Skip to main content

2024 | OriginalPaper | Buchkapitel

5. Graph Neural Network via Edge Convolution for Hyperspectral Image Classification

verfasst von : Yao Ding, Zhili Zhang, Haojie Hu, Fang He, Shuli Cheng, Yijun Zhang

Erschienen in: Graph Neural Network for Feature Extraction and Classification of Hyperspectral Remote Sensing Images

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hyperspectral images have been widely used in many remote sensing applications due to their rich spectral and spatial information, and up to now, a wide range of applications have been benefited from the development of this direction, including urban development, land monitoring, scene interpretation, and resource exploration 0. Among these applications, HSI classification is a common technique that facilitates the study of the chemical properties of scene materials remotely.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E. Blanzieri, F. Melgani, Nearest neighbor classification of remote sensing images with the maximal margin principle. IEEE Trans. Geosci. Remote Sens. 46(6), 1804–1811 (2008)CrossRef E. Blanzieri, F. Melgani, Nearest neighbor classification of remote sensing images with the maximal margin principle. IEEE Trans. Geosci. Remote Sens. 46(6), 1804–1811 (2008)CrossRef
2.
Zurück zum Zitat Y. Tarabalka, M. Fauvel, J. Chanussot, J.A. Benediktsson, Svm- and mrf-based method for accurate classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 7(4), 736–740 (2010)CrossRef Y. Tarabalka, M. Fauvel, J. Chanussot, J.A. Benediktsson, Svm- and mrf-based method for accurate classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 7(4), 736–740 (2010)CrossRef
3.
Zurück zum Zitat M. Fauvel, J.A. Benediktsson, J. Chanussot, J.R. Sveinsson, Spectral and spatial classification of hyperspectral data using svms and morphological profiles. IEEE Trans. Geosci. Remote Sens. 46(11), 3804–3814 (2008)CrossRef M. Fauvel, J.A. Benediktsson, J. Chanussot, J.R. Sveinsson, Spectral and spatial classification of hyperspectral data using svms and morphological profiles. IEEE Trans. Geosci. Remote Sens. 46(11), 3804–3814 (2008)CrossRef
4.
Zurück zum Zitat X. Sun, Q. Qu, N.M. Nasrabadi, T.D. Tran, Structured priors for sparse-representation-based hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 11(7), 1235–1239 (2014)CrossRef X. Sun, Q. Qu, N.M. Nasrabadi, T.D. Tran, Structured priors for sparse-representation-based hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 11(7), 1235–1239 (2014)CrossRef
5.
Zurück zum Zitat P. Yang, L. Tong, B. Qian, Z. Gao, J. Yu, C. Xiao, Hyperspectral image classification with spectral and spatial graph using inductive representation learning network. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 14, 791–800 (2021)CrossRef P. Yang, L. Tong, B. Qian, Z. Gao, J. Yu, C. Xiao, Hyperspectral image classification with spectral and spatial graph using inductive representation learning network. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 14, 791–800 (2021)CrossRef
6.
Zurück zum Zitat R. Hang, Z. Li, Q. Liu, P. Ghamisi, S.S. Bhattacharyya, “Hyperspectral image classification with attention-aided cnns. IEEE Trans. Geosci. Remote Sens. 59(3), 2281–2293 (2020)CrossRef R. Hang, Z. Li, Q. Liu, P. Ghamisi, S.S. Bhattacharyya, “Hyperspectral image classification with attention-aided cnns. IEEE Trans. Geosci. Remote Sens. 59(3), 2281–2293 (2020)CrossRef
7.
Zurück zum Zitat R. Hang, F. Zhou, Q. Liu, P. Ghamisi, Classification of hyperspectral images via multitask generative adversarial networks. IEEE Trans. Geosci. Remote Sens. 59(2), 1424–1436 (2020)CrossRef R. Hang, F. Zhou, Q. Liu, P. Ghamisi, Classification of hyperspectral images via multitask generative adversarial networks. IEEE Trans. Geosci. Remote Sens. 59(2), 1424–1436 (2020)CrossRef
8.
Zurück zum Zitat M. Lan, Y. Zhang, L. Zhang, B. Du, Global context based automatic road segmentation via dilated convolutional neural network. Inform. Sci. 535, 156–171 (2020)MathSciNetCrossRef M. Lan, Y. Zhang, L. Zhang, B. Du, Global context based automatic road segmentation via dilated convolutional neural network. Inform. Sci. 535, 156–171 (2020)MathSciNetCrossRef
9.
Zurück zum Zitat Y. Li, H. Zhang, Q. Shen, Spectral–spatial classification of hyper-spectral imagery with 3D convolutional neural network. Remote Sens. 9(1), 67 (2017)CrossRef Y. Li, H. Zhang, Q. Shen, Spectral–spatial classification of hyper-spectral imagery with 3D convolutional neural network. Remote Sens. 9(1), 67 (2017)CrossRef
10.
Zurück zum Zitat S. Mei, J. Ji, Y. Geng, Z. Zhang, X. Li, Q. Du, Unsupervised spatial–spectral feature learning by 3d convolutional autoencoder for hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 57(9), 6808–6820 (2019)CrossRef S. Mei, J. Ji, Y. Geng, Z. Zhang, X. Li, Q. Du, Unsupervised spatial–spectral feature learning by 3d convolutional autoencoder for hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 57(9), 6808–6820 (2019)CrossRef
11.
