Skip to main content

2024 | OriginalPaper | Buchkapitel

2. Graph Sample and Aggregate-Attention Network for Hyperspectral Image Classification

verfasst von : Yao Ding, Zhili Zhang, Haojie Hu, Fang He, Shuli Cheng, Yijun Zhang

Erschienen in: Graph Neural Network for Feature Extraction and Classification of Hyperspectral Remote Sensing Images

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hyperspectral images (HSIs) provide detailed spectral information through hundreds of (narrow) spectral channels, which can be used to accurately classify diverse materials of interest (Rasti et al. in IEEE Geosci Remote Sens 8(4):60–88, 2020; Zhong et al. in IEEE Trans Neural Netw Learn Syst 12:1–13, 2019). However, the increased dimensionality of such data provides a challenge to conventional techniques, and hyperspectral classification has great research value.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. Rasti et al., Feature extraction for hyperspectral imagery: the evolution from shallow to deep—overview and toolbox. IEEE Geosci. Remote Sens. 8(4), 60–88 (2020)CrossRef B. Rasti et al., Feature extraction for hyperspectral imagery: the evolution from shallow to deep—overview and toolbox. IEEE Geosci. Remote Sens. 8(4), 60–88 (2020)CrossRef
2.
Zurück zum Zitat P. Zhong, Z. Gong, J. Shan, Multiple instance learning for multiple diverse hyperspectral target characterizations. IEEE Trans. Neural Netw. Learn. Syst. 12, 1–13 (2019) P. Zhong, Z. Gong, J. Shan, Multiple instance learning for multiple diverse hyperspectral target characterizations. IEEE Trans. Neural Netw. Learn. Syst. 12, 1–13 (2019)
3.
Zurück zum Zitat K. Djerriri, A. Safia, R. Adjoudj, M.S. Karoui, Improving hyperspectral image classification by combining spectral and multiband compact texture features, in Proceedings of the IEEE International Geosciences Remote Sensing Symposium (IGARSS) (2019), pp. 465–468 K. Djerriri, A. Safia, R. Adjoudj, M.S. Karoui, Improving hyperspectral image classification by combining spectral and multiband compact texture features, in Proceedings of the IEEE International Geosciences Remote Sensing Symposium (IGARSS) (2019), pp. 465–468
4.
Zurück zum Zitat C. Bo, H. Lu, D. Wang, Hyperspectral image classification via JCR and SVM models with decision fusion. IEEE Geosci. Remote Sens. Lett. 13(2), 177–181 (2016)CrossRef C. Bo, H. Lu, D. Wang, Hyperspectral image classification via JCR and SVM models with decision fusion. IEEE Geosci. Remote Sens. Lett. 13(2), 177–181 (2016)CrossRef
5.
Zurück zum Zitat L. Wang, S. Hao, Q. Wang, Y. Wang, Semi-supervised classification for hyperspectral imagery based on spatial-spectral label propagation. ISPRS J. Photogram. Remote Sens. 97, 123–137 (2014)CrossRef L. Wang, S. Hao, Q. Wang, Y. Wang, Semi-supervised classification for hyperspectral imagery based on spatial-spectral label propagation. ISPRS J. Photogram. Remote Sens. 97, 123–137 (2014)CrossRef
6.
Zurück zum Zitat W. Hu, Y. Huang, L. Wei, F. Zhang, H. Li, Deep convolutional neural networks for hyperspectral image classification. J. Sens. 1–12, 2015 (2015) W. Hu, Y. Huang, L. Wei, F. Zhang, H. Li, Deep convolutional neural networks for hyperspectral image classification. J. Sens. 1–12, 2015 (2015)
7.
Zurück zum Zitat K. Makantasis, K. Karantzalos, A. Doulamis, N. Doulamis, Deep supervised learning for hyperspectral data classification through convolutional neural networks, in Proceedings of the IEEE International Geosciences Remote Sensing Symposium (IGARSS) (2015), pp. 4959–4962 K. Makantasis, K. Karantzalos, A. Doulamis, N. Doulamis, Deep supervised learning for hyperspectral data classification through convolutional neural networks, in Proceedings of the IEEE International Geosciences Remote Sensing Symposium (IGARSS) (2015), pp. 4959–4962
8.
