Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 10/2016

13.06.2016

Graphene-crosslinked two-way reversible shape memory polyurethane nanocomposites with enhanced mechanical and electrical properties

verfasst von: Hongfang Jiu, Hongqian Jiao, Lixin Zhang, Shaomei Zhang, Yanan Zhao

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 10/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Highly flexible, conductive, and two-way reversible shape memory polyurethane nanocomposites were prepared with the in situ synthesized method, containing different graphene nanosheet contents ranging from 1.0 to 8.0 wt%. The dispersion of the nanocomposites in the polymer was monitored by scanning electron microscopy and thermal properties, mechanical properties, electrical properties, shape memory properties were comparatively investigated. The results showed that the nanocomposite was more stable when the content of graphene is 2 wt% in the crosslinked network structure. In comparison to pristine polyurethane, the graphene crosslinked polyurethane composite exhibited better thermostability, breaking stress, and exceptional elongation-at-break. The resulting composite exhibited 93 % shape fixity, 95 % shape recovery of 2.0 % loading, and fast electroactive shape recovery rate. Moreover, the polymers also showed good reversible two-way shape memory behaviors, thus it could be a promising material for the fabrication of graphene-based actuating devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.L. Hu, Y. Zhu, H.H. Huang, Recent advances in shape-memory polymers: structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 37, 1720–1763 (2012)CrossRef J.L. Hu, Y. Zhu, H.H. Huang, Recent advances in shape-memory polymers: structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 37, 1720–1763 (2012)CrossRef
2.
Zurück zum Zitat C. Liu, H. Qin, P.T. Mather, Review of progress in shape-memory polymers. J. Mater. Chem. 17, 1543–1558 (2007)CrossRef C. Liu, H. Qin, P.T. Mather, Review of progress in shape-memory polymers. J. Mater. Chem. 17, 1543–1558 (2007)CrossRef
3.
Zurück zum Zitat D. Ratna, J. Karger-Kocsis, Recent advances in shape memory polymers and composites: a review. J. Mater. Sci. 43, 254–269 (2008)CrossRef D. Ratna, J. Karger-Kocsis, Recent advances in shape memory polymers and composites: a review. J. Mater. Sci. 43, 254–269 (2008)CrossRef
4.
Zurück zum Zitat L. Sun, W.M. Huang, Thermo/moisture responsive shape-memory polymer for possible surgery/operation inside living cells in futurec. Mater. Des. 31, 2684–2689 (2010)CrossRef L. Sun, W.M. Huang, Thermo/moisture responsive shape-memory polymer for possible surgery/operation inside living cells in futurec. Mater. Des. 31, 2684–2689 (2010)CrossRef
5.
Zurück zum Zitat G. Rivero, L.T.T. Nguyen, X.K.D. Hillewaere, One-pot thermo-remendable shape memory polyurethanes. Macromolecules 47, 2010–2018 (2014)CrossRef G. Rivero, L.T.T. Nguyen, X.K.D. Hillewaere, One-pot thermo-remendable shape memory polyurethanes. Macromolecules 47, 2010–2018 (2014)CrossRef
6.
Zurück zum Zitat X.F. Yang, L. Wang, W.X. Wang, Triple shape memory effect of star-shaped polyurethane. J. ACS Appl. Mater. Interfaces 6, 6545–6554 (2014)CrossRef X.F. Yang, L. Wang, W.X. Wang, Triple shape memory effect of star-shaped polyurethane. J. ACS Appl. Mater. Interfaces 6, 6545–6554 (2014)CrossRef
7.
Zurück zum Zitat L.N. Ho, H. Nishikawa, Influence of post-curing and coupling agents on polyurethane based copper filled electrically conductive adhesives. J. Mater. Sci.: Mater. Electron. 24, 2077–2081 (2013) L.N. Ho, H. Nishikawa, Influence of post-curing and coupling agents on polyurethane based copper filled electrically conductive adhesives. J. Mater. Sci.: Mater. Electron. 24, 2077–2081 (2013)
8.
