Skip to main content
Erschienen in: Cognitive Neurodynamics 1/2024

24.01.2023 | Research Article

Graph theoretical brain connectivity measures to investigate neural correlates of music rhythms associated with fear and anger

verfasst von: Serap Aydın, Lara Onbaşı

Erschienen in: Cognitive Neurodynamics | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present study tests the hypothesis that emotions of fear and anger are associated with distinct psychophysiological and neural circuitry according to discrete emotion model due to contrasting neurotransmitter activities, despite being included in the same affective group in many studies due to similar arousal-valance scores of them in emotion models. EEG data is downloaded from OpenNeuro platform with access number of ds002721. Brain connectivity estimations are obtained by using both functional and effective connectivity estimators in analysis of short (2 sec) and long (6 sec) EEG segments across the cortex. In tests, discrete emotions and resting-states are identified by frequency band specific brain network measures and then contrasting emotional states are deep classified with 5-fold cross-validated Long Short Term Memory Networks. Logistic regression modeling has also been examined to provide robust performance criteria. Commonly, the best results are obtained by using Partial Directed Coherence in Gamma (\(31.5-60.5~Hz\)) sub-bands of short EEG segments. In particular, Fear and Anger have been classified with accuracy of 91.79%. Thus, our hypothesis is supported by overall results. In conclusion, Anger is found to be characterized by increased transitivity and decreased local efficiency in addition to lower modularity in Gamma-band in comparison to fear. Local efficiency refers functional brain segregation originated from the ability of the brain to exchange information locally. Transitivity refer the overall probability for the brain having adjacent neural populations interconnected, thus revealing the existence of tightly connected cortical regions. Modularity quantifies how well the brain can be partitioned into functional cortical regions. In conclusion, PDC is proposed to graph theoretical analysis of short EEG epochs in presenting robust emotional indicators sensitive to perception of affective sounds.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Altenmüller E, Schürmann K et al (2002) Hits to the left, flops to the right different emotions during listening to music are reflected in cortical lateralisation patterns. Neuropsychologia 40:2242–2256PubMedCrossRef Altenmüller E, Schürmann K et al (2002) Hits to the left, flops to the right different emotions during listening to music are reflected in cortical lateralisation patterns. Neuropsychologia 40:2242–2256PubMedCrossRef
Zurück zum Zitat American psychological association (2001) publication manual of the American, psychological association, 5th edn. APA, Washington American psychological association (2001) publication manual of the American, psychological association, 5th edn. APA, Washington
Zurück zum Zitat Aydın S (2010) Determination of autoregressive model orders for seizure detection. T J Elect Eng Comp 18(1):23–30MathSciNet Aydın S (2010) Determination of autoregressive model orders for seizure detection. T J Elect Eng Comp 18(1):23–30MathSciNet
Zurück zum Zitat Aydın S et al (2018) Cortical correlations in wavelet domain for estimation of emotional dysfunctions. Neur Comput Appl 30:1085–1094CrossRef Aydın S et al (2018) Cortical correlations in wavelet domain for estimation of emotional dysfunctions. Neur Comput Appl 30:1085–1094CrossRef
