tree-based methods. Plos One 5, e12776 (2010)CrossRef Huynh-Thu, V.A., Irrthum, A., Wehenkel, L., Geurts, P.: Inferring regulatory networks from expression data using tree-based methods. Plos One 5, e12776 (2010)CrossRef
70.
Zurück zum Zitat Izudheen, S., Mathew, S.: Cancer gene identification using graph centrality. Curr. Sci. 105, 1143–1148 (2013) Izudheen, S., Mathew, S.: Cancer gene identification using graph centrality. Curr. Sci. 105, 1143–1148 (2013)
71.
Zurück zum Zitat Jalali, S., Bhartiya, D., Lalwani, M.K., Sivasubbu, S., Scaria, V.: Systematic transcriptome wide analysis of lncRNA-miRNA interactions. Plos One 8, e53823 (2013)CrossRef Jalali, S., Bhartiya, D., Lalwani, M.K., Sivasubbu, S., Scaria, V.: Systematic transcriptome wide analysis of lncRNA-miRNA interactions. Plos One 8, e53823 (2013)CrossRef
72.
Zurück zum Zitat Jalili, M., Salehzadeh-Yazdi, A., Asgari, Y., Arab, S.S., Yaghmaie, M., Ghavamzadeh, A., et al.: CentiServer: a comprehensive resource, web-based application and R package for centrality analysis. Plos One 10, e0143111 (2015)CrossRef Jalili, M., Salehzadeh-Yazdi, A., Asgari, Y., Arab, S.S., Yaghmaie, M., Ghavamzadeh, A., et al.: CentiServer: a comprehensive resource, web-based application and R package for centrality analysis. Plos One 10, e0143111 (2015)CrossRef
73.
Zurück zum Zitat Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., et al.: STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 37, D412–D416 (2009)CrossRef Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., et al.: STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 37, D412–D416 (2009)CrossRef
74.
Zurück zum Zitat Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)CrossRef Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)CrossRef
75.
Zurück zum Zitat Jeong, H., Mason, S.P., Barabasi, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411, 41–42 (2001)CrossRef Jeong, H., Mason, S.P., Barabasi, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411, 41–42 (2001)CrossRef
76.
Zurück zum Zitat Jinq, Z., Hong, Y., Jianhua, L., Cao, Z.W., Li, Y.X.: Complex networks theory for analyzing metabolic networks. Chin. Sci. Bull. 51, 1529–1537 (2006)MathSciNetCrossRef Jinq, Z., Hong, Y., Jianhua, L., Cao, Z.W., Li, Y.X.: Complex networks theory for analyzing metabolic networks. Chin. Sci. Bull. 51, 1529–1537 (2006)MathSciNetCrossRef
77.
Zurück zum Zitat Jonsson, P.F., Bates, P.A.: Global topological features of cancer proteins in the human interactome. Bioinformatics 22, 2291–2297 (2006)CrossRef Jonsson, P.F., Bates, P.A.: Global topological features of cancer proteins in the human interactome. Bioinformatics 22, 2291–2297 (2006)CrossRef
78.
Zurück zum Zitat Joy, M.P., Brock, A., Ingber, D.E., Huang, S.: High-betweenness proteins in the yeast protein interaction network. J. Biomed. Biotechnol. 2005, 96–103 (2005)CrossRef Joy, M.P., Brock, A., Ingber, D.E., Huang, S.: High-betweenness proteins in the yeast protein interaction network. J. Biomed. Biotechnol. 2005, 96–103 (2005)CrossRef
79.
Zurück zum Zitat Junker, B.H., Koschützki, D., Schreiber, F.: Exploration of biological network centralities with CentiBiN. BMC Bioinform. 7, 1–7 (2006) Junker, B.H., Koschützki, D., Schreiber, F.: Exploration of biological network centralities with CentiBiN. BMC Bioinform. 7, 1–7 (2006)
80.
Zurück zum Zitat Kamburov, A., Stelzl, U., Lehrach, H., Herwig, R.: The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res. 41, D793–D800 (2013)CrossRef Kamburov, A., Stelzl, U., Lehrach, H., Herwig, R.: The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res. 41, D793–D800 (2013)CrossRef
81.
Zurück zum Zitat Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., Tanabe, M.: KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016)CrossRef Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., Tanabe, M.: KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016)CrossRef
82.
Zurück zum Zitat Kandoth, C., McLellan, M.D., Vandin, F., Ye, K., Niu, B., Lu, C., et al.: Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013)CrossRef Kandoth, C., McLellan, M.D., Vandin, F., Ye, K., Niu, B., Lu, C., et al.: Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013)CrossRef
83.
Zurück zum Zitat Karabekmez, M.E., Kirdar, B.: A novel topological centrality measure capturing biologically important proteins. Mol. Biosyst. 12, 666–673 (2016)CrossRef Karabekmez, M.E., Kirdar, B.: A novel topological centrality measure capturing biologically important proteins. Mol. Biosyst. 12, 666–673 (2016)CrossRef
84.
Zurück zum Zitat Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18, 39–43 (1953)MATHCrossRef Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18, 39–43 (1953)MATHCrossRef
85.
Zurück zum Zitat Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C., et al.: The IntAct molecular interaction database in 2012. Nucleic Acids Res. 40, D841–D846 (2012)CrossRef Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C., et al.: The IntAct molecular interaction database in 2012. Nucleic Acids Res. 40, D841–D846 (2012)CrossRef
86.
Zurück zum Zitat Kim, S.Y., Volsky, D.J.: PAGE: parametric analysis of gene set enrichment. BMC Bioinform. 6, 144 (2005)CrossRef Kim, S.Y., Volsky, D.J.: PAGE: parametric analysis of gene set enrichment. BMC Bioinform. 6, 144 (2005)CrossRef
87.
Zurück zum Zitat Kim, W.: Prediction of essential proteins using topological properties in GO-pruned PPI network based on machine learning methods. Tsinghua Sci. Technol. 17, 645–658 (2012)CrossRef Kim, W.: Prediction of essential proteins using topological properties in GO-pruned PPI network based on machine learning methods. Tsinghua Sci. Technol. 17, 645–658 (2012)CrossRef
88.