Zurück zum Zitat V. Lorenzo, A. Díaz-Lantada, P. Lafont, Physical ageing of a PU-based shape memory polymer: influence on their applicability to the development of medical devices. Mater. Des. 30, 2431–2434 (2009)CrossRef V. Lorenzo, A. Díaz-Lantada, P. Lafont, Physical ageing of a PU-based shape memory polymer: influence on their applicability to the development of medical devices. Mater. Des. 30, 2431–2434 (2009)CrossRef
9.
Zurück zum Zitat T. Chen, Y. Zhao, L. Pan, M. Lin, Insight into effect of hydrothermal preparation process of nanofillers on dielectric, creep and electromechanical performance of polyurethane dielectric elastomer/reduced graphene oxide composites. J. Mater. Sci.: Mater. Electron. 26, 10164–10171 (2015) T. Chen, Y. Zhao, L. Pan, M. Lin, Insight into effect of hydrothermal preparation process of nanofillers on dielectric, creep and electromechanical performance of polyurethane dielectric elastomer/reduced graphene oxide composites. J. Mater. Sci.: Mater. Electron. 26, 10164–10171 (2015)
10.
Zurück zum Zitat S. Han, B.C. Chun, Preparation of polyurethane nanocomposites via covalent incorporation of functionalized graphene and its shape memory effect. Compos. A 58, 65–72 (2014)CrossRef S. Han, B.C. Chun, Preparation of polyurethane nanocomposites via covalent incorporation of functionalized graphene and its shape memory effect. Compos. A 58, 65–72 (2014)CrossRef
11.
Zurück zum Zitat T.C. Jin, D.D. Trung, M.O. Kyung, Shape memory polyurethane nanocomposites with functionalized graphene. Smart Mater. Struct. 21, 075017–075026 (2012)CrossRef T.C. Jin, D.D. Trung, M.O. Kyung, Shape memory polyurethane nanocomposites with functionalized graphene. Smart Mater. Struct. 21, 075017–075026 (2012)CrossRef
12.
Zurück zum Zitat H. Li, J. Zhong, J. Meng, G.J. Xian, The reinforcement efficiency of carbon nanotubes/shape memory polymer nanocomposites. Compos. Part B-Eng. 44, 508–516 (2013)CrossRef H. Li, J. Zhong, J. Meng, G.J. Xian, The reinforcement efficiency of carbon nanotubes/shape memory polymer nanocomposites. Compos. Part B-Eng. 44, 508–516 (2013)CrossRef
13.
Zurück zum Zitat H. Deka, N. Karak, R.D. Kalita, Biocompatible hyperbranched polyurethane/multi-walled carbon nanotube composites as shape memory materials. Carbon 48, 2013–2022 (2010)CrossRef H. Deka, N. Karak, R.D. Kalita, Biocompatible hyperbranched polyurethane/multi-walled carbon nanotube composites as shape memory materials. Carbon 48, 2013–2022 (2010)CrossRef
14.
Zurück zum Zitat J. Chen, Z.X. Zhang, W.B. Huang, Carbon nanotube network structure induced strain sensitivity and shape memory behavior changes of thermoplastic polyurethane. Mater. Des. 69, 105–113 (2015)CrossRef J. Chen, Z.X. Zhang, W.B. Huang, Carbon nanotube network structure induced strain sensitivity and shape memory behavior changes of thermoplastic polyurethane. Mater. Des. 69, 105–113 (2015)CrossRef
15.
Zurück zum Zitat S.A. Hashmi, H.C. Prasad, R. Abishera, Improved recovery stress in multi-walled-carbon-nanotubes reinforced polyurethane. Mater. Des. 67, 492–500 (2015)CrossRef S.A. Hashmi, H.C. Prasad, R. Abishera, Improved recovery stress in multi-walled-carbon-nanotubes reinforced polyurethane. Mater. Des. 67, 492–500 (2015)CrossRef
16.