Zurück zum Zitat Batbaatar E et al (2019) Semantic-emotion neural network for emotion recognition from text. IEEE Access 45:7111866–111878 Batbaatar E et al (2019) Semantic-emotion neural network for emotion recognition from text. IEEE Access 45:7111866–111878
Zurück zum Zitat Bekkedal MY et al (2011) Human brain EEG indices of emotions: delineating responses to affective vocalizations by measuring frontal theta event-related synchronization. Neurol Biob Rev 35(9):1959–1970CrossRef Bekkedal MY et al (2011) Human brain EEG indices of emotions: delineating responses to affective vocalizations by measuring frontal theta event-related synchronization. Neurol Biob Rev 35(9):1959–1970CrossRef
Zurück zum Zitat Bianchi AM et al (2013) Frequency-based approach to the study of semantic brain networks connectivity. J Neurosci Math 212(2):181–189CrossRef Bianchi AM et al (2013) Frequency-based approach to the study of semantic brain networks connectivity. J Neurosci Math 212(2):181–189CrossRef
Zurück zum Zitat Bigand E et al (2005) Multidimensional scaling of emotional responses to music: the effect of musical expertise and of the duration of the excerpts. Cognit Emot 19:1113–1139CrossRef Bigand E et al (2005) Multidimensional scaling of emotional responses to music: the effect of musical expertise and of the duration of the excerpts. Cognit Emot 19:1113–1139CrossRef
Zurück zum Zitat Blinowska KJ, et al. (2006) Multivariate signal analysis by parametric models: Handbook of Time Series Analysis Blinowska KJ, et al. (2006) Multivariate signal analysis by parametric models: Handbook of Time Series Analysis
Zurück zum Zitat Blood AJ et al (1999) Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat Neurosci 2:382–387PubMedCrossRef Blood AJ et al (1999) Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat Neurosci 2:382–387PubMedCrossRef
Zurück zum Zitat Bo H et al (2019) Music-evoked emotion recognition based on cognitive principles inspired EEG temporal and spectral features. Int J Mach Learn Cybernet 10:2439–2448CrossRef Bo H et al (2019) Music-evoked emotion recognition based on cognitive principles inspired EEG temporal and spectral features. Int J Mach Learn Cybernet 10:2439–2448CrossRef
Zurück zum Zitat Boucher O et al (2014) Spatiotemporal dynamics of affective picture processing revealed by intracranial high-gamma modulations. Hum Brain Mapp 36:16–28PubMedPubMedCentralCrossRef Boucher O et al (2014) Spatiotemporal dynamics of affective picture processing revealed by intracranial high-gamma modulations. Hum Brain Mapp 36:16–28PubMedPubMedCentralCrossRef
Zurück zum Zitat Bröhl F, Kayser C (2021) Delta/theta band EEG differentially tracks low and high frequency speech-derived envelopes. Neuroimage 233:117958PubMedCrossRef Bröhl F, Kayser C (2021) Delta/theta band EEG differentially tracks low and high frequency speech-derived envelopes. Neuroimage 233:117958PubMedCrossRef
Zurück zum Zitat Bueno JLO, Ramos D (2007) Musical mode and estimation of time. Percept Mot Skills 105:1087–1092PubMedCrossRef Bueno JLO, Ramos D (2007) Musical mode and estimation of time. Percept Mot Skills 105:1087–1092PubMedCrossRef
Zurück zum Zitat Chen D, Miao R et al (2021) Sparse granger causality analysis model based on sensors correlation for emotion recognition classification in Electroencephalography. Front Comp Neurosci 15:874 Chen D, Miao R et al (2021) Sparse granger causality analysis model based on sensors correlation for emotion recognition classification in Electroencephalography. Front Comp Neurosci 15:874
Zurück zum Zitat Cohen JR et al (2016) The segregation and integration of distinct brain networks and their relationship to cognition. J Neurosci 36:12083–12094PubMedPubMedCentralCrossRef Cohen JR et al (2016) The segregation and integration of distinct brain networks and their relationship to cognition. J Neurosci 36:12083–12094PubMedPubMedCentralCrossRef