Zurück zum Zitat Kool, J., Berns, A.: High throughput insertional mutagenesis screens in mice to identify oncogenic networks (vol 9, pg 389, 2009). Nat. Rev. Cancer 9, 604–604 (2009)CrossRef Kool, J., Berns, A.: High throughput insertional mutagenesis screens in mice to identify oncogenic networks (vol 9, pg 389, 2009). Nat. Rev. Cancer 9, 604–604 (2009)CrossRef
89.
Zurück zum Zitat Koschützki, D., Schreiber, F.: Comparison of centralities for biological networks. In: German Conference on Bioinformatics (2004) Koschützki, D., Schreiber, F.: Comparison of centralities for biological networks. In: German Conference on Bioinformatics (2004)
90.
Zurück zum Zitat Koschützki, D., Schreiber, F.: Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regul. Syst. Biol. 2, 193–201 (2008) Koschützki, D., Schreiber, F.: Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regul. Syst. Biol. 2, 193–201 (2008)
91.
Zurück zum Zitat Koschützki, D., Schwobbermeyer, H., Schreiber, F.: Ranking of network elements based on functional substructures. J. Theor. Biol. 248, 471–479 (2007) Koschützki, D., Schwobbermeyer, H., Schreiber, F.: Ranking of network elements based on functional substructures. J. Theor. Biol. 248, 471–479 (2007)
92.
Zurück zum Zitat Kreso, A., O’Brien, C.A., van Galen, P., Gan, O.I., Notta, F., Brown, A.M.K., et al.: Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339, 543–548 (2013)CrossRef Kreso, A., O’Brien, C.A., van Galen, P., Gan, O.I., Notta, F., Brown, A.M.K., et al.: Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339, 543–548 (2013)CrossRef
93.
Zurück zum Zitat Li, J.H., Liu, S., Zhou, H., Qu, L.H., Yang, J.H.: StarBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42, D92–D97 (2014)CrossRef Li, J.H., Liu, S., Zhou, H., Qu, L.H., Yang, J.H.: StarBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42, D92–D97 (2014)CrossRef
94.
Zurück zum Zitat Li, M., Zhang, H., Wang, J.X., Pan, Y.: A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data. BMC Syst. Biol. 6, 15 (2012)CrossRef Li, M., Zhang, H., Wang, J.X., Pan, Y.: A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data. BMC Syst. Biol. 6, 15 (2012)CrossRef
95.
Zurück zum Zitat Li, S.M., Armstrong, C.M., Bertin, N., Ge, H., Milstein, S., Boxem, M., et al.: A map of the interactome network of the metazoan C-elegans. Science 303, 540–543 (2004)CrossRef Li, S.M., Armstrong, C.M., Bertin, N., Ge, H., Milstein, S., Boxem, M., et al.: A map of the interactome network of the metazoan C-elegans. Science 303, 540–543 (2004)CrossRef
96.
Zurück zum Zitat Lin, N.: Foundations of Social Research. McGraw-Hill, New York (1976) Lin, N.: Foundations of Social Research. McGraw-Hill, New York (1976)
97.
Zurück zum Zitat Linghu, B., Snitkin, E.S., Hu, Z., Xia, Y., Delisi, C.: Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network. Genome Biol. 10, R91 (2009)CrossRef Linghu, B., Snitkin, E.S., Hu, Z., Xia, Y., Delisi, C.: Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network. Genome Biol. 10, R91 (2009)CrossRef
98.
Zurück zum Zitat Linghu, B., Franzosa, E.A., Xia, Y.: Construction of functional linkage gene networks by data integration. Methods Mol. Biol. 939, 215–232 (2013)CrossRef Linghu, B., Franzosa, E.A., Xia, Y.: Construction of functional linkage gene networks by data integration. Methods Mol. Biol. 939, 215–232 (2013)CrossRef
99.
Zurück zum Zitat Luscombe, N.M., Babu, M.M., Yu, H.Y., Snyder, M., Teichmann, S.A., Gerstein, M.: Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431, 308–312 (2004)CrossRef Luscombe, N.M., Babu, M.M., Yu, H.Y., Snyder, M., Teichmann, S.A., Gerstein, M.: Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431, 308–312 (2004)CrossRef
100.
Zurück zum Zitat Ma, X.K., Gao, L.: Biological network analysis: insights into structure and functions. Brief. Funct. Genomics 11, 434–442 (2012)CrossRef Ma, X.K., Gao, L.: Biological network analysis: insights into structure and functions. Brief. Funct. Genomics 11, 434–442 (2012)CrossRef
101.
Zurück zum Zitat Magger, O., Waldman, Y.Y., Ruppin, E., Sharan, R.: Enhancing the prioritization of disease-causing genes through tissue specific protein interaction networks. PLoS Comput. Biol. 8, e1002690 (2012)CrossRef Magger, O., Waldman, Y.Y., Ruppin, E., Sharan, R.: Enhancing the prioritization of disease-causing genes through tissue specific protein interaction networks. PLoS Comput. Biol. 8, e1002690 (2012)CrossRef
102.
Zurück zum Zitat Marbach, D., Costello, J.C., Kuffner, R., Vega, N.M., Prill, R.J., Camacho, D.M., et al.: Wisdom of crowds for robust gene network inference. Nat. Methods 9, 796–804 (2012)CrossRef Marbach, D., Costello, J.C., Kuffner, R., Vega, N.M., Prill, R.J., Camacho, D.M., et al.: Wisdom of crowds for robust gene network inference. Nat. Methods 9, 796–804 (2012)CrossRef
103.
Zurück zum Zitat March, H.N., Rust, A.G., Wright, N.A., Ten Hoeve, J., de Ridder, J., Eldridge, M., et al.: Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis. Nat Genet 43, 1202–U1255 (2011) March, H.N., Rust, A.G., Wright, N.A., Ten Hoeve, J., de Ridder, J., Eldridge, M., et al.: Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis. Nat Genet 43, 1202–U1255 (2011)
104.
