Skip to main content

2019 | OriginalPaper | Buchkapitel

Graphene-Based Electrochemical Sensors

verfasst von : Edward P. Randviir, Craig E. Banks

Erschienen in: Carbon-Based Nanosensor Technology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Since graphene was isolated and characterised in 2004 and 2005, its applications have been researched intensively for a broad range of applications, none more so than the field of electrochemical sensors, which aim to exploit the unique charge carrier mobility associated with graphene structures. This chapter explores graphene and its incorporation into electrochemical sensors. The chapter discusses graphene structure and the electrochemical responses arising from such structures on a macro-scale and examines production methods of graphene and how these affect the observed currents in electrochemical reactions as a result of such methods. The chapter subsequently explores sensors designed from a range of different graphenes, including surfactant-exfoliated graphene, surfactant-free graphene, chemical vapour deposition graphene, and reduced graphene oxide. The chapter finds that reduced graphene oxide is the most commonly employed route for graphene-based electrochemical sensors, owing to the scale of production being large, and its relatively cheap and straightforward production.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
This is especially true in the cases of redox probes such as potassium ferricyanide that are well known to exhibit inner-sphere electron transitions that require a reorganisation of the molecular orbital symmetry for electron transfer to take place. This is not the case for outer-sphere redox probes such as hexamine-ruthenium (III) chloride, however, as they can donate electrons without the need for such reorganisation.
 
Literatur
1.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669PubMedCrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669PubMedCrossRef
2.
Zurück zum Zitat Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102:10451–10453PubMedPubMedCentralCrossRef Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102:10451–10453PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Brownson DAC, Kampouris DK, Banks CE (2012) Graphene electrochemistry: fundamental concepts through to prominent applications. Chem Soc Rev 41:6944–6976PubMedCrossRef Brownson DAC, Kampouris DK, Banks CE (2012) Graphene electrochemistry: fundamental concepts through to prominent applications. Chem Soc Rev 41:6944–6976PubMedCrossRef
5.
Zurück zum Zitat Brownson DAC, Munro LJ, Kampouris DK, Banks CE (2011) Electrochemistry of graphene: not such a beneficial electrode material? RSC Adv 1:978–988CrossRef Brownson DAC, Munro LJ, Kampouris DK, Banks CE (2011) Electrochemistry of graphene: not such a beneficial electrode material? RSC Adv 1:978–988CrossRef
6.
Zurück zum Zitat Brownson DAC, Banks CE (2011) CVD graphene electrochemistry: the role of graphitic islands. Phys Chem Chem Phys 13:15825–15828PubMedCrossRef Brownson DAC, Banks CE (2011) CVD graphene electrochemistry: the role of graphitic islands. Phys Chem Chem Phys 13:15825–15828PubMedCrossRef
7.
Zurück zum Zitat Brownson DAC, Banks CE (2014) The handbook of graphene electrochemistry. Springer, LondonCrossRef Brownson DAC, Banks CE (2014) The handbook of graphene electrochemistry. Springer, LondonCrossRef
8.
Zurück zum Zitat Shen A, Zou Y, Wang Q, Dryfe RAW, Huang X, Dou S, Dai L, Wang S (2014) Oxygen reduction reaction in a droplet on graphite: direct evidence that the edge is more active than the basal plane. Angew Chem Int Ed 53:10804–10808CrossRef Shen A, Zou Y, Wang Q, Dryfe RAW, Huang X, Dou S, Dai L, Wang S (2014) Oxygen reduction reaction in a droplet on graphite: direct evidence that the edge is more active than the basal plane. Angew Chem Int Ed 53:10804–10808CrossRef
9.
Zurück zum Zitat Toth PS, Valota AT, Velicky M, Kinloch IA, Novoselov KS, Hill EW, Dryfe RAW (2014) Electrochemistry in a drop: a study of the electrochemical behaviour of mechanically exfoliated graphene on photoresist coated silicon substrate. Chem Sci 5:582–589CrossRef Toth PS, Valota AT, Velicky M, Kinloch IA, Novoselov KS, Hill EW, Dryfe RAW (2014) Electrochemistry in a drop: a study of the electrochemical behaviour of mechanically exfoliated graphene on photoresist coated silicon substrate. Chem Sci 5:582–589CrossRef
10.