Zurück zum Zitat Daly I et al (2014) Neural correlates of emotional responses to music: an EEG study. Neurosci Lett 573:52–7PubMedCrossRef Daly I et al (2014) Neural correlates of emotional responses to music: an EEG study. Neurosci Lett 573:52–7PubMedCrossRef
Zurück zum Zitat Dennis TA, Solomon B (2010) Frontal EEG and emotion regulation: electrocortical activity in response to emotional film clips is associated with reduced mood induction and attention interference effects. Biol Psychol 85:456–464PubMedPubMedCentralCrossRef Dennis TA, Solomon B (2010) Frontal EEG and emotion regulation: electrocortical activity in response to emotional film clips is associated with reduced mood induction and attention interference effects. Biol Psychol 85:456–464PubMedPubMedCentralCrossRef
Zurück zum Zitat Droit-Volet S et al (2010) Time flies with music whatever its modality. Acta Psychol 135:226–236CrossRef Droit-Volet S et al (2010) Time flies with music whatever its modality. Acta Psychol 135:226–236CrossRef
Zurück zum Zitat Eerola T et al (2010) A comparison of the discrete and dimensional models of emotion in music. Psych Music 39(1):18–49CrossRef Eerola T et al (2010) A comparison of the discrete and dimensional models of emotion in music. Psych Music 39(1):18–49CrossRef
Zurück zum Zitat Fallani FDV et al (2017) A topological criterion for filtering information in complex brain networks. Plos Comp Biol 13(1):e1005305CrossRef Fallani FDV et al (2017) A topological criterion for filtering information in complex brain networks. Plos Comp Biol 13(1):e1005305CrossRef
Zurück zum Zitat Ferdek MA et al (2016) Depressive rumination and the emotional control circuit. Cogn, Aff Behav Neurosci 16(6):1099–1113CrossRef Ferdek MA et al (2016) Depressive rumination and the emotional control circuit. Cogn, Aff Behav Neurosci 16(6):1099–1113CrossRef
Zurück zum Zitat Flores-Gutierrez EO et al (2007a) Metabolic and electric brain patterns during pleasant and unpleasant emotions induced by music masterpieces. Int J Psychophysiol 65:69–84PubMedCrossRef Flores-Gutierrez EO et al (2007a) Metabolic and electric brain patterns during pleasant and unpleasant emotions induced by music masterpieces. Int J Psychophysiol 65:69–84PubMedCrossRef
Zurück zum Zitat Fong AHC et al (2019) Dynamic functional connectivity during task performance and rest predicts individual differences in attention across studies. Neuroimage 188:14–25PubMedCrossRef Fong AHC et al (2019) Dynamic functional connectivity during task performance and rest predicts individual differences in attention across studies. Neuroimage 188:14–25PubMedCrossRef
Zurück zum Zitat Fontaine JR et al (2007) The world of emotions is not two-dimensional. Psychol Sci 18(12):1050–1057PubMedCrossRef Fontaine JR et al (2007) The world of emotions is not two-dimensional. Psychol Sci 18(12):1050–1057PubMedCrossRef
Zurück zum Zitat Fransson P et al (2018) Brain network segregation and integration during an epoch-related working memory fmri experiment. Neuroimage 178:147–161PubMedCrossRef Fransson P et al (2018) Brain network segregation and integration during an epoch-related working memory fmri experiment. Neuroimage 178:147–161PubMedCrossRef
Zurück zum Zitat Gaxiola JA et al (2018) Using the partial directed coherence to assess functional connectivity in electroencephalography data for brain-computer interfaces. IEEE Trans Cognit Dev Sys 10(3):776–783CrossRef Gaxiola JA et al (2018) Using the partial directed coherence to assess functional connectivity in electroencephalography data for brain-computer interfaces. IEEE Trans Cognit Dev Sys 10(3):776–783CrossRef