Zurück zum Zitat Margolin, A.A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R., et al.: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform. 7, 1–15 (2006)CrossRef Margolin, A.A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R., et al.: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform. 7, 1–15 (2006)CrossRef
105.
Zurück zum Zitat Marusyk, A., Polyak, K.: Tumor heterogeneity: causes and consequences. BBA-Rev. Cancer 1805, 105–117 (2010) Marusyk, A., Polyak, K.: Tumor heterogeneity: causes and consequences. BBA-Rev. Cancer 1805, 105–117 (2010)
106.
Zurück zum Zitat Mathelier, A., Wasserman, W.W.: The next generation of transcription factor binding site prediction. PLoS Comput. Biol. 9, e1003214 (2013)CrossRef Mathelier, A., Wasserman, W.W.: The next generation of transcription factor binding site prediction. PLoS Comput. Biol. 9, e1003214 (2013)CrossRef
107.
Zurück zum Zitat Matys, V., Kel-Margoulis, O.V., Fricke, E., Liebich, I., Land, S., Barre-Dirrie, A., et al.: TRANSFAC (R) and its module TRANSCompel (R): transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34, D108–D110 (2006)CrossRef Matys, V., Kel-Margoulis, O.V., Fricke, E., Liebich, I., Land, S., Barre-Dirrie, A., et al.: TRANSFAC (R) and its module TRANSCompel (R): transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34, D108–D110 (2006)CrossRef
108.
Zurück zum Zitat McGranahan, N., Swanton, C.: Biological and therapeutic impact of intratumor heterogeneity in cancer evolution (vol 27, pg 15, 2015). Cancer Cell 28, 141–141 (2015)CrossRef McGranahan, N., Swanton, C.: Biological and therapeutic impact of intratumor heterogeneity in cancer evolution (vol 27, pg 15, 2015). Cancer Cell 28, 141–141 (2015)CrossRef
109.
Zurück zum Zitat Meacham, C.E., Morrison, S.J.: Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337 (2013)CrossRef Meacham, C.E., Morrison, S.J.: Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337 (2013)CrossRef
110.
Zurück zum Zitat Meyer, M., Reimand, J., Lan, X., Head, R., Zhu, X., Kushida, M., et al.: Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 112, pp. 851–856 (2015) Meyer, M., Reimand, J., Lan, X., Head, R., Zhu, X., Kushida, M., et al.: Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 112, pp. 851–856 (2015)
111.
Zurück zum Zitat Miernyk, J.A., Thelen, J.J.: Biochemical approaches for discovering protein-protein interactions. Plant J. 53, 597–609 (2008)CrossRef Miernyk, J.A., Thelen, J.J.: Biochemical approaches for discovering protein-protein interactions. Plant J. 53, 597–609 (2008)CrossRef
112.
Zurück zum Zitat Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)CrossRef Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)CrossRef
113.
Zurück zum Zitat Moreau, Y., Tranchevent, L.C.: Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat. Rev. Genet. 13, 523–536 (2012)CrossRef Moreau, Y., Tranchevent, L.C.: Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat. Rev. Genet. 13, 523–536 (2012)CrossRef
114.
Zurück zum Zitat Moresco, E.M.Y., Li, X.H., Beutler, B.: Going forward with genetics recent technological advances and forward genetics in mice. Am. J. Pathol. 182, 1462–1473 (2013)CrossRef Moresco, E.M.Y., Li, X.H., Beutler, B.: Going forward with genetics recent technological advances and forward genetics in mice. Am. J. Pathol. 182, 1462–1473 (2013)CrossRef
115.
Zurück zum Zitat Morrissy, A.S., Garzia, L., Shih, D.J.H., Zuyderduyn, S., Huang, X., Skowron, P., et al.: Divergent clonal selection dominates medulloblastoma at recurrence. Nature 529, 351–357 (2016)CrossRef Morrissy, A.S., Garzia, L., Shih, D.J.H., Zuyderduyn, S., Huang, X., Skowron, P., et al.: Divergent clonal selection dominates medulloblastoma at recurrence. Nature 529, 351–357 (2016)CrossRef
116.
Zurück zum Zitat Newman, M.E.J.: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016132 (2001)CrossRef Newman, M.E.J.: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016132 (2001)CrossRef
117.
Zurück zum Zitat Ortutay, C., Vihinen, M.: Identification of candidate disease genes by integrating gene ontologies and protein-interaction networks: case study of primary immunodeficiencies. Nucleic Acids Res. 37, 622–628 (2009)CrossRef Ortutay, C., Vihinen, M.: Identification of candidate disease genes by integrating gene ontologies and protein-interaction networks: case study of primary immunodeficiencies. Nucleic Acids Res. 37, 622–628 (2009)CrossRef
118.
Zurück zum Zitat Oti, M., Snel, B., Huynen, M.A., Brunner, H.G.: Predicting disease genes using protein-protein interactions. J. Med. Genet. 43, 691–698 (2006)CrossRef Oti, M., Snel, B., Huynen, M.A., Brunner, H.G.: Predicting disease genes using protein-protein interactions. J. Med. Genet. 43, 691–698 (2006)CrossRef
119.
Zurück zum Zitat Özgür, A., Vu, T., Erkan, G., Radev, D.R.: Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics 24, I277–I285 (2008) Özgür, A., Vu, T., Erkan, G., Radev, D.R.: Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics 24, I277–I285 (2008)
120.
Zurück zum Zitat Patel, A.P., Tirosh, I., Trombetta, J.J., Shalek, A.K., Gillespie, S.M., Wakimoto, H., et al.: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014)CrossRef Patel, A.P., Tirosh, I., Trombetta, J.J., Shalek, A.K., Gillespie, S.M., Wakimoto, H., et al.: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014)CrossRef
121.