Zurück zum Zitat Velický M, Bradley DF, Cooper AJ, Hill EW, Kinloch IA, Mishchenko A, Novoselov KS, Patten HV, Toth PS, Valota AT, Worrall SD, Dryfe RAW (2014) Electron transfer kinetics on mono- and multilayer graphene. ACS Nano 8:10089–10100PubMedCrossRef Velický M, Bradley DF, Cooper AJ, Hill EW, Kinloch IA, Mishchenko A, Novoselov KS, Patten HV, Toth PS, Valota AT, Worrall SD, Dryfe RAW (2014) Electron transfer kinetics on mono- and multilayer graphene. ACS Nano 8:10089–10100PubMedCrossRef
11.
Zurück zum Zitat El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335:1326–1330PubMedCrossRef El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335:1326–1330PubMedCrossRef
12.
Zurück zum Zitat Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876PubMedCrossRef Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876PubMedCrossRef
13.
Zurück zum Zitat Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, Boland C, Lotya M, Istrate OM, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O’Brien SE, McGuire EK, Sanchez BM, Duesberg GS, Mcevoy N, Pennycook TJ, Downing C, Crossley A, Nicolosi V, Coleman JN (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624–630PubMedCrossRef Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, Boland C, Lotya M, Istrate OM, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O’Brien SE, McGuire EK, Sanchez BM, Duesberg GS, Mcevoy N, Pennycook TJ, Downing C, Crossley A, Nicolosi V, Coleman JN (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624–630PubMedCrossRef
14.
Zurück zum Zitat Novoselov KS, Falko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200PubMedCrossRef Novoselov KS, Falko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200PubMedCrossRef
15.
Zurück zum Zitat Knieke C, Berger A, Voigt M, Taylor RNK, RÖhrl J, Peukert W (2010) Scalable production of graphene sheets by mechanical delamination. Carbon 48:3196–3204CrossRef Knieke C, Berger A, Voigt M, Taylor RNK, RÖhrl J, Peukert W (2010) Scalable production of graphene sheets by mechanical delamination. Carbon 48:3196–3204CrossRef
16.
Zurück zum Zitat Goh M, Pumera M (2011) Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene (TNT) in seawater: the comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles. Anal Bioanal Chem 399:127–131PubMedCrossRef Goh M, Pumera M (2011) Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene (TNT) in seawater: the comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles. Anal Bioanal Chem 399:127–131PubMedCrossRef
17.
Zurück zum Zitat Banks CE, Davies TJ, Wildgoose GG, Compton RG (2005) Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem Commun 7:829–841CrossRef Banks CE, Davies TJ, Wildgoose GG, Compton RG (2005) Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem Commun 7:829–841CrossRef
18.
Zurück zum Zitat Yuan W, Zhou Y, Li Y, Li C, Peng H, Zhang J, Liu Z, Dai L, Shi G (2013) The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Sci Rep 3:2248PubMedPubMedCentralCrossRef Yuan W, Zhou Y, Li Y, Li C, Peng H, Zhang J, Liu Z, Dai L, Shi G (2013) The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Sci Rep 3:2248PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Kampouris DK, Banks CE (2010) Exploring the physicoelectrochemical properties of graphene. Chem Commun 46:8986–8988CrossRef Kampouris DK, Banks CE (2010) Exploring the physicoelectrochemical properties of graphene. Chem Commun 46:8986–8988CrossRef
20.
Zurück zum Zitat Lavagnini I, Antiochia R, Magno F (2004) An extended method for the practical evaluation of the standard rate constant from cyclic voltammetric data. Electroanalysis 16:505–506CrossRef Lavagnini I, Antiochia R, Magno F (2004) An extended method for the practical evaluation of the standard rate constant from cyclic voltammetric data. Electroanalysis 16:505–506CrossRef
21.
Zurück zum Zitat Brownson DAC, Banks CE (2011) Graphene electrochemistry: surfactants inherent to graphene inhibit metal analysis. Electrochem Commun 13:111–113CrossRef Brownson DAC, Banks CE (2011) Graphene electrochemistry: surfactants inherent to graphene inhibit metal analysis. Electrochem Commun 13:111–113CrossRef
22.
