Skip to main content

2015 | OriginalPaper | Buchkapitel

10. Graphene Investigation

verfasst von : Alexander Savvatimskiy

Erschienen in: Carbon at High Temperatures

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The calculation of Graphene melting is shown that gives melting temperature of one carbon layer equals 4900 K. It was shown the broad experimental and estimated methods to investigate Graphene: theory and the experiments of Alexander Balandin (USA). It was mentioned the first experiments of measuring melting temperature of the HAPG graphite under fast electrical heating in 2015 year.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K.V. Zakharchenko, A. Fasolino, J.H. Los, M.I. Katsnelson, Melting of graphene: from two to one dimension. J. Phys.: Condens. Matter 23(202202), 4 (2011) K.V. Zakharchenko, A. Fasolino, J.H. Los, M.I. Katsnelson, Melting of graphene: from two to one dimension. J. Phys.: Condens. Matter 23(202202), 4 (2011)
2.
Zurück zum Zitat A.I. Savvatimskiy, Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003). Carbon 43, 1115–1142 (2005)CrossRef A.I. Savvatimskiy, Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003). Carbon 43, 1115–1142 (2005)CrossRef
4.
5.
Zurück zum Zitat Y. Kowaki, A. Harada, F. Shimojo, K. Hoshino, J. Phys.: Condens. Matter 19, 436224 (2007) Y. Kowaki, A. Harada, F. Shimojo, K. Hoshino, J. Phys.: Condens. Matter 19, 436224 (2007)
6.
Zurück zum Zitat J.H. Los, L.M. Ghiringhelli, E.J. Meijer, A. Fasolino, Phys. Rev. B 72, 214102 (2005)CrossRef J.H. Los, L.M. Ghiringhelli, E.J. Meijer, A. Fasolino, Phys. Rev. B 72, 214102 (2005)CrossRef
7.
Zurück zum Zitat K.V. Zakharchenko, M.I. Katsnelson, A. Fasolino, Phys. Rev. Lett. 102, 046808 (2009)CrossRef K.V. Zakharchenko, M.I. Katsnelson, A. Fasolino, Phys. Rev. Lett. 102, 046808 (2009)CrossRef
8.
Zurück zum Zitat N.H. March, M.P. Tosi, Introduction to Liquid State Physics (World Scientific, Singapore, 2002)CrossRef N.H. March, M.P. Tosi, Introduction to Liquid State Physics (World Scientific, Singapore, 2002)CrossRef
9.
Zurück zum Zitat J.M. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1972)CrossRef J.M. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1972)CrossRef
10.
Zurück zum Zitat V.M. Bedanov, G.V. Gadyak, YuE Lozovik, Phys. Lett. A 109, 289 (1985)CrossRef V.M. Bedanov, G.V. Gadyak, YuE Lozovik, Phys. Lett. A 109, 289 (1985)CrossRef
11.
12.
Zurück zum Zitat F. Colonna, J.H. Los, A. Fasolino, E.J. Meijer, Phys. Rev. B 80, 134103 (2009)CrossRef F. Colonna, J.H. Los, A. Fasolino, E.J. Meijer, Phys. Rev. B 80, 134103 (2009)CrossRef
13.
Zurück zum Zitat A. Hu, M. Rybachuk, Q.B. Lu, W.W. Duley, Appl. Phys. Lett. 91, 131906 (2007)CrossRef A. Hu, M. Rybachuk, Q.B. Lu, W.W. Duley, Appl. Phys. Lett. 91, 131906 (2007)CrossRef
14.
Zurück zum Zitat A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)CrossRef A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)CrossRef
15.
Zurück zum Zitat D.L. Nika, A.A. Balandin, Two-dimensional phonon transport in graphene. J. Phys.: Condens. Matter 24, 233203 (2012) D.L. Nika, A.A. Balandin, Two-dimensional phonon transport in graphene. J. Phys.: Condens. Matter 24, 233203 (2012)
16.
Zurück zum Zitat A.A. Balandin, D.L. Nika, Phonons in low-dimensions: Engineering phonons in nanostructures and grapheme. Mater. Today 15, 266–275 (2012)CrossRef A.A. Balandin, D.L. Nika, Phonons in low-dimensions: Engineering phonons in nanostructures and grapheme. Mater. Today 15, 266–275 (2012)CrossRef
17.
Zurück zum Zitat A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single layer grapheme. Nano Lett. 8, 902–907 (2008)CrossRef A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single layer grapheme. Nano Lett. 8, 902–907 (2008)CrossRef
18.
