Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

05.09.2018 | Regular Paper | Ausgabe 2/2019

Knowledge and Information Systems 2/2019

Graph clustering-based discretization approach to microarray data

Zeitschrift:
Knowledge and Information Systems > Ausgabe 2/2019
Autoren:
Kittakorn Sriwanna, Tossapon Boongoen, Natthakan Iam-On

Abstract

Several techniques in data mining require discrete data. In fact, learning with discrete domains often performs better than the case of continuous data. Multivariate discretization is the algorithm that transforms continuous data to discrete one by considering correlations among attributes. Given the benefit of this idea, many multivariate discretization algorithms have been proposed. However, there are a few discretization algorithms that directly apply to microarray or gene expression data, which is high-dimensional and unbalance data. Even so interesting, no multivariate method has been put forward for microarray data analysis. According to the recent published research, graph clustering-based discretization of splitting and merging methods (GraphS and GraphM) usually achieves superior results compared to many well-known discretization algorithms. In this paper, GraphS and GraphM are extended by adding the alpha parameter that is the ratio between the similarity of gene expressions (distance) and the similarity of the class label. Moreover, the extensions consider 3 similarity measures of cosine similarity, Euclidean distance, and Pearson correlation in order to determine the proper pairwise similarity measure. The evaluation against 20 real microarray datasets and 4 classifiers suggests that the results of three classification performances (ACC, AUC, Kappa) and running time of two proposed methods based on cosine similarity, GraphM(C) and GraphS(C) are better than 9 state-of-the-art discretization algorithms.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2019

Knowledge and Information Systems 2/2019 Zur Ausgabe

Premium Partner

    Bildnachweise