Zurück zum Zitat Q. Liu, F. Zhou, R. Hang, X. Yuan, Bidirectional-convolutional lstm based spectral-spatial feature learning for hyperspectral image classification. Remote Sens. 9(12), 1330 (2017)CrossRef Q. Liu, F. Zhou, R. Hang, X. Yuan, Bidirectional-convolutional lstm based spectral-spatial feature learning for hyperspectral image classification. Remote Sens. 9(12), 1330 (2017)CrossRef
9.
Zurück zum Zitat M. Zhang, W. Li, Q. Du, Diverse region-based CNN for hyperspectral image classification. IEEE Trans. Image Process. 27(6), 2623–2634 (2018)MathSciNetCrossRef M. Zhang, W. Li, Q. Du, Diverse region-based CNN for hyperspectral image classification. IEEE Trans. Image Process. 27(6), 2623–2634 (2018)MathSciNetCrossRef
10.
Zurück zum Zitat K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Conference on Computer Vision Pattern Recognition (CVPR) (2016), pp. 1–9 K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Conference on Computer Vision Pattern Recognition (CVPR) (2016), pp. 1–9
12.
Zurück zum Zitat D. Hong, N. Yokoya, J. Chanussot, X.X. Zhu, An augmented linear mixing model to address spectral variability for hyperspectral unmixing. IEEE Trans. Image Process. (2019) D. Hong, N. Yokoya, J. Chanussot, X.X. Zhu, An augmented linear mixing model to address spectral variability for hyperspectral unmixing. IEEE Trans. Image Process. (2019)
13.
Zurück zum Zitat A. Sha, B. Wang, X. Wu, L. Zhang, Semisu-pervised classification for hyperspectral images using graph attention networks. IEEE Geosci. Remote Sens. Lett. 8, 23 (2020) A. Sha, B. Wang, X. Wu, L. Zhang, Semisu-pervised classification for hyperspectral images using graph attention networks. IEEE Geosci. Remote Sens. Lett. 8, 23 (2020)
15.
Zurück zum Zitat D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, J. Chanussot, Graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 55, 5966–5978 (2020) D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, J. Chanussot, Graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 55, 5966–5978 (2020)
16.
Zurück zum Zitat S. Wan, C. Gong, P. Zhong, B. Du, L. Zhang, J. Yang, Multiscale dynamic graph convolutional network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(5), 3162–3177 (2020)CrossRef S. Wan, C. Gong, P. Zhong, B. Du, L. Zhang, J. Yang, Multiscale dynamic graph convolutional network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(5), 3162–3177 (2020)CrossRef
17.
Zurück zum Zitat S. Wan, C. Gong, P. Zhong, S. Pan, G. Li, J. Yang, Hyperspectral image classification with context-aware dynamic graph convolutional network. IEEE Trans. Geosci. Remote Sens. 59, 597–612 (2021)CrossRef S. Wan, C. Gong, P. Zhong, S. Pan, G. Li, J. Yang, Hyperspectral image classification with context-aware dynamic graph convolutional network. IEEE Trans. Geosci. Remote Sens. 59, 597–612 (2021)CrossRef
18.
Zurück zum Zitat N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhut-dinov, Dropout: a simple way to prevent neural networks from over fitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNet N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhut-dinov, Dropout: a simple way to prevent neural networks from over fitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNet
19.
Zurück zum Zitat S. Zhang, S. Li, Spectral-spatial classification of hyperspectral images via multiscale super pixels based sparse representation, in Proceedings of the IEEE IGARSS (2016), pp. 2423–2426 S. Zhang, S. Li, Spectral-spatial classification of hyperspectral images via multiscale super pixels based sparse representation, in Proceedings of the IEEE IGARSS (2016), pp. 2423–2426
Metadaten
Titel
Graph Sample and Aggregate-Attention Network for Hyperspectral Image Classification
verfasst von
Yao Ding
Zhili Zhang
Haojie Hu
Fang He
Shuli Cheng
Yijun Zhang
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-8009-9_2