Zurück zum Zitat S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Extremely high thermal conductivity in graphene: Prospects for thermal management application in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008)CrossRef S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Extremely high thermal conductivity in graphene: Prospects for thermal management application in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008)CrossRef
19.
Zurück zum Zitat S. Ghosh, W. Bao, D.L. Nika, S. Subrina, E.P. Pokatilov, C.N. Lau, A.A. Balandin, Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 9, 555–558 (2010)CrossRef S. Ghosh, W. Bao, D.L. Nika, S. Subrina, E.P. Pokatilov, C.N. Lau, A.A. Balandin, Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 9, 555–558 (2010)CrossRef
20.
Zurück zum Zitat A.I. Savvatimskiy, V.E. Fortov, Cheret R. (1998) Thermophysical properties of liquid metals and graphite, and diamond production under fast heating, High Temp.-High Press, 30, pp. 1–18 A.I. Savvatimskiy, V.E. Fortov, Cheret R. (1998) Thermophysical properties of liquid metals and graphite, and diamond production under fast heating, High Temp.-High Press, 30, pp. 1–18
21.
Zurück zum Zitat A.A. Balandin, S. Ghosh, D.L. Nikaande, P. Pokatilov, Thermal conduction in suspended graphene layers. Fullerenes, Nanotubes, Carbon Nanostruct. 18, 474–486 (2010)CrossRef A.A. Balandin, S. Ghosh, D.L. Nikaande, P. Pokatilov, Thermal conduction in suspended graphene layers. Fullerenes, Nanotubes, Carbon Nanostruct. 18, 474–486 (2010)CrossRef
22.
24.
Zurück zum Zitat Yu.M. Korolev, New forms of crystalline carbon, Doklady T. 394(1), 36–39 (2004) (in Russian) Yu.M. Korolev, New forms of crystalline carbon, Doklady T. 394(1), 36–39 (2004) (in Russian)
25.
Zurück zum Zitat F.P. Bundy, Pressure-temperature phase diagram of elemental carbon. Phys. A 156(1), 169 (1989)CrossRef F.P. Bundy, Pressure-temperature phase diagram of elemental carbon. Phys. A 156(1), 169 (1989)CrossRef
26.
Zurück zum Zitat G.R. Gathers, J.W. Shaner, D.A. Young, High temperature carbon equation of state, UCRL-51644, Livermor, pp. 1–13 (1974) G.R. Gathers, J.W. Shaner, D.A. Young, High temperature carbon equation of state, UCRL-51644, Livermor, pp. 1–13 (1974)
27.
Zurück zum Zitat A.F. Goncharov, I.N. Makarenko, S.M. Stishov, Graphite at pressures up to 55 GPa: optical properties and combination scattering of light, amorphous carbon?, JEPT, 96(2), 670–673 (1989) (in Russian) A.F. Goncharov, I.N. Makarenko, S.M. Stishov, Graphite at pressures up to 55 GPa: optical properties and combination scattering of light, amorphous carbon?, JEPT, 96(2), 670–673 (1989) (in Russian)
29.
Zurück zum Zitat S. Amini, H. Kalaantari, J. Garay, A.A. Balandin, R. Abbaschian, Growth of graphene and graphite nanocrystals from a molten phase. J. Mater. Sci. 46, 6255–6263 (2011)CrossRef S. Amini, H. Kalaantari, J. Garay, A.A. Balandin, R. Abbaschian, Growth of graphene and graphite nanocrystals from a molten phase. J. Mater. Sci. 46, 6255–6263 (2011)CrossRef
30.
Zurück zum Zitat S. Amini, J. Garay, G. Liu, A.A. Balandin, R. Abbaschian, Growth of large-area graphene films from metal-carbon melts. J. Appl. Phys. 108, 094321 (2010)CrossRef S. Amini, J. Garay, G. Liu, A.A. Balandin, R. Abbaschian, Growth of large-area graphene films from metal-carbon melts. J. Appl. Phys. 108, 094321 (2010)CrossRef
31.
Zurück zum Zitat J.D. Renteria, D.L. Nika, A.A. Balandin, Graphene Thermal Properties: applications in thermal management and energy storage. Appl. Sci. 4, 525–547 (2014)CrossRef J.D. Renteria, D.L. Nika, A.A. Balandin, Graphene Thermal Properties: applications in thermal management and energy storage. Appl. Sci. 4, 525–547 (2014)CrossRef
32.