Zurück zum Zitat Phizicky, E.M., Fields, S.: Protein-protein interactions - Methods for detection and analysis. Microbiol. Rev. 59, 94–123 (1995) Phizicky, E.M., Fields, S.: Protein-protein interactions - Methods for detection and analysis. Microbiol. Rev. 59, 94–123 (1995)
122.
Zurück zum Zitat Poulin, R., Boily, M.C., Masse, B.R.: Dynamical systems to define centrality in social networks. Soc. Netw. 22, 187–220 (2000)CrossRef Poulin, R., Boily, M.C., Masse, B.R.: Dynamical systems to define centrality in social networks. Soc. Netw. 22, 187–220 (2000)CrossRef
123.
Zurück zum Zitat Prasad, T.S.K., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan, S., et al.: Human protein reference database-2009 update. Nucleic Acids Res. 37, D767–D772 (2009)CrossRef Prasad, T.S.K., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan, S., et al.: Human protein reference database-2009 update. Nucleic Acids Res. 37, D767–D772 (2009)CrossRef
124.
Zurück zum Zitat Price, A.L., Spencer, C.C.A., Donnelly, P.: Progress and promise in understanding the genetic basis of common diseases. Proc. R. Soc. B-Biol. Sci. 282, 20151684 (2015) Price, A.L., Spencer, C.C.A., Donnelly, P.: Progress and promise in understanding the genetic basis of common diseases. Proc. R. Soc. B-Biol. Sci. 282, 20151684 (2015)
125.
Zurück zum Zitat Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X.W., Fasolo, J., et al.: Global analysis of protein phosphorylation in yeast. Nature 438, 679–684 (2005)CrossRef Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X.W., Fasolo, J., et al.: Global analysis of protein phosphorylation in yeast. Nature 438, 679–684 (2005)CrossRef
126.
Zurück zum Zitat Qin, J., Hu, Y.H., Xu, F., Yalamanchili, H.K., Wang, J.W.: Inferring gene regulatory networks by integrating ChIP-seq/chip and transcriptome data via LASSO-type regularization methods. Methods 67, 294–303 (2014)CrossRef Qin, J., Hu, Y.H., Xu, F., Yalamanchili, H.K., Wang, J.W.: Inferring gene regulatory networks by integrating ChIP-seq/chip and transcriptome data via LASSO-type regularization methods. Methods 67, 294–303 (2014)CrossRef
127.
Zurück zum Zitat Rajasingh, I., Rajan, B., Florence, I.D.: Betweeness-centrality of grid networks. In: Proceedings of the 2009 International Conference on Computer Technology and Development, vol. 1, pp. 407–410 (2009) Rajasingh, I., Rajan, B., Florence, I.D.: Betweeness-centrality of grid networks. In: Proceedings of the 2009 International Conference on Computer Technology and Development, vol. 1, pp. 407–410 (2009)
128.
Zurück zum Zitat Ramanan, V.K., Shen, L., Moore, J.H., Saykin, A.J.: Pathway analysis of genomic data: concepts, methods, and prospects for future development. Trends Genet. 28, 323–332 (2012)CrossRef Ramanan, V.K., Shen, L., Moore, J.H., Saykin, A.J.: Pathway analysis of genomic data: concepts, methods, and prospects for future development. Trends Genet. 28, 323–332 (2012)CrossRef
129.
Zurück zum Zitat Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabasi, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002)CrossRef Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabasi, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002)CrossRef
130.
Zurück zum Zitat Resendis-Antonio, O., Freyre-Gonzalez, J.A., Menchaca-Mendez, R., Gutierrez-Rios, R.M., Martinez- Antonio, A., Avila-Sanchez, C., et al.: Modular analysis of the transcriptional regulatory network of E-coli. Trends Genet. 21, 16–20 (2005)CrossRef Resendis-Antonio, O., Freyre-Gonzalez, J.A., Menchaca-Mendez, R., Gutierrez-Rios, R.M., Martinez- Antonio, A., Avila-Sanchez, C., et al.: Modular analysis of the transcriptional regulatory network of E-coli. Trends Genet. 21, 16–20 (2005)CrossRef
131.
Zurück zum Zitat Risch, N.J.: Searching for genetic determinants in the new millennium. Nature 405, 847–856 (2000)CrossRef Risch, N.J.: Searching for genetic determinants in the new millennium. Nature 405, 847–856 (2000)CrossRef
132.
Zurück zum Zitat Rives, A.W., Galitski, T.: Modular organization of cellular networks. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 1128–1133 (2003) Rives, A.W., Galitski, T.: Modular organization of cellular networks. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 1128–1133 (2003)
133.
Zurück zum Zitat Rochat, Y.: Closeness centrality extended to unconnected graphs: the harmonic centrality index. ASNA. No. EPFL-CONF-200525 (2009) Rochat, Y.: Closeness centrality extended to unconnected graphs: the harmonic centrality index. ASNA. No. EPFL-CONF-200525 (2009)
134.
Zurück zum Zitat Ruhnau, B.: Eigenvector-centrality - a node-centrality? Soc. Netw. 22, 357–365 (2000)CrossRef Ruhnau, B.: Eigenvector-centrality - a node-centrality? Soc. Netw. 22, 357–365 (2000)CrossRef
136.
Zurück zum Zitat Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U., Eisenberg, D.: The database of interacting proteins: 2004 update. Nucleic Acids Res. 32, D449–D451 (2004)CrossRef Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U., Eisenberg, D.: The database of interacting proteins: 2004 update. Nucleic Acids Res. 32, D449–D451 (2004)CrossRef
137.
Zurück zum Zitat Sandelin, A., Alkema, W., Engstrom, P., Wasserman, W.W., Lenhard, B.: JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res. 32, D91–D94 (2004)CrossRef Sandelin, A., Alkema, W., Engstrom, P., Wasserman, W.W., Lenhard, B.: JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res. 32, D91–D94 (2004)CrossRef
138.