Zurück zum Zitat Brownson DAC, Banks CE (2012) Fabricating graphene supercapacitors: highlighting the impact of surfactants and moieties. Chem Commun 48:1425–1427CrossRef Brownson DAC, Banks CE (2012) Fabricating graphene supercapacitors: highlighting the impact of surfactants and moieties. Chem Commun 48:1425–1427CrossRef
23.
Zurück zum Zitat Li W, Tan C, Lowe MA, Abruña HD, Ralph DC (2011) Electrochemistry of individual monolayer graphene sheets. ACS Nano 5:2264–2270PubMedCrossRef Li W, Tan C, Lowe MA, Abruña HD, Ralph DC (2011) Electrochemistry of individual monolayer graphene sheets. ACS Nano 5:2264–2270PubMedCrossRef
24.
Zurück zum Zitat Chen R, Nioradze N, Santhosh P, Li Z, Surwade SP, Shenoy GJ, Parobek DG, Kim MA, Liu H, Amemiya S (2015) Ultrafast electron transfer kinetics of graphene grown by chemical vapor deposition. Angew Chem Int Ed 54:15134–15137CrossRef Chen R, Nioradze N, Santhosh P, Li Z, Surwade SP, Shenoy GJ, Parobek DG, Kim MA, Liu H, Amemiya S (2015) Ultrafast electron transfer kinetics of graphene grown by chemical vapor deposition. Angew Chem Int Ed 54:15134–15137CrossRef
25.
Zurück zum Zitat Lim CX, Hoh HY, Ang PK, Loh KP (2010) Direct voltammetric detection of DNA and pH sensing on epitaxial graphene: an insight into the role of oxygenated defects. Anal Chem 82:7387–7393PubMedCrossRef Lim CX, Hoh HY, Ang PK, Loh KP (2010) Direct voltammetric detection of DNA and pH sensing on epitaxial graphene: an insight into the role of oxygenated defects. Anal Chem 82:7387–7393PubMedCrossRef
26.
Zurück zum Zitat Li K, Jiang J, Dong Z, Luo H, Qu L (2015) A linear graphene edge nanoelectrode. Chem Commun 51:8765–8768CrossRef Li K, Jiang J, Dong Z, Luo H, Qu L (2015) A linear graphene edge nanoelectrode. Chem Commun 51:8765–8768CrossRef
27.
Zurück zum Zitat Poh HL, Sanek F, Ambrosi A, Zhao G, Sofer Z, Pumera M (2012) Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale 4:3515–3522PubMedCrossRef Poh HL, Sanek F, Ambrosi A, Zhao G, Sofer Z, Pumera M (2012) Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale 4:3515–3522PubMedCrossRef
28.
Zurück zum Zitat Mazaheri M, Aashuri H, Simchi A (2017) Three-dimensional hybrid graphene/nickel electrodes on zinc oxide nanorod arrays as non-enzymatic glucose biosensors. Sensors Actuators B Chem 251:462–471CrossRef Mazaheri M, Aashuri H, Simchi A (2017) Three-dimensional hybrid graphene/nickel electrodes on zinc oxide nanorod arrays as non-enzymatic glucose biosensors. Sensors Actuators B Chem 251:462–471CrossRef
29.
Zurück zum Zitat Güell AG, Cuharuc AS, Kim Y-R, Zhang G, Tan S-Y, Ebejer N, Unwin PR (2015) Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges. ACS Nano 9:3558–3571PubMedCrossRef Güell AG, Cuharuc AS, Kim Y-R, Zhang G, Tan S-Y, Ebejer N, Unwin PR (2015) Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges. ACS Nano 9:3558–3571PubMedCrossRef
30.
Zurück zum Zitat Brownson DAC, Lacombe AC, Kampouris DK, Banks CE (2012) Graphene electroanalysis: inhibitory effects in the stripping voltammetry of cadmium with surfactant free graphene. Analyst 137:420–423PubMedCrossRef Brownson DAC, Lacombe AC, Kampouris DK, Banks CE (2012) Graphene electroanalysis: inhibitory effects in the stripping voltammetry of cadmium with surfactant free graphene. Analyst 137:420–423PubMedCrossRef
31.