Zurück zum Zitat Haider B et al (2006) Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J Neurosci 26:4535–4545PubMedPubMedCentralCrossRef Haider B et al (2006) Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J Neurosci 26:4535–4545PubMedPubMedCentralCrossRef
Zurück zum Zitat He B et al (2011) eConnectome: a MATLAB toolbox for mapping and imaging of brain functional connectivity. J Neurosci Meth 195(2):261–269CrossRef He B et al (2011) eConnectome: a MATLAB toolbox for mapping and imaging of brain functional connectivity. J Neurosci Meth 195(2):261–269CrossRef
Zurück zum Zitat Jackson DC et al (2003) Now you feel it now you don’t: frontal brain electrical asymmetry and individual differences in emotion regulation. Psychol Sci 14:612–617PubMedCrossRef Jackson DC et al (2003) Now you feel it now you don’t: frontal brain electrical asymmetry and individual differences in emotion regulation. Psychol Sci 14:612–617PubMedCrossRef
Zurück zum Zitat Jiang P et al (2019) Parallelized convolutional recurrent neural network with spectral features for speech emotion recognition. IEEE Access 7:90368–90377CrossRef Jiang P et al (2019) Parallelized convolutional recurrent neural network with spectral features for speech emotion recognition. IEEE Access 7:90368–90377CrossRef
Zurück zum Zitat Juslin PN, Sloboda JA (eds) (2010) Handbook of music and emotion: theory. research and applications. Oxford University Press, New York, NY Juslin PN, Sloboda JA (eds) (2010) Handbook of music and emotion: theory. research and applications. Oxford University Press, New York, NY
Zurück zum Zitat Juslin PN, Vastfjall D (2008) Emotional responses to music: the need to consider underlying mechanisms. Behav Brain Sci 31:559–621PubMedCrossRef Juslin PN, Vastfjall D (2008) Emotional responses to music: the need to consider underlying mechanisms. Behav Brain Sci 31:559–621PubMedCrossRef
Zurück zum Zitat Koelsch S et al (2006) Investigating emotion with music: an fMRI study. Human Brain Mapp 27:239–250CrossRef Koelsch S et al (2006) Investigating emotion with music: an fMRI study. Human Brain Mapp 27:239–250CrossRef
Zurück zum Zitat Koelsch S (2018) Investigating the neural encoding of emotion with music. Neuron 98(6):1075–1079PubMedCrossRef Koelsch S (2018) Investigating the neural encoding of emotion with music. Neuron 98(6):1075–1079PubMedCrossRef
Zurück zum Zitat Koelsch S, Fritz T, Schlaugh G (2008) Amygdala activity can be modulated by unexpected chord functions during music listening. Neuroreport 19:1815–1819PubMedCrossRef Koelsch S, Fritz T, Schlaugh G (2008) Amygdala activity can be modulated by unexpected chord functions during music listening. Neuroreport 19:1815–1819PubMedCrossRef
Zurück zum Zitat Korzeniewska A et al (2003) Determination of information flow direction among brain structures by a modified directed transfer function method. J Neurosci Meth 125(1):195–207CrossRef Korzeniewska A et al (2003) Determination of information flow direction among brain structures by a modified directed transfer function method. J Neurosci Meth 125(1):195–207CrossRef
Zurück zum Zitat Korzeniewska A et al (2014) Ictal propagation of high frequency activity is recapitulated in interictal recordings: Effective connectivity of epileptogenic networks recorded with intracranial EEG. NeuroImage 101:96–113PubMedCrossRef Korzeniewska A et al (2014) Ictal propagation of high frequency activity is recapitulated in interictal recordings: Effective connectivity of epileptogenic networks recorded with intracranial EEG. NeuroImage 101:96–113PubMedCrossRef
Zurück zum Zitat Kudo M et al (1999) Multidimensional curve classification using passing-through regions. Pattern Rec Lett 20(11–13):1103–1111ADSCrossRef Kudo M et al (1999) Multidimensional curve classification using passing-through regions. Pattern Rec Lett 20(11–13):1103–1111ADSCrossRef