Zurück zum Zitat Sander, J.D., Joung, J.K.: CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014)CrossRef Sander, J.D., Joung, J.K.: CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014)CrossRef
139.
Zurück zum Zitat Sanz, J., Navarro, J., Arbues, A., Martin, C., Marijuan, P.C., Moreno, Y.: The transcriptional regulatory network of Mycobacterium tuberculosis. Plos One 6, e22178 (2011)CrossRef Sanz, J., Navarro, J., Arbues, A., Martin, C., Marijuan, P.C., Moreno, Y.: The transcriptional regulatory network of Mycobacterium tuberculosis. Plos One 6, e22178 (2011)CrossRef
140.
Zurück zum Zitat Scardoni, G., Petterlini, M., Laudanna, C.: Analyzing biological network parameters with CentiScaPe. Bioinformatics 25, 2857–2859 (2009)CrossRef Scardoni, G., Petterlini, M., Laudanna, C.: Analyzing biological network parameters with CentiScaPe. Bioinformatics 25, 2857–2859 (2009)CrossRef
141.
Zurück zum Zitat Schadt, E.E.: Molecular networks as sensors and drivers of common human diseases. Nature 461, 218–223 (2009)CrossRef Schadt, E.E.: Molecular networks as sensors and drivers of common human diseases. Nature 461, 218–223 (2009)CrossRef
142.
Zurück zum Zitat Schoch, D., Brandes, U.: Centrality as a predictor of lethal proteins: performance and robustness. In: MMB & DFT (2014) Schoch, D., Brandes, U.: Centrality as a predictor of lethal proteins: performance and robustness. In: MMB & DFT (2014)
143.
Zurück zum Zitat Sharma, A., Gulbahce, N., Pevzner, S.J., Menche, J., Ladenvall, C., Folkersen, L., et al.: Network-based analysis of genome wide association data provides novel candidate genes for lipid and lipoprotein traits. Mol. Cell. Proteomics 12, 3398–3408 (2013)CrossRef Sharma, A., Gulbahce, N., Pevzner, S.J., Menche, J., Ladenvall, C., Folkersen, L., et al.: Network-based analysis of genome wide association data provides novel candidate genes for lipid and lipoprotein traits. Mol. Cell. Proteomics 12, 3398–3408 (2013)CrossRef
144.
Zurück zum Zitat Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–68 (2002)CrossRef Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–68 (2002)CrossRef
145.
146.
Zurück zum Zitat Shoemaker, B.A., Panchenko, A.R.: Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners. PLoS Comput. Biol. 3, 595–601 (2007) Shoemaker, B.A., Panchenko, A.R.: Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners. PLoS Comput. Biol. 3, 595–601 (2007)
147.
Zurück zum Zitat Siddani, B.R., Pochineni, L.P., Palanisamy, M.: Candidate gene identification for systemic lupus erythematosus using network centrality measures and gene ontology. Plos One 8, e81766 (2013)CrossRef Siddani, B.R., Pochineni, L.P., Palanisamy, M.: Candidate gene identification for systemic lupus erythematosus using network centrality measures and gene ontology. Plos One 8, e81766 (2013)CrossRef
148.
Zurück zum Zitat Siddharthan, R.: Dinucleotide weight matrices for predicting transcription factor binding sites: generalizing the position weight matrix. Plos One 5, e9722 (2010)CrossRef Siddharthan, R.: Dinucleotide weight matrices for predicting transcription factor binding sites: generalizing the position weight matrix. Plos One 5, e9722 (2010)CrossRef
149.
Zurück zum Zitat Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2015. CA: Cancer J. Clin. 65, 5–29 (2015) Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2015. CA: Cancer J. Clin. 65, 5–29 (2015)
150.
Zurück zum Zitat Silva, J., Chang, K., Hannon, G.J., Rivas, F.V.: RNA-interference-based functional genomics in mammalian cells: reverse genetics coming of age. Oncogene 23, 8401–8409 (2004)CrossRef Silva, J., Chang, K., Hannon, G.J., Rivas, F.V.: RNA-interference-based functional genomics in mammalian cells: reverse genetics coming of age. Oncogene 23, 8401–8409 (2004)CrossRef
151.
Zurück zum Zitat Simoes, R.D., Emmert-Streib, F.: Bagging statistical network inference from large-scale gene expression data. Plos One 7, e33624 (2012)CrossRef Simoes, R.D., Emmert-Streib, F.: Bagging statistical network inference from large-scale gene expression data. Plos One 7, e33624 (2012)CrossRef
152.
153.
Zurück zum Zitat Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J.S., Nobel, A., et al.: Repeated observation of breast tumor subtypes in independent gene expression data sets. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 8418–8423 (2003) Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J.S., Nobel, A., et al.: Repeated observation of breast tumor subtypes in independent gene expression data sets. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 8418–8423 (2003)
154.
Zurück zum Zitat Sottoriva, A., Spiteri, I., Piccirillo, S.G., Touloumis, A., Collins, V.P., Marioni, J.C., et al.: Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 110, pp. 4009–4014 (2013) Sottoriva, A., Spiteri, I., Piccirillo, S.G., Touloumis, A., Collins, V.P., Marioni, J.C., et al.: Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 110, pp. 4009–4014 (2013)
155.
Zurück zum Zitat Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 12123–12128 (2003) Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 12123–12128 (2003)
156.
Zurück zum Zitat Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006)CrossRef Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006)CrossRef
157.
Zurück zum Zitat Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F.H., Goehler, H., et al.: A human protein- protein interaction network: a resource for annotating the proteome. Cell 122, 957–968 (2005)CrossRef Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F.H., Goehler, H., et al.: A human protein- protein interaction network: a resource for annotating the proteome. Cell 122, 957–968 (2005)CrossRef
158.
Zurück zum Zitat Stuart, J.M., Segal, E., Koller, D., Kim, S.K.: A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003)CrossRef Stuart, J.M., Segal, E., Koller, D., Kim, S.K.: A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003)CrossRef
159.