Zurück zum Zitat Randviir EP, Banks CE (2012) Electrochemical measurement of the DNA bases adenine and guanine at surfactant-free graphene modified electrodes. RSC Adv 2:5800–5805CrossRef Randviir EP, Banks CE (2012) Electrochemical measurement of the DNA bases adenine and guanine at surfactant-free graphene modified electrodes. RSC Adv 2:5800–5805CrossRef
32.
Zurück zum Zitat Brownson DAC, Banks CE (2012) The electrochemistry of CVD graphene: progress and prospects. Phys Chem Chem Phys 14:8264–8281PubMedCrossRef Brownson DAC, Banks CE (2012) The electrochemistry of CVD graphene: progress and prospects. Phys Chem Chem Phys 14:8264–8281PubMedCrossRef
33.
Zurück zum Zitat Brownson DAC, Gomez-Mingot M, Banks CE (2011) CVD graphene electrochemistry: biologically relevant molecules. Phys Chem Chem Phys 13:20284–20288PubMedCrossRef Brownson DAC, Gomez-Mingot M, Banks CE (2011) CVD graphene electrochemistry: biologically relevant molecules. Phys Chem Chem Phys 13:20284–20288PubMedCrossRef
34.
Zurück zum Zitat Keeley GP, Mcevoy N, Nolan H, Holzinger M, Cosnier S, Duesberg GS (2014) Electroanalytical sensing properties of pristine and functionalized multilayer graphene. Chem Mater 26:1807–1812CrossRef Keeley GP, Mcevoy N, Nolan H, Holzinger M, Cosnier S, Duesberg GS (2014) Electroanalytical sensing properties of pristine and functionalized multilayer graphene. Chem Mater 26:1807–1812CrossRef
35.
Zurück zum Zitat Salmi Z, Koefoed L, Jensen BBE, Čabo AG, Hofmann P, Pedersen SU, Daasbjerg K (2016) Electroinduced intercalation of tetraalkylammonium ions at the interface of graphene grown on copper, platinum, and iridium. ChemElectroChem 3:2202–2211CrossRef Salmi Z, Koefoed L, Jensen BBE, Čabo AG, Hofmann P, Pedersen SU, Daasbjerg K (2016) Electroinduced intercalation of tetraalkylammonium ions at the interface of graphene grown on copper, platinum, and iridium. ChemElectroChem 3:2202–2211CrossRef
36.
Zurück zum Zitat Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814PubMedCrossRef Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814PubMedCrossRef
37.
Zurück zum Zitat Randviir EP, Brownson DAC, Gomez-Mingot M, Kampouris DK, Iniesta J, Banks CE (2012) Electrochemistry of Q-graphene. Nanoscale 4:6470–6480PubMedCrossRef Randviir EP, Brownson DAC, Gomez-Mingot M, Kampouris DK, Iniesta J, Banks CE (2012) Electrochemistry of Q-graphene. Nanoscale 4:6470–6480PubMedCrossRef
38.
Zurück zum Zitat Hadish F, Jou S, Huang B-R, Kuo H-A, Tu C-W (2017) Functionalization of CVD grown graphene with downstream oxygen plasma treatment for glucose sensors. J Electrochem Soc 164:B336–B341CrossRef Hadish F, Jou S, Huang B-R, Kuo H-A, Tu C-W (2017) Functionalization of CVD grown graphene with downstream oxygen plasma treatment for glucose sensors. J Electrochem Soc 164:B336–B341CrossRef
39.
Zurück zum Zitat Jiang J, Zhang P, Liu Y, Luo H (2017) A novel non-enzymatic glucose sensor based on a Cu-nanoparticle-modified graphene edge nanoelectrode. Anal Methods 9:2205–2210CrossRef Jiang J, Zhang P, Liu Y, Luo H (2017) A novel non-enzymatic glucose sensor based on a Cu-nanoparticle-modified graphene edge nanoelectrode. Anal Methods 9:2205–2210CrossRef
40.
Zurück zum Zitat Liu L, Qi W, Gao X, Wang C, Wang G (2018) Synergistic effect of metal ion additives on graphitic carbon nitride nanosheet-templated electrodeposition of Cu@CuO for enzyme-free glucose detection. J Alloys Compd 745:155–163CrossRef Liu L, Qi W, Gao X, Wang C, Wang G (2018) Synergistic effect of metal ion additives on graphitic carbon nitride nanosheet-templated electrodeposition of Cu@CuO for enzyme-free glucose detection. J Alloys Compd 745:155–163CrossRef
41.