Zurück zum Zitat LeDoux J (2000) Emotion circuits in the brain. Annual Rev Neurosci 23:155–184CrossRef LeDoux J (2000) Emotion circuits in the brain. Annual Rev Neurosci 23:155–184CrossRef
Zurück zum Zitat Li THS et al (2019a) CNN and LSTM based facial expression analysis model for a humanoid robot. IEEE Access 7:93998–94011CrossRef Li THS et al (2019a) CNN and LSTM based facial expression analysis model for a humanoid robot. IEEE Access 7:93998–94011CrossRef
Zurück zum Zitat Li P, Liu H et al (2019b) EEG based emotion recognition by combining functional connectivity network and local activations. IEEE Trans on BME 66(10):2869–2881ADSCrossRef Li P, Liu H et al (2019b) EEG based emotion recognition by combining functional connectivity network and local activations. IEEE Trans on BME 66(10):2869–2881ADSCrossRef
Zurück zum Zitat Li Y, Zheng W et al (2018) A bi-hemisphere domain adversarial neural network model for EEG emotion recognition IEEE Trans on Affec. Comp 12(2):494–504MathSciNet Li Y, Zheng W et al (2018) A bi-hemisphere domain adversarial neural network model for EEG emotion recognition IEEE Trans on Affec. Comp 12(2):494–504MathSciNet
Zurück zum Zitat Ligeza TS et al (2017) Cognitive conflict increases processing of negative, task-irrelevant stimuli. Int J Psychop 12:126–135CrossRef Ligeza TS et al (2017) Cognitive conflict increases processing of negative, task-irrelevant stimuli. Int J Psychop 12:126–135CrossRef
Zurück zum Zitat Liu YJ et al (2017) Real-time movie-induced discrete emotion recognition from EEG signals. Proc IEEE Trans Aff Comp 9(4):550–562CrossRef Liu YJ et al (2017) Real-time movie-induced discrete emotion recognition from EEG signals. Proc IEEE Trans Aff Comp 9(4):550–562CrossRef
Zurück zum Zitat Lynall ME et al (2010) Functional connectivity and brain networks in schizophrenia. J Neuro 30(28):9477–87CrossRef Lynall ME et al (2010) Functional connectivity and brain networks in schizophrenia. J Neuro 30(28):9477–87CrossRef
Zurück zum Zitat Miraglia F et al (2018) Brain electroencephalographic segregation as a biomarker of learning. Neural Netw 106:168–174PubMedCrossRef Miraglia F et al (2018) Brain electroencephalographic segregation as a biomarker of learning. Neural Netw 106:168–174PubMedCrossRef
Zurück zum Zitat Mu J et al (2018) Abnormal interaction between cognitive control network and affective network in patients with end-stage renal disease. Brain Imag Behav 12(4):1099–1111CrossRef Mu J et al (2018) Abnormal interaction between cognitive control network and affective network in patients with end-stage renal disease. Brain Imag Behav 12(4):1099–1111CrossRef
Zurück zum Zitat Murphy FC et al (2003) Functional neuroanatomy of emotions: a meta-analysis. Cognit Affect Behav Neuro 3:207–233CrossRef Murphy FC et al (2003) Functional neuroanatomy of emotions: a meta-analysis. Cognit Affect Behav Neuro 3:207–233CrossRef
Zurück zum Zitat Neumaier A et al (2001) Estimation of parameters and eigenmodes of multivariate AR models. ACM Trans Math Soft 27(1):27–57CrossRef Neumaier A et al (2001) Estimation of parameters and eigenmodes of multivariate AR models. ACM Trans Math Soft 27(1):27–57CrossRef
Zurück zum Zitat Okun M et al (2008) Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat Neurosci 11:535–537PubMedCrossRef Okun M et al (2008) Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat Neurosci 11:535–537PubMedCrossRef
Zurück zum Zitat Panksepp J (2010) Affective consciousness in animals: perspectives on dimensional and primary process emotion approaches. Proc Biol Sci 277(1696):2905–2907PubMedPubMedCentral Panksepp J (2010) Affective consciousness in animals: perspectives on dimensional and primary process emotion approaches. Proc Biol Sci 277(1696):2905–2907PubMedPubMedCentral