Zurück zum Zitat Sturm, D., Witt, H., Hovestadt, V., Khuong-Quang, D.A., Jones, D.T., Konermann, C., et al.: Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425–437 (2012)CrossRef Sturm, D., Witt, H., Hovestadt, V., Khuong-Quang, D.A., Jones, D.T., Konermann, C., et al.: Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425–437 (2012)CrossRef
160.
Zurück zum Zitat Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.L., Ideker, T.: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27, 431–432 (2011)CrossRef Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.L., Ideker, T.: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27, 431–432 (2011)CrossRef
161.
Zurück zum Zitat Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 15545–15550 (2005) Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 15545–15550 (2005)
162.
Zurück zum Zitat Szalay, K.Z., Csermely, P.: Perturbation centrality and turbine: a novel centrality measure obtained using a versatile network dynamics tool. Plos One 8, e78059 (2013)CrossRef Szalay, K.Z., Csermely, P.: Perturbation centrality and turbine: a novel centrality measure obtained using a versatile network dynamics tool. Plos One 8, e78059 (2013)CrossRef
163.
Zurück zum Zitat Tang, X., Wang, J., Zhong, J., Pan, Y.: Predicting essential proteins based on weighted degree centrality. IEEE/ACM Trans. Comput. Biol. Bioinform./IEEE ACM 11, 407–418 (2014)CrossRef Tang, X., Wang, J., Zhong, J., Pan, Y.: Predicting essential proteins based on weighted degree centrality. IEEE/ACM Trans. Comput. Biol. Bioinform./IEEE ACM 11, 407–418 (2014)CrossRef
164.
Zurück zum Zitat Tarca, A.L., Draghici, S., Bhatti, G., Romero, R.: Down-weighting overlapping genes improves gene set analysis. BMC Bioinform. 13, 136 (2012)CrossRef Tarca, A.L., Draghici, S., Bhatti, G., Romero, R.: Down-weighting overlapping genes improves gene set analysis. BMC Bioinform. 13, 136 (2012)CrossRef
165.
Zurück zum Zitat Taylor, M.D., Northcott, P.A., Korshunov, A., Remke, M., Cho, Y.J., Clifford, S.C., et al.: Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 123, 465–472 (2012)CrossRef Taylor, M.D., Northcott, P.A., Korshunov, A., Remke, M., Cho, Y.J., Clifford, S.C., et al.: Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 123, 465–472 (2012)CrossRef
166.
Zurück zum Zitat Tong, A.H.Y., Evangelista, M., Parsons, A.B., Xu, H., Bader, G.D., Page, N., et al.: Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001)CrossRef Tong, A.H.Y., Evangelista, M., Parsons, A.B., Xu, H., Bader, G.D., Page, N., et al.: Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001)CrossRef
167.
Zurück zum Zitat Tong, A.H.Y., Lesage, G., Bader, G.D., Ding, H.M., Xu, H., Xin, X.F., et al.: Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004)CrossRef Tong, A.H.Y., Lesage, G., Bader, G.D., Ding, H.M., Xu, H., Xin, X.F., et al.: Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004)CrossRef
168.
Zurück zum Zitat Tschida, B.R., Largaespada, D.A., Keng, V.W.: Mouse models of cancer: sleeping beauty transposons for insertional mutagenesis screens and reverse genetic studies. Semin. Cell Dev. Biol. 27, 86–95 (2014)CrossRef Tschida, B.R., Largaespada, D.A., Keng, V.W.: Mouse models of cancer: sleeping beauty transposons for insertional mutagenesis screens and reverse genetic studies. Semin. Cell Dev. Biol. 27, 86–95 (2014)CrossRef
169.
Zurück zum Zitat Uren, A.G., Kool, J., Berns, A., van Lohuizen, M.: Retroviral insertional mutagenesis: past, present and future. Oncogene 24, 7656–7672 (2005)CrossRef Uren, A.G., Kool, J., Berns, A., van Lohuizen, M.: Retroviral insertional mutagenesis: past, present and future. Oncogene 24, 7656–7672 (2005)CrossRef
170.
Zurück zum Zitat Uren, A.G., Kool, J., Matentzoglu, K., de Ridder, J., Mattison, J., van Uitert, M., et al.: Large-scale mutagenesis in p19ARF-and p53-deficient mice identifies cancer genes and their collaborative networks. Cell 133, 727–741 (2008)CrossRef Uren, A.G., Kool, J., Matentzoglu, K., de Ridder, J., Mattison, J., van Uitert, M., et al.: Large-scale mutagenesis in p19ARF-and p53-deficient mice identifies cancer genes and their collaborative networks. Cell 133, 727–741 (2008)CrossRef
171.
Zurück zum Zitat Valencia, A., Pazos, F.: Computational methods for the prediction of protein interactions. Curr. Opin. Struct. Biol. 12, 368–373 (2002)CrossRef Valencia, A., Pazos, F.: Computational methods for the prediction of protein interactions. Curr. Opin. Struct. Biol. 12, 368–373 (2002)CrossRef
172.
Zurück zum Zitat Valente, T.W., Foreman, R.K.: Integration and radiality: measuring the extent of an individual’s connectedness and reachability in a network. Soc. Netw. 20, 89–105 (1998)CrossRef Valente, T.W., Foreman, R.K.: Integration and radiality: measuring the extent of an individual’s connectedness and reachability in a network. Soc. Netw. 20, 89–105 (1998)CrossRef
173.
Zurück zum Zitat Valouev, A., Johnson, D.S., Sundquist, A., Medina, C., Anton, E., Batzoglou, S., et al.: Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat. Methods 5, 829–834 (2008)CrossRef Valouev, A., Johnson, D.S., Sundquist, A., Medina, C., Anton, E., Batzoglou, S., et al.: Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat. Methods 5, 829–834 (2008)CrossRef
174.
Zurück zum Zitat Verhaak, R.G., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M.D., et al.: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010) Verhaak, R.G., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M.D., et al.: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010)
175.