Zurück zum Zitat Song H, Li X, Cui P, Guo S, Liu W, Wang X (2017) Sensitivity investigation for the dependence of monolayer and stacking graphene NH3 gas sensor. Diam Relat Mater 73:56–61CrossRef Song H, Li X, Cui P, Guo S, Liu W, Wang X (2017) Sensitivity investigation for the dependence of monolayer and stacking graphene NH3 gas sensor. Diam Relat Mater 73:56–61CrossRef
42.
Zurück zum Zitat Feng X, Irle S, Witek H, Morokuma K, Vidic R, Borguet E (2005) Sensitivity of ammonia interaction with single-walled carbon nanotube bundles to the presence of defect sites and functionalities. J Am Chem Soc 127:10533–10538PubMedCrossRef Feng X, Irle S, Witek H, Morokuma K, Vidic R, Borguet E (2005) Sensitivity of ammonia interaction with single-walled carbon nanotube bundles to the presence of defect sites and functionalities. J Am Chem Soc 127:10533–10538PubMedCrossRef
43.
Zurück zum Zitat Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–723PubMedCrossRef Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–723PubMedCrossRef
44.
Zurück zum Zitat Moo JGS, Khezri B, Webster RD, Pumera M (2014) Graphene oxides prepared by Hummers’, Hofmann’s, and Staudenmaier’s methods: dramatic influences on heavy-metal-ion adsorption. ChemPhysChem 15:2922–2929PubMedCrossRef Moo JGS, Khezri B, Webster RD, Pumera M (2014) Graphene oxides prepared by Hummers’, Hofmann’s, and Staudenmaier’s methods: dramatic influences on heavy-metal-ion adsorption. ChemPhysChem 15:2922–2929PubMedCrossRef
45.
Zurück zum Zitat Ong BK, Poh HL, Chua CK, Pumera M (2012) Graphenes prepared by Hummers, Staudenmaier and Hofmann methods for analysis of TNT-based nitroaromatic explosives in seawater. Electroanalysis 24:2085–2093CrossRef Ong BK, Poh HL, Chua CK, Pumera M (2012) Graphenes prepared by Hummers, Staudenmaier and Hofmann methods for analysis of TNT-based nitroaromatic explosives in seawater. Electroanalysis 24:2085–2093CrossRef
46.
Zurück zum Zitat Jia Y, Zhang L, Du A, Gao G, Chen J, Yan X, Brown CL, Yao X (2016) Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv Mater 28:9532–9538PubMedCrossRef Jia Y, Zhang L, Du A, Gao G, Chen J, Yan X, Brown CL, Yao X (2016) Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv Mater 28:9532–9538PubMedCrossRef
47.
Zurück zum Zitat Hui KH, Ambrosi A, Pumera M, Bonanni A (2016) Improving the analytical performance of graphene oxide towards the assessment of polyphenols. Chem Eur J 22:3830–3834PubMedCrossRef Hui KH, Ambrosi A, Pumera M, Bonanni A (2016) Improving the analytical performance of graphene oxide towards the assessment of polyphenols. Chem Eur J 22:3830–3834PubMedCrossRef
48.
Zurück zum Zitat Li W, Geng X, Guo Y, Rong J, Gong Y, Wu L, Zhang X, Li P, Xu J, Cheng G, Sun M, Liu L (2011) Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano 5:6955–6961PubMedCrossRef Li W, Geng X, Guo Y, Rong J, Gong Y, Wu L, Zhang X, Li P, Xu J, Cheng G, Sun M, Liu L (2011) Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano 5:6955–6961PubMedCrossRef
49.
Zurück zum Zitat Chung MG, Kim D-H, Seo DK, Kim T, Im HU, Lee HM, Yoo J-B, Hong S-H, Kang TJ, Kim YH (2012) Flexible hydrogen sensors using graphene with palladium nanoparticle decoration. Sensors Actuators B Chem 169:387–392CrossRef Chung MG, Kim D-H, Seo DK, Kim T, Im HU, Lee HM, Yoo J-B, Hong S-H, Kang TJ, Kim YH (2012) Flexible hydrogen sensors using graphene with palladium nanoparticle decoration. Sensors Actuators B Chem 169:387–392CrossRef
50.