Zurück zum Zitat G. Xing, H. Guo, X. Zhang, The physics of ultrafast saturable absorption in graphene. J. Opt. Express 18, 4564–4573 (2010)CrossRef G. Xing, H. Guo, X. Zhang, The physics of ultrafast saturable absorption in graphene. J. Opt. Express 18, 4564–4573 (2010)CrossRef
17.
Zurück zum Zitat T.H. Seah, H.L. Poh, C.K. Chua, Towards graphane applications in security: the electrochemical detection of trinitrotoluene in seawater on hydrogenated graphene. Electroanalysis 1, 62–68 (2014)CrossRef T.H. Seah, H.L. Poh, C.K. Chua, Towards graphane applications in security: the electrochemical detection of trinitrotoluene in seawater on hydrogenated graphene. Electroanalysis 1, 62–68 (2014)CrossRef
18.
Zurück zum Zitat M.S. Poorali, M.M. Bagheri-Mohagheghi, Comparison of chemical and physical reduction methods to prepare layered graphene by graphene oxide: optimization of the structural properties and tuning of energy band gap. J. Mater. Sci.: Mater. Electron. 27, 260–271 (2016) M.S. Poorali, M.M. Bagheri-Mohagheghi, Comparison of chemical and physical reduction methods to prepare layered graphene by graphene oxide: optimization of the structural properties and tuning of energy band gap. J. Mater. Sci.: Mater. Electron. 27, 260–271 (2016)
19.
Zurück zum Zitat F. Gerlin, P. Zuppella, A.J. Corso, Stability and extreme ultraviolet photo-reduction of graphene during C–K edge NEXAFS characterization. Surf. Coat. Technol. 296, 211–215 (2016)CrossRef F. Gerlin, P. Zuppella, A.J. Corso, Stability and extreme ultraviolet photo-reduction of graphene during C–K edge NEXAFS characterization. Surf. Coat. Technol. 296, 211–215 (2016)CrossRef
20.
Zurück zum Zitat S.G. Urquhart, A.P. Hitchcock, A.P. Smith, NEXAFS spectromicroscopy of polymers: overview and quantitative analysis of polyurethane polymers. J. Electron Spectrosc. Relat. Phenom. 100, 119–135 (1999)CrossRef S.G. Urquhart, A.P. Hitchcock, A.P. Smith, NEXAFS spectromicroscopy of polymers: overview and quantitative analysis of polyurethane polymers. J. Electron Spectrosc. Relat. Phenom. 100, 119–135 (1999)CrossRef
21.
Zurück zum Zitat J. Park, T. Dao, H. Lee, Properties of graphene/shape memory thermoplastic polyurethane composites actuating by various methods. Materials 7, 1520–1538 (2014)CrossRef J. Park, T. Dao, H. Lee, Properties of graphene/shape memory thermoplastic polyurethane composites actuating by various methods. Materials 7, 1520–1538 (2014)CrossRef
22.
Zurück zum Zitat J.T. Kim, B.K. Kim, E.Y. Kim, Synthesis and shape memory performance of polyurethane/graphene nanocomposites. React. Funct. Polym. 74, 16–21 (2014)CrossRef J.T. Kim, B.K. Kim, E.Y. Kim, Synthesis and shape memory performance of polyurethane/graphene nanocomposites. React. Funct. Polym. 74, 16–21 (2014)CrossRef
23.
Zurück zum Zitat X. Wang, Y. Hu, L. Song, In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J. Mater. Chem. 21, 4222–4227 (2011)CrossRef X. Wang, Y. Hu, L. Song, In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J. Mater. Chem. 21, 4222–4227 (2011)CrossRef
24.
Zurück zum Zitat J.Y. Hye, S.M. Sibdas, W.C. Jae, High-speed actuation and mechanical properties of graphene-incorporated shape memory polyurethane nanofibers. J. Chem. Phys. C. 118, 10408–10415 (2014)CrossRef J.Y. Hye, S.M. Sibdas, W.C. Jae, High-speed actuation and mechanical properties of graphene-incorporated shape memory polyurethane nanofibers. J. Chem. Phys. C. 118, 10408–10415 (2014)CrossRef
25.
Zurück zum Zitat C. Wu, X. Huang, G. Wang, Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites. J. Mater. Chem. 22, 7010–7019 (2012)CrossRef C. Wu, X. Huang, G. Wang, Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites. J. Mater. Chem. 22, 7010–7019 (2012)CrossRef
26.
Zurück zum Zitat J.H. Park, B.K. Kim, Infrared light actuated shape memory effects in crystalline polyurethane/graphene chemical hybrids. Smart Mater. Struct. 23, 025038–025044 (2014)CrossRef J.H. Park, B.K. Kim, Infrared light actuated shape memory effects in crystalline polyurethane/graphene chemical hybrids. Smart Mater. Struct. 23, 025038–025044 (2014)CrossRef
27.
Zurück zum Zitat H. Kim, Y. Miura, Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. J. Mater. Chem. 22, 3441–3450 (2010)CrossRef H. Kim, Y. Miura, Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. J. Mater. Chem. 22, 3441–3450 (2010)CrossRef
28.
Zurück zum Zitat D. Ponnamma, K.K. Sadasivuni, M. Strankowski, Interrelated shape memory and Payne effect in polyurethane/graphene oxide nanocomposites. J. RSC Adv. 3, 16068–16079 (2013)CrossRef D. Ponnamma, K.K. Sadasivuni, M. Strankowski, Interrelated shape memory and Payne effect in polyurethane/graphene oxide nanocomposites. J. RSC Adv. 3, 16068–16079 (2013)CrossRef
29.
Zurück zum Zitat S. Thakur, N. Karak, Ultratough, ductile, castor oil-based, hyperbranched, polyurethane nanocomposite using functionalized reduced graphene oxide. ACS Sustain Chem Eng 2, 1195–1202 (2014)CrossRef S. Thakur, N. Karak, Ultratough, ductile, castor oil-based, hyperbranched, polyurethane nanocomposite using functionalized reduced graphene oxide. ACS Sustain Chem Eng 2, 1195–1202 (2014)CrossRef
30.
Zurück zum Zitat V. Anjanapura, Y.R.L. Raghu, M.J. Han, Preparation and physical properties of waterborne polyurethane/functionalized. J. Chem. Phys. 209, 2487–2493 (2008) V. Anjanapura, Y.R.L. Raghu, M.J. Han, Preparation and physical properties of waterborne polyurethane/functionalized. J. Chem. Phys. 209, 2487–2493 (2008)
31.
Zurück zum Zitat S.S. Mahapatra, M.S. Ramasamy, H.J. Yoo, A reactive graphene sheet in situ functionalized hyperbranched polyurethane for high performance shape memory material. J. RSC Adv. 4, 15146–15153 (2014)CrossRef S.S. Mahapatra, M.S. Ramasamy, H.J. Yoo, A reactive graphene sheet in situ functionalized hyperbranched polyurethane for high performance shape memory material. J. RSC Adv. 4, 15146–15153 (2014)CrossRef
32.
Zurück zum Zitat T. Chung, A. Romo-Uribe, P. Mather, Two-way reversible shape memory in a semicrystalline network. Macromolecules 41, 184–192 (2008)CrossRef T. Chung, A. Romo-Uribe, P. Mather, Two-way reversible shape memory in a semicrystalline network. Macromolecules 41, 184–192 (2008)CrossRef
33.
Zurück zum Zitat Q. Ge, K.W. Kristofer, P.T. Mather, Thermomechanical behavior of a two-way shape memory composite actuator. Smart Mater. Struct. 22, 955–962 (2013) Q. Ge, K.W. Kristofer, P.T. Mather, Thermomechanical behavior of a two-way shape memory composite actuator. Smart Mater. Struct. 22, 955–962 (2013)
34.