Zurück zum Zitat Vidal, M., Cusick, M.E., Barabasi, A.L.: Interactome networks and human disease. Cell 144, 986–998 (2011)CrossRef Vidal, M., Cusick, M.E., Barabasi, A.L.: Interactome networks and human disease. Cell 144, 986–998 (2011)CrossRef
176.
Zurück zum Zitat Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz Jr., L.A., Kinzler, K.W.: Cancer genome landscapes. Science 339, 1546–1558 (2013)CrossRef Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz Jr., L.A., Kinzler, K.W.: Cancer genome landscapes. Science 339, 1546–1558 (2013)CrossRef
177.
Zurück zum Zitat von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., et al.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399–403 (2002)CrossRef von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., et al.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399–403 (2002)CrossRef
178.
Zurück zum Zitat Wachi, S., Yoneda, K., Wu, R.: Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 21, 4205–4208 (2005)CrossRef Wachi, S., Yoneda, K., Wu, R.: Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 21, 4205–4208 (2005)CrossRef
179.
Zurück zum Zitat Wagner, A., Fell, D.A.: The small world inside large metabolic networks. Proc. R. Soc. B-Biol. Sci. 268, 1803–1810 (2001)CrossRef Wagner, A., Fell, D.A.: The small world inside large metabolic networks. Proc. R. Soc. B-Biol. Sci. 268, 1803–1810 (2001)CrossRef
180.
Zurück zum Zitat Wang, J., Chen, G., Li, M., Pan, Y.: Integration of breast cancer gene signatures based on graph centrality. BMC Syst. Biol. 5(Suppl 3), S10 (2011)CrossRef Wang, J., Chen, G., Li, M., Pan, Y.: Integration of breast cancer gene signatures based on graph centrality. BMC Syst. Biol. 5(Suppl 3), S10 (2011)CrossRef
181.
Zurück zum Zitat Wang, K., Li, M.Y., Hakonarson, H.: Analysing biological pathways in genome-wide association studies. Nat. Rev. Genet. 11, 843–854 (2010)CrossRef Wang, K., Li, M.Y., Hakonarson, H.: Analysing biological pathways in genome-wide association studies. Nat. Rev. Genet. 11, 843–854 (2010)CrossRef
182.
Zurück zum Zitat Wang, P.W., Qin, J., Qin, Y.M., Zhu, Y., Wang, L.L.Y., Li, M.L.J., et al.: ChIP-Array 2: integrating multiple omics data to construct gene regulatory networks. Nucleic Acids Res. 43, W264–W269 (2015)CrossRef Wang, P.W., Qin, J., Qin, Y.M., Zhu, Y., Wang, L.L.Y., Li, M.L.J., et al.: ChIP-Array 2: integrating multiple omics data to construct gene regulatory networks. Nucleic Acids Res. 43, W264–W269 (2015)CrossRef
183.
Zurück zum Zitat Wang, S., Sun, H.F., Ma, J., Zang, C.Z., Wang, C.F., Wang, J., et al.: Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat. Protoc. 8, 2502–2515 (2013)CrossRef Wang, S., Sun, H.F., Ma, J., Zang, C.Z., Wang, C.F., Wang, J., et al.: Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat. Protoc. 8, 2502–2515 (2013)CrossRef
184.
Zurück zum Zitat Wang, W.Y.S., Barratt, B.J., Clayton, D.G., Todd, J.A.: Genome-wide association studies: theoretical and practical concerns. Nat. Rev. Genet. 6, 109–118 (2005)CrossRef Wang, W.Y.S., Barratt, B.J., Clayton, D.G., Todd, J.A.: Genome-wide association studies: theoretical and practical concerns. Nat. Rev. Genet. 6, 109–118 (2005)CrossRef
185.
Zurück zum Zitat Wang, X., Gulbahce, N., Yu, H.: Network-based methods for human disease gene prediction. Brief. Funct. Genomics 10, 280–293 (2011)CrossRef Wang, X., Gulbahce, N., Yu, H.: Network-based methods for human disease gene prediction. Brief. Funct. Genomics 10, 280–293 (2011)CrossRef
186.
Zurück zum Zitat Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRef Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRef
187.
Zurück zum Zitat Wei, W., Pfeffer, J., Reminga, J., Carley, K.M.: Handling Weighted, Asymmetric, Self- Looped, and Disconnected Networks in ORA (No. CMU-ISR-11-113). Carnegie Mellon University, Pittsburgh (2011) Wei, W., Pfeffer, J., Reminga, J., Carley, K.M.: Handling Weighted, Asymmetric, Self- Looped, and Disconnected Networks in ORA (No. CMU-ISR-11-113). Carnegie Mellon University, Pittsburgh (2011)
188.
Zurück zum Zitat Weishaupt, H., Johansson, P., Engström, C., Nelander, S., Silvestrov, S., Swartling, FJ.: Loss of conservation of graph centralities in reverse-engineered transcriptional regulatory networks. In: 16th Applied Stochastic Models and Data Analysis International Conference (ASMDA2015) with Demographics 2015 Workshop (2015) Weishaupt, H., Johansson, P., Engström, C., Nelander, S., Silvestrov, S., Swartling, FJ.: Loss of conservation of graph centralities in reverse-engineered transcriptional regulatory networks. In: 16th Applied Stochastic Models and Data Analysis International Conference (ASMDA2015) with Demographics 2015 Workshop (2015)
189.
Zurück zum Zitat Wu, X.B., Li, S.: Cancer Gene Prediction Using a Network Approach. Chapman & Hall/CRC Mathematical and Computational Biology, pp. 191–212 (2010) Wu, X.B., Li, S.: Cancer Gene Prediction Using a Network Approach. Chapman & Hall/CRC Mathematical and Computational Biology, pp. 191–212 (2010)
190.
Zurück zum Zitat Wuchty, S.: Scale-free behavior in protein domain networks. Mol. Biol. Evol. 18, 1694–1702 (2001)CrossRef Wuchty, S.: Scale-free behavior in protein domain networks. Mol. Biol. Evol. 18, 1694–1702 (2001)CrossRef
191.
