Skip to main content

2015 | OriginalPaper | Buchkapitel

5. Graphene/Metal Contact

verfasst von : Kosuke Nagashio, Akira Toriumi

Erschienen in: Frontiