Skip to main content

2015 | OriginalPaper | Buchkapitel

2. Graphene Laser Irradiation CVD Growth

verfasst von : Yasuhide Ohno, Kenzo Maehashi, Kazuhiko Matsumoto

Erschienen in: Frontiers of Graphene and Carbon Nanotubes

Verlag: Springer Japan

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We have demonstrated a simple method of directly synthesizing graphene on dielectric surfaces using laser irradiation without a carbon source gas. The position of the graphene synthesis was precisely controlled. Moreover, channels were formed during graphene synthesis by scanning the laser beam across the substrate. The resulting device showed typical ambipolar transport behavior, which indicates that the channel consisted of graphene and that the device acted as a field-effect transistor (FET). Our laser irradiation technique does not require transfer processes and carbon source gases and is a promising method for graphene synthesis and fabricating graphene FETs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef
2.
Zurück zum Zitat Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef
3.
Zurück zum Zitat Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308CrossRef Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308CrossRef
4.
Zurück zum Zitat Lin Y-M, Jenkins KA, Valdes-Garcia A, Small JP, Farmer DB, Avouris P (2009) Operation of graphene transistors at gigahertz frequencies. Nano Lett 9:422–426CrossRef Lin Y-M, Jenkins KA, Valdes-Garcia A, Small JP, Farmer DB, Avouris P (2009) Operation of graphene transistors at gigahertz frequencies. Nano Lett 9:422–426CrossRef
5.
Zurück zum Zitat Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578CrossRef Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578CrossRef
6.
Zurück zum Zitat Liao L, Lin YC, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang KL, Huang Y, Duan X (2010) High-speed graphene transistors with a self-aligned nanowire gate. Nature 467:305–308CrossRef Liao L, Lin YC, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang KL, Huang Y, Duan X (2010) High-speed graphene transistors with a self-aligned nanowire gate. Nature 467:305–308CrossRef
7.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200CrossRef
8.
Zurück zum Zitat Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35CrossRef Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35CrossRef
9.
Zurück zum Zitat Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314CrossRef Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314CrossRef
10.
Zurück zum Zitat Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei S-S (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 93:113103CrossRef Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei S-S (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 93:113103CrossRef
11.
Zurück zum Zitat Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196CrossRef Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196CrossRef
12.
Zurück zum Zitat Li X, Cai W, Colombo L, Ruoff RS (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9:4268–4272CrossRef Li X, Cai W, Colombo L, Ruoff RS (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9:4268–4272CrossRef
13.
Zurück zum Zitat Zaifuddin NM, Okamoto S, Ikuta T, Ohno Y, Maehashi K, Miyake M, Greenwood P, Teo KBK, Matsumoto K (2013) pH sensor based on chemical-vapor-deposition-synthesized graphene transistor array. Jpn J Appl Phys 52:06GK04 Zaifuddin NM, Okamoto S, Ikuta T, Ohno Y, Maehashi K, Miyake M, Greenwood P, Teo KBK, Matsumoto K (2013) pH sensor based on chemical-vapor-deposition-synthesized graphene transistor array. Jpn J Appl Phys 52:06GK04
14.
Zurück zum Zitat Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRef Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRef
15.
Zurück zum Zitat Xu K, Cao P, Heath JR (2009) Scanning tunneling microscopy characterization of the electrical properties of wrinkles in exfoliated graphene monolayers. Nano Lett 9:4446–4451CrossRef Xu K, Cao P, Heath JR (2009) Scanning tunneling microscopy characterization of the electrical properties of wrinkles in exfoliated graphene monolayers. Nano Lett 9:4446–4451CrossRef
16.
Zurück zum Zitat Gumi K, Ohno Y, Maehashi K, Inoue K, Matsumoto K (2012) Direct synthesis of graphene on SiO2 substrates by transfer-free processes. Jpn J Appl Phys 51:06FD12 Gumi K, Ohno Y, Maehashi K, Inoue K, Matsumoto K (2012) Direct synthesis of graphene on SiO2 substrates by transfer-free processes. Jpn J Appl Phys 51:06FD12
17.
Zurück zum Zitat Zheng M, Takei K, Hsia B, Fang H, Zhang X, Ferralis N, Ko H, Chueh Y-L, Zhang Y, Maboudian R, Javey A (2010) Metal-catalyzed crystallization of amorphous carbon to graphene. Appl Phys Lett 96:063110CrossRef Zheng M, Takei K, Hsia B, Fang H, Zhang X, Ferralis N, Ko H, Chueh Y-L, Zhang Y, Maboudian R, Javey A (2010) Metal-catalyzed crystallization of amorphous carbon to graphene. Appl Phys Lett 96:063110CrossRef
18.
Zurück zum Zitat Koshida K, Gumi K, Ohno Y, Maehashi K, Inoue K, Matsumoto K (2013) Synthesis on silicon oxide surfaces using laser irradiation. Appl Phys Express 6:105101CrossRef Koshida K, Gumi K, Ohno Y, Maehashi K, Inoue K, Matsumoto K (2013) Synthesis on silicon oxide surfaces using laser irradiation. Appl Phys Express 6:105101CrossRef
19.
Zurück zum Zitat Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401CrossRef Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401CrossRef
Metadaten
Titel
Graphene Laser Irradiation CVD Growth
verfasst von
Yasuhide Ohno
Kenzo Maehashi
Kazuhiko Matsumoto
Copyright-Jahr
2015
Verlag
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-55372-4_2

Neuer Inhalt