Zurück zum Zitat Phan KL et al (2002) Functional neuroanatomy of emotion: a metaanalysis of emotion activation studies in PET and fMRI. NeuroImage 16:331–348PubMedCrossRef Phan KL et al (2002) Functional neuroanatomy of emotion: a metaanalysis of emotion activation studies in PET and fMRI. NeuroImage 16:331–348PubMedCrossRef
Zurück zum Zitat Rai S et al (2015) Determining minimum spanning tree in an undirected weighted graph. Int Conf on Adv in Comp Eng and App 2015:637–642 Rai S et al (2015) Determining minimum spanning tree in an undirected weighted graph. Int Conf on Adv in Comp Eng and App 2015:637–642
Zurück zum Zitat Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 52(3):1059–1069PubMedCrossRef Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 52(3):1059–1069PubMedCrossRef
Zurück zum Zitat Schllögl A. (2002) Time Series Analysis, A toolbox for the use with Matlab. 1996-2002 Schllögl A. (2002) Time Series Analysis, A toolbox for the use with Matlab. 1996-2002
Zurück zum Zitat Schmidt LA, Trainor LJ (2001) Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions. Cognit Emot 15:487–500CrossRef Schmidt LA, Trainor LJ (2001) Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions. Cognit Emot 15:487–500CrossRef
Zurück zum Zitat Schneider TA et al (2001) Algorithm 808: ARfit-A Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans Math Softw 27:58–65CrossRef Schneider TA et al (2001) Algorithm 808: ARfit-A Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans Math Softw 27:58–65CrossRef
Zurück zum Zitat Sinex D, Guzik H et al (2003) Responses of auditory nerve fibers to harmonic and mistuned complex tones. Hear Res 182:130–139PubMedCrossRef Sinex D, Guzik H et al (2003) Responses of auditory nerve fibers to harmonic and mistuned complex tones. Hear Res 182:130–139PubMedCrossRef
Zurück zum Zitat Sprent P (1988) Applied nonparametric statistical methods. Springer, ChamCrossRef Sprent P (1988) Applied nonparametric statistical methods. Springer, ChamCrossRef
Zurück zum Zitat Supriya S et al (2016) Weighted visibility graph with complex network features in the detection of epilepsy. IEEE Access 4:6554–6566CrossRef Supriya S et al (2016) Weighted visibility graph with complex network features in the detection of epilepsy. IEEE Access 4:6554–6566CrossRef
Zurück zum Zitat Tijms BM et al (2013) Alzheimer’s disease: connecting findings from graph theoretical studies of brain networks. Neurobiol Aging 34(8):2023–36PubMedCrossRef Tijms BM et al (2013) Alzheimer’s disease: connecting findings from graph theoretical studies of brain networks. Neurobiol Aging 34(8):2023–36PubMedCrossRef
Zurück zum Zitat Vytal K et al (2010) Neuroimaging support for discrete neural correlates of basic emotions: a voxel-based meta-analysis. J Cognit Neurol 22:2864–2885CrossRef Vytal K et al (2010) Neuroimaging support for discrete neural correlates of basic emotions: a voxel-based meta-analysis. J Cognit Neurol 22:2864–2885CrossRef
Zurück zum Zitat Wilke C et al (2010) Neocortical seizure foci localization by means of a directed transfer function method. Epilepsia 51(4):564–572PubMedCrossRef Wilke C et al (2010) Neocortical seizure foci localization by means of a directed transfer function method. Epilepsia 51(4):564–572PubMedCrossRef
Metadaten
Titel
Graph theoretical brain connectivity measures to investigate neural correlates of music rhythms associated with fear and anger
verfasst von
Serap Aydın
Lara Onbaşı
Publikationsdatum
24.01.2023
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 1/2024
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-023-09931-5

Weitere Artikel der Ausgabe 1/2024

Cognitive Neurodynamics 1/2024 Zur Ausgabe

Neuer Inhalt