Skip to main content

17.01.2025

Graph Neural Network-Based DOA Estimation Method Exploring Training Data Association

verfasst von: Ke Liu, Hengchen Cui, Junda Ma

Erschienen in: Circuits, Systems, and Signal Processing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Considering the utilization of the correlation between training data, this paper proposes a graph neural network-based deep learning method for the direction of arrival (DOA) estimation by transforming the DOA estimation problem into a node classification problem. Firstly, the covariance matrix of the received signal is used as the network node. Adjacent nodes are divided based on the covariance matrix corresponding to the same incident DOAs while accounting for different signal-to-noise ratios (SNRs) and varying numbers of snapshots. Subsequently, two methods for constructing adjacency matrices are proposed: one based on the correlation of covariance matrix eigenvectors and the other utilizing a feature encoder. These methods enable the construction of a knowledge graph pertinent to DOA estimation. Following this, a deep learning network framework is designed using graph neural networks to enhance the performance of DOA estimation. Finally, the superiority of the proposed method is validated through simulation experiments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat A. Barabell, in Improving the resolution performance of eigenstructure-based direction-finding algorithms. IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 8, pp. 336–339. IEEE (1983) A. Barabell, in Improving the resolution performance of eigenstructure-based direction-finding algorithms. IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 8, pp. 336–339. IEEE (1983)
8.
Zurück zum Zitat L.C. Godara, Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations. Proc. IEEE 85(8), 1195–1245 (1997)CrossRefMATH L.C. Godara, Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations. Proc. IEEE 85(8), 1195–1245 (1997)CrossRefMATH
9.
Zurück zum Zitat W. Hamilton, Z. Ying, J. Leskovec, in Inductive representation learning on large graphs. Advances in 31st Conference on Neural Information Processing Systems, vol. 30 (2017) W. Hamilton, Z. Ying, J. Leskovec, in Inductive representation learning on large graphs. Advances in 31st Conference on Neural Information Processing Systems, vol. 30 (2017)
12.
Zurück zum Zitat Y. Kase, T. Nishimura, T. Ohgane, Y. Ogawa, D. Kitayama, Y. Kishiyama, in Performance analysis of doa estimation of two targets using deep learning. 2019 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC), pp. 1–6. IEEE (2019) Y. Kase, T. Nishimura, T. Ohgane, Y. Ogawa, D. Kitayama, Y. Kishiyama, in Performance analysis of doa estimation of two targets using deep learning. 2019 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC), pp. 1–6. IEEE (2019)
13.
Zurück zum Zitat T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907, (2016a) T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:​1609.​02907, (2016a)
17.
Zurück zum Zitat Y. Liu, H. Chen, B. Wang, DOA estimation based on CNN for underwater acoustic array. Appl. Acoust. 172, 107594 (2021)CrossRef Y. Liu, H. Chen, B. Wang, DOA estimation based on CNN for underwater acoustic array. Appl. Acoust. 172, 107594 (2021)CrossRef
19.
Zurück zum Zitat J. Ma, J. Zhang, Z. Yang, T. Qiu, Off-grid DOA estimation using sparse Bayesian learning for mimo radar under impulsive noise. Sensors 22(16), 6268 (2022)CrossRefMATH J. Ma, J. Zhang, Z. Yang, T. Qiu, Off-grid DOA estimation using sparse Bayesian learning for mimo radar under impulsive noise. Sensors 22(16), 6268 (2022)CrossRefMATH
26.
Zurück zum Zitat P. Veličković, G. Cucurull A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph attention networks. arXiv preprint arXiv:1710.10903, (2017) P. Veličković, G. Cucurull A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph attention networks. arXiv preprint arXiv:​1710.​10903, (2017)
Metadaten
Titel
Graph Neural Network-Based DOA Estimation Method Exploring Training Data Association
verfasst von
Ke Liu
Hengchen Cui
Junda Ma
Publikationsdatum
17.01.2025
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02993-8