Zurück zum Zitat X. Tang, F. Meng, X. Zhang, Y.-M. Cheung, J. Ma, F. Liu, L. Jiao, Hyperspectral image classification based on 3-d octave convolution with spatial–spectral attention network. IEEE Trans. Geosci. Remote Sens. 59(3), 2430–2447 (2021)CrossRef X. Tang, F. Meng, X. Zhang, Y.-M. Cheung, J. Ma, F. Liu, L. Jiao, Hyperspectral image classification based on 3-d octave convolution with spatial–spectral attention network. IEEE Trans. Geosci. Remote Sens. 59(3), 2430–2447 (2021)CrossRef
12.
Zurück zum Zitat R. Hang, Z. Li, P. Ghamisi, D. Hong, G. Xia, Q. Liu, Classification of hyperspectral and lidar data using coupled cnns. IEEE Trans. Geosci. Remote Sens. 58(7), 4939–4950 (2020)CrossRef R. Hang, Z. Li, P. Ghamisi, D. Hong, G. Xia, Q. Liu, Classification of hyperspectral and lidar data using coupled cnns. IEEE Trans. Geosci. Remote Sens. 58(7), 4939–4950 (2020)CrossRef
13.
Zurück zum Zitat A. Qin, Z. Shang, J. Tian, Y. Wang, T. Zhang, Y.Y. Tang, Spectral spatial graph convolutional networks for semisupervised hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 16(2), 241–245 (2019)CrossRef A. Qin, Z. Shang, J. Tian, Y. Wang, T. Zhang, Y.Y. Tang, Spectral spatial graph convolutional networks for semisupervised hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 16(2), 241–245 (2019)CrossRef
14.
Zurück zum Zitat L. Mou, X. Lu, X. Li, X.X. Zhu, Nonlocal graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(12), 8246–8257 (2020)CrossRef L. Mou, X. Lu, X. Li, X.X. Zhu, Nonlocal graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(12), 8246–8257 (2020)CrossRef
15.
Zurück zum Zitat D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, J. Chanussot, Graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 645, 1–13 (2020) D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, J. Chanussot, Graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 645, 1–13 (2020)
16.
Zurück zum Zitat S. Wan, C. Gong, P. Zhong, B. Du, L. Zhang, J. Yang, Multiscale dynamic graph convolutional network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(5), 3162–3177 (2020)CrossRef S. Wan, C. Gong, P. Zhong, B. Du, L. Zhang, J. Yang, Multiscale dynamic graph convolutional network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(5), 3162–3177 (2020)CrossRef
17.
Zurück zum Zitat A. Sha, B. Wang, X. Wu, L. Zhang, Semisupervised classification for hyperspectral images using graph attention networks. IEEE Geosci. Remote Sens. Lett. 18(1), 157–161 (2021)CrossRef A. Sha, B. Wang, X. Wu, L. Zhang, Semisupervised classification for hyperspectral images using graph attention networks. IEEE Geosci. Remote Sens. Lett. 18(1), 157–161 (2021)CrossRef
18.
Zurück zum Zitat Y. Ding, X. Zhao, Z. Zhang, W. Cai, N. Yang, Graph sample and aggregate-attention network for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 65, 1–5 (2021) Y. Ding, X. Zhao, Z. Zhang, W. Cai, N. Yang, Graph sample and aggregate-attention network for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 65, 1–5 (2021)
19.
Zurück zum Zitat Y. Ding, X. Zhao, Z. Zhang, W. Cai, N. Yang, Multiscale graph sample and aggregate network with context: aware learning for hyperspectral image classification. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 14, 4561–4572 (2021)CrossRef Y. Ding, X. Zhao, Z. Zhang, W. Cai, N. Yang, Multiscale graph sample and aggregate network with context: aware learning for hyperspectral image classification. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 14, 4561–4572 (2021)CrossRef
20.
Zurück zum Zitat Y. Wang, et al. Dynamic graph cnn for learning on point clouds. ACM Transact. Gr. (tog) 38(5), 1–12 (2019) Y. Wang, et al. Dynamic graph cnn for learning on point clouds. ACM Transact. Gr. (tog) 38(5), 1–12 (2019)
21.
Zurück zum Zitat J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural message passing for quantum chemistry, in International Conference on Machine Learning. PMLR (2017), pp. 1263–1272 J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural message passing for quantum chemistry, in International Conference on Machine Learning. PMLR (2017), pp. 1263–1272
22.
Zurück zum Zitat G. Li, M. Mueller, G. Qian, I.C. Delgadillo Perez, A. Abualshour, A.K. Thabet, B. Ghanem, Deepgcns: making gcns go as deep as cnns. IEEE Trans. Pattern Anal. Mach. Intell. 85, 1 (2021) G. Li, M. Mueller, G. Qian, I.C. Delgadillo Perez, A. Abualshour, A.K. Thabet, B. Ghanem, Deepgcns: making gcns go as deep as cnns. IEEE Trans. Pattern Anal. Mach. Intell. 85, 1 (2021)
23.
Zurück zum Zitat C. Zhang, G. Li, S. Du, Multi-scale dense networks for hyperspectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 57(11), 9201–9222 (2019)CrossRef C. Zhang, G. Li, S. Du, Multi-scale dense networks for hyperspectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 57(11), 9201–9222 (2019)CrossRef
Metadaten
Titel
Graph Neural Network via Edge Convolution for Hyperspectral Image Classification
verfasst von
Yao Ding
Zhili Zhang
Haojie Hu
Fang He
Shuli Cheng
Yijun Zhang
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-8009-9_5