Zurück zum Zitat Wuchty, S., Almaas, E.: Evolutionary cores of domain co-occurrence networks. BMC Evol. Biol. 5, 1–12 (2005)CrossRef Wuchty, S., Almaas, E.: Evolutionary cores of domain co-occurrence networks. BMC Evol. Biol. 5, 1–12 (2005)CrossRef
193.
Zurück zum Zitat Wuchty, S., Oltvai, Z.N., Barabasi, A.L.: Evolutionary conservation of motif constituents in the yeast protein interaction network. Nat. Genet. 35, 176–179 (2003)CrossRef Wuchty, S., Oltvai, Z.N., Barabasi, A.L.: Evolutionary conservation of motif constituents in the yeast protein interaction network. Nat. Genet. 35, 176–179 (2003)CrossRef
194.
Zurück zum Zitat Xu, J.Z., Li, Y.J.: Discovering disease-genes by topological features in human protein-protein interaction network. Bioinformatics 22, 2800–2805 (2006)CrossRef Xu, J.Z., Li, Y.J.: Discovering disease-genes by topological features in human protein-protein interaction network. Bioinformatics 22, 2800–2805 (2006)CrossRef
195.
Zurück zum Zitat Yeger-Lotem, E., Sattath, S., Kashtan, N., Itzkovitz, S., Milo, R., Pinter, R.Y., et al.: Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 5934–5939 (2004) Yeger-Lotem, E., Sattath, S., Kashtan, N., Itzkovitz, S., Milo, R., Pinter, R.Y., et al.: Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 5934–5939 (2004)
196.
Zurück zum Zitat Yook, S.H., Oltvai, Z.N., Barabasi, A.L.: Functional and topological characterization of protein interaction networks. Proteomics 4, 928–942 (2004)CrossRef Yook, S.H., Oltvai, Z.N., Barabasi, A.L.: Functional and topological characterization of protein interaction networks. Proteomics 4, 928–942 (2004)CrossRef
197.
Zurück zum Zitat Zellmer, V.R., Zhang, S.Y.: Evolving concepts of tumor heterogeneity. Cell Biosci. 4, 1–8 (2014)CrossRef Zellmer, V.R., Zhang, S.Y.: Evolving concepts of tumor heterogeneity. Cell Biosci. 4, 1–8 (2014)CrossRef
198.
Zurück zum Zitat Zhang, L.V., King, O.D., Wong, S.L., Goldberg, D.S., Tong, A.H., Lesage, G., et al.: Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J. Biol. 4, 6 (2005)CrossRef Zhang, L.V., King, O.D., Wong, S.L., Goldberg, D.S., Tong, A.H., Lesage, G., et al.: Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J. Biol. 4, 6 (2005)CrossRef
199.
Zurück zum Zitat Zhang, M., Deng, J., Fang, C.V., Zhang, X., Lu, L.J.: Molecular network analysis and applications. In: Alterovitz, G., Ramoni, M. (eds.) Knowledge-Based Bioinformatics: From Analysis to Interpretation, pp. 253. Wiley, Chichester (2011) Zhang, M., Deng, J., Fang, C.V., Zhang, X., Lu, L.J.: Molecular network analysis and applications. In: Alterovitz, G., Ramoni, M. (eds.) Knowledge-Based Bioinformatics: From Analysis to Interpretation, pp. 253. Wiley, Chichester (2011)
200.
Zurück zum Zitat Zhao, B.Y., Pritchard, J.R., Lauffenburger, D.A., Hemann, M.T.: Addressing genetic tumor heterogeneity through computationally predictive combination therapy. Cancer Discov. 4, 166–174 (2014)CrossRef Zhao, B.Y., Pritchard, J.R., Lauffenburger, D.A., Hemann, M.T.: Addressing genetic tumor heterogeneity through computationally predictive combination therapy. Cancer Discov. 4, 166–174 (2014)CrossRef
201.
Zurück zum Zitat Zhao, H., Liu, T., Liu, L., Zhang, G., Pang, L., Yu, F., et al.: Chromatin states modify network motifs contributing to cell-specific functions. Sci. Rep. 5, 11938 (2015)CrossRef Zhao, H., Liu, T., Liu, L., Zhang, G., Pang, L., Yu, F., et al.: Chromatin states modify network motifs contributing to cell-specific functions. Sci. Rep. 5, 11938 (2015)CrossRef
202.
Zurück zum Zitat Zhao, W., Langfelder, P., Fuller, T., Dong, J., Li, A., Hovarth, S.: Weighted gene coexpression network analysis: state of the art. J. Biopharm. Stat. 20, 281–300 (2010)MathSciNetCrossRef Zhao, W., Langfelder, P., Fuller, T., Dong, J., Li, A., Hovarth, S.: Weighted gene coexpression network analysis: state of the art. J. Biopharm. Stat. 20, 281–300 (2010)MathSciNetCrossRef
203.
Zurück zum Zitat Zhu, C., Wu, C., Aronow, B.J., Jegga, A.G.: Computational approaches for human disease gene prediction and ranking. Adv. Exp. Med. Biol. 799, 69–84 (2014)CrossRef Zhu, C., Wu, C., Aronow, B.J., Jegga, A.G.: Computational approaches for human disease gene prediction and ranking. Adv. Exp. Med. Biol. 799, 69–84 (2014)CrossRef
204.
Zurück zum Zitat Zhu, X., Gerstein, M., Snyder, M.: Getting connected: analysis and principles of biological networks. Genes Dev. 21, 1010–1024 (2007)CrossRef Zhu, X., Gerstein, M., Snyder, M.: Getting connected: analysis and principles of biological networks. Genes Dev. 21, 1010–1024 (2007)CrossRef
Metadaten
Titel
Graph Centrality Based Prediction of Cancer Genes
verfasst von
Holger Weishaupt
Patrik Johansson
Christopher Engström
Sven Nelander
Sergei Silvestrov
Fredrik J. Swartling
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-42105-6_13