Zurück zum Zitat S. Pandini, F. Baldi, K. Paderni, One-way and two-way shape memory behaviour of semi-crystalline networks based on solegel cross-linked poly(ε-caprolactone). Polymer 54, 4253–4265 (2013)CrossRef S. Pandini, F. Baldi, K. Paderni, One-way and two-way shape memory behaviour of semi-crystalline networks based on solegel cross-linked poly(ε-caprolactone). Polymer 54, 4253–4265 (2013)CrossRef
35.
Zurück zum Zitat J.M. Raquez, S. Vanderstappen, F. Meyer, Design of cross-linked semicrystalline poly(e-caprolactone)-based networks with one-way and two-way shape-memory properties through diels-alder reactions. J. Chem. Eur. 17, 10135–10143 (2011)CrossRef J.M. Raquez, S. Vanderstappen, F. Meyer, Design of cross-linked semicrystalline poly(e-caprolactone)-based networks with one-way and two-way shape-memory properties through diels-alder reactions. J. Chem. Eur. 17, 10135–10143 (2011)CrossRef
36.
Zurück zum Zitat M.B. Richard, H.H. James, T.M. Patrick, Shape memory poly(3-caprolactone)-co-poly(ethylene glycol) foams with body temperature triggering and two-way actuation. J. Mater. Chem. B 1, 4916–4920 (2013)CrossRef M.B. Richard, H.H. James, T.M. Patrick, Shape memory poly(3-caprolactone)-co-poly(ethylene glycol) foams with body temperature triggering and two-way actuation. J. Mater. Chem. B 1, 4916–4920 (2013)CrossRef
37.
Zurück zum Zitat Y.K. Bai, X.Z. Zhang, Q.H. Wang, A tough shape memory polymer with triple-shape memory and two-way shape memory properties. J. Mater. Chem. A 2, 4771–4778 (2014)CrossRef Y.K. Bai, X.Z. Zhang, Q.H. Wang, A tough shape memory polymer with triple-shape memory and two-way shape memory properties. J. Mater. Chem. A 2, 4771–4778 (2014)CrossRef
38.
Zurück zum Zitat L. Ma, J. Zhao, X.Y. Wang, Effects of carbon black nanoparticles on two-way reversible shape memory in crosslinked polyethylene. Polymer 56, 490–497 (2015)CrossRef L. Ma, J. Zhao, X.Y. Wang, Effects of carbon black nanoparticles on two-way reversible shape memory in crosslinked polyethylene. Polymer 56, 490–497 (2015)CrossRef
39.
Zurück zum Zitat S.J. Chen, J.L. Hu, H.Z. Zhuo, Properties and mechanism of two-way shape memory polyurethane composites. Compos. Sci. Technol. 70, 1437–1443 (2010)CrossRef S.J. Chen, J.L. Hu, H.Z. Zhuo, Properties and mechanism of two-way shape memory polyurethane composites. Compos. Sci. Technol. 70, 1437–1443 (2010)CrossRef
40.
Zurück zum Zitat M.M. Huang, X. Dong, L.L. Wang, Two-way shape memory property and its structural origin of cross-linked poly(3-caprolactone). J. RSC Adv. 4, 55483–55494 (2014)CrossRef M.M. Huang, X. Dong, L.L. Wang, Two-way shape memory property and its structural origin of cross-linked poly(3-caprolactone). J. RSC Adv. 4, 55483–55494 (2014)CrossRef
Metadaten
Titel
Graphene-crosslinked two-way reversible shape memory polyurethane nanocomposites with enhanced mechanical and electrical properties
verfasst von
Hongfang Jiu
Hongqian Jiao
Lixin Zhang
Shaomei Zhang
Yanan Zhao
Publikationsdatum
13.06.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 10/2016
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-5173-2

Weitere Artikel der Ausgabe 10/2016

Journal of Materials Science: Materials in Electronics 10/2016 Zur Ausgabe

Neuer Inhalt