Zurück zum Zitat Guo S, Wen D, Zhai Y, Dong S, Wang E (2010) Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 4:3959–3968PubMedCrossRef Guo S, Wen D, Zhai Y, Dong S, Wang E (2010) Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 4:3959–3968PubMedCrossRef
51.
Zurück zum Zitat Gong J, Zhou T, Song D, Zhang L (2010) Monodispersed Au nanoparticles decorated graphene as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury(II). Sensors Actuators B Chem 150:491–497CrossRef Gong J, Zhou T, Song D, Zhang L (2010) Monodispersed Au nanoparticles decorated graphene as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury(II). Sensors Actuators B Chem 150:491–497CrossRef
52.
Zurück zum Zitat Chen S, Yuan R, Chai Y, Hu F (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15–32CrossRef Chen S, Yuan R, Chai Y, Hu F (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15–32CrossRef
53.
Zurück zum Zitat Kamat PV (2010) Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1:520–527CrossRef Kamat PV (2010) Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1:520–527CrossRef
54.
Zurück zum Zitat Xu C, Wang X, Zhu J (2008) Graphene−metal particle nanocomposites. J Phys Chem C 112:19841–19845CrossRef Xu C, Wang X, Zhu J (2008) Graphene−metal particle nanocomposites. J Phys Chem C 112:19841–19845CrossRef
55.
Zurück zum Zitat Yin PT, Shah S, Chhowalla M, Lee K-B (2015) Design, synthesis, and characterization of graphene–nanoparticle hybrid materials for bioapplications. Chem Rev 115:2483–2531PubMedPubMedCentralCrossRef Yin PT, Shah S, Chhowalla M, Lee K-B (2015) Design, synthesis, and characterization of graphene–nanoparticle hybrid materials for bioapplications. Chem Rev 115:2483–2531PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Khan A, Khan AAP, Asiri AM, Khan I (2017) Facial synthesis, characterization of graphene oxide-zirconium tungstate (GO-Zr(WO4)2) nanocomposite and its application as modified microsensor for dopamine. J Alloys Compd 723:811–819CrossRef Khan A, Khan AAP, Asiri AM, Khan I (2017) Facial synthesis, characterization of graphene oxide-zirconium tungstate (GO-Zr(WO4)2) nanocomposite and its application as modified microsensor for dopamine. J Alloys Compd 723:811–819CrossRef
57.
Zurück zum Zitat Kaçar C, Erden PE, Kiliç E (2017) Amperometric l-lysine biosensor based on carboxylated multiwalled carbon nanotubes-SnO2 nanoparticles-graphene composite. Appl Surf Sci 419:916–923CrossRef Kaçar C, Erden PE, Kiliç E (2017) Amperometric l-lysine biosensor based on carboxylated multiwalled carbon nanotubes-SnO2 nanoparticles-graphene composite. Appl Surf Sci 419:916–923CrossRef
58.
Zurück zum Zitat Hallaj R, Haghighi N (2017) Photoelectrochemical amperometric sensing of cyanide using a glassy carbon electrode modified with graphene oxide and titanium dioxide nanoparticles. Microchim Acta 184:3581–3590CrossRef Hallaj R, Haghighi N (2017) Photoelectrochemical amperometric sensing of cyanide using a glassy carbon electrode modified with graphene oxide and titanium dioxide nanoparticles. Microchim Acta 184:3581–3590CrossRef
59.
Zurück zum Zitat Sreejesh M, Shenoy S, Sridharan K, Kufian D, Arof AK, Nagaraja HS (2017) Melt quenched vanadium oxide embedded in graphene oxide sheets as composite electrodes for amperometric dopamine sensing and lithium ion battery applications. Appl Surf Sci 410:336–343CrossRef Sreejesh M, Shenoy S, Sridharan K, Kufian D, Arof AK, Nagaraja HS (2017) Melt quenched vanadium oxide embedded in graphene oxide sheets as composite electrodes for amperometric dopamine sensing and lithium ion battery applications. Appl Surf Sci 410:336–343CrossRef
60.