Zurück zum Zitat U. Zastrau, A. Woldegeorgis, E. Förster, R. Loetzsch, H. Marschner, I. Uschmann, Characterization of strongly-bent HAPG crystals for von-Hámos x-ray spectrographs, Preprint typeset in JINST style—HYPER VERSION. J. Instrum. 8 (2013) U. Zastrau, A. Woldegeorgis, E. Förster, R. Loetzsch, H. Marschner, I. Uschmann, Characterization of strongly-bent HAPG crystals for von-Hámos x-ray spectrographs, Preprint typeset in JINST style—HYPER VERSION. J. Instrum. 8 (2013)
33.
Zurück zum Zitat C.A. Klein, W.D. Straub, R.J. Diefendorf, Evidence of single-crystal characteristics in highly annealed pyrolytic graphite. Phys. Rev. 125, 468–470 (1962)CrossRef C.A. Klein, W.D. Straub, R.J. Diefendorf, Evidence of single-crystal characteristics in highly annealed pyrolytic graphite. Phys. Rev. 125, 468–470 (1962)CrossRef
34.
Zurück zum Zitat H. Legall, H. Stiel, et al., A new generation of x-ray optics based on pyrolytic graphite. In Proceedings of FEL, BESSY Berlin Germany, pp. 798 (2006) H. Legall, H. Stiel, et al., A new generation of x-ray optics based on pyrolytic graphite. In Proceedings of FEL, BESSY Berlin Germany, pp. 798 (2006)
35.
Zurück zum Zitat A.P. Shevelko, A. Antonov, et al., Focusing crystal von hamos spectrometer for x-ray spectroscopy and x-ray fluorescence applications. In International Symposium on Optical Science and Technology, International Society for Optics and Photonics, pp. 148–154 (2000) A.P. Shevelko, A. Antonov, et al., Focusing crystal von hamos spectrometer for x-ray spectroscopy and x-ray fluorescence applications. In International Symposium on Optical Science and Technology, International Society for Optics and Photonics, pp. 148–154 (2000)
36.
Zurück zum Zitat I.G. Grigorieva, A.A. Antonov, HOPG as powerful x-ray optics. X-Ray Spectrom. 32(1), 64–68 (2003)CrossRef I.G. Grigorieva, A.A. Antonov, HOPG as powerful x-ray optics. X-Ray Spectrom. 32(1), 64–68 (2003)CrossRef
37.
Zurück zum Zitat Ya.I. Frenkel, Kinetic Theory of Liquids (Clarendon Press, Oxford, 1946) Ya.I. Frenkel, Kinetic Theory of Liquids (Clarendon Press, Oxford, 1946)
38.
Zurück zum Zitat A.V. Baitin, A.A. Lebedev, S.V. Romanenko, V.N. Senchenko, M.A. Sheindlin, The melting point and optical properties of solid and liquid carbon at pressures up to 2 kbar. High Temp.-High Press. 21, 157–170 (1990) A.V. Baitin, A.A. Lebedev, S.V. Romanenko, V.N. Senchenko, M.A. Sheindlin, The melting point and optical properties of solid and liquid carbon at pressures up to 2 kbar. High Temp.-High Press. 21, 157–170 (1990)
39.
Zurück zum Zitat D.M. Haaland, Graphite-liquid-vapor triple point pressure and the density of liquid carbon. Carbon 14(6), 357–361 (1976)CrossRef D.M. Haaland, Graphite-liquid-vapor triple point pressure and the density of liquid carbon. Carbon 14(6), 357–361 (1976)CrossRef
40.
Zurück zum Zitat V.N. Senchenko, M.A. Sheindlin, Experimental investigation of caloric properties for tungsten and graphite in the vicinity of their melting point. High Temp. 25(3), 492–496 (1987) (in Russian) V.N. Senchenko, M.A. Sheindlin, Experimental investigation of caloric properties for tungsten and graphite in the vicinity of their melting point. High Temp. 25(3), 492–496 (1987) (in Russian)
41.
Zurück zum Zitat M.J. Kuchner, S. Seager, Astrophys. J. Lett. 0504214, 2 (2005) M.J. Kuchner, S. Seager, Astrophys. J. Lett. 0504214, 2 (2005)
42.
Zurück zum Zitat A.M. Kondratyev, S.V. Onufriev, A.I. Savvatimskiy, Melting of HAPG graphite. Joint Institute for High Temperatures, Moscow, Russia, (unpublished), see the chapter 10 A.M. Kondratyev, S.V. Onufriev, A.I. Savvatimskiy, Melting of HAPG graphite. Joint Institute for High Temperatures, Moscow, Russia, (unpublished), see the chapter 10
Metadaten
Titel
Graphene Investigation
verfasst von
Alexander Savvatimskiy
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-21350-7_10

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.