Zurück zum Zitat Lee H, Hong JA (2017) Enhancement of catalytic activity of reduced graphene oxide via transition metal doping strategy. Nanoscale Res Lett 12:426PubMedPubMedCentralCrossRef Lee H, Hong JA (2017) Enhancement of catalytic activity of reduced graphene oxide via transition metal doping strategy. Nanoscale Res Lett 12:426PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Pakapongpan S, Poo-Arporn RP (2017) Self-assembly of glucose oxidase on reduced graphene oxide-magnetic nanoparticles nanocomposite-based direct electrochemistry for reagentless glucose biosensor. Mater Sci Eng C 76:398–405CrossRef Pakapongpan S, Poo-Arporn RP (2017) Self-assembly of glucose oxidase on reduced graphene oxide-magnetic nanoparticles nanocomposite-based direct electrochemistry for reagentless glucose biosensor. Mater Sci Eng C 76:398–405CrossRef
62.
Zurück zum Zitat Zhao C, Wu X, Li P, Zhao C, Qian X (2017) Hydrothermal deposition of CuO/rGO/Cu2O nanocomposite on copper foil for sensitive nonenzymatic voltammetric determination of glucose and hydrogen peroxide. Microchim Acta 184:2341–2348CrossRef Zhao C, Wu X, Li P, Zhao C, Qian X (2017) Hydrothermal deposition of CuO/rGO/Cu2O nanocomposite on copper foil for sensitive nonenzymatic voltammetric determination of glucose and hydrogen peroxide. Microchim Acta 184:2341–2348CrossRef
63.
Zurück zum Zitat Li J, Guo S, Zhai Y, Wang E (2009) High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Anal Chim Acta 649:196–201PubMedCrossRef Li J, Guo S, Zhai Y, Wang E (2009) High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Anal Chim Acta 649:196–201PubMedCrossRef
64.
Zurück zum Zitat Liu M, Pan D, Pan W, Zhu Y, Hu X, Han H, Wang C, Shen D (2017) In-situ synthesis of reduced graphene oxide/gold nanoparticles modified electrode for speciation analysis of copper in seawater. Talanta 174:500–506CrossRefPubMed Liu M, Pan D, Pan W, Zhu Y, Hu X, Han H, Wang C, Shen D (2017) In-situ synthesis of reduced graphene oxide/gold nanoparticles modified electrode for speciation analysis of copper in seawater. Talanta 174:500–506CrossRefPubMed
65.
Zurück zum Zitat Bindewald EH, Schibelbain AF, Papi MAP, Neiva EGC, Zarbin AJG, Bergamini MF, Marcolino-Júnior LH (2017) Design of a new nanocomposite between bismuth nanoparticles and graphene oxide for development of electrochemical sensors. Mater Sci Eng C 79:262–269CrossRef Bindewald EH, Schibelbain AF, Papi MAP, Neiva EGC, Zarbin AJG, Bergamini MF, Marcolino-Júnior LH (2017) Design of a new nanocomposite between bismuth nanoparticles and graphene oxide for development of electrochemical sensors. Mater Sci Eng C 79:262–269CrossRef
66.
Zurück zum Zitat Ba Hashwan SS, Ruslinda AR, Fatin MF, Arshad MKM, Hashim U (2017) Reduced graphene oxide–multiwalled carbon nanotubes composites as sensing membrane electrodes for DNA detection. Microsyst Technol 23:3421–3428CrossRef Ba Hashwan SS, Ruslinda AR, Fatin MF, Arshad MKM, Hashim U (2017) Reduced graphene oxide–multiwalled carbon nanotubes composites as sensing membrane electrodes for DNA detection. Microsyst Technol 23:3421–3428CrossRef
67.
Zurück zum Zitat Mao Y, Bao Y, Gan S, Li F, Niu L (2011) Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element. Biosens Bioelectron 28:291–297PubMedCrossRef Mao Y, Bao Y, Gan S, Li F, Niu L (2011) Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element. Biosens Bioelectron 28:291–297PubMedCrossRef
Metadaten
Titel
Graphene-Based Electrochemical Sensors
verfasst von
Edward P. Randviir
Craig E. Banks
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/5346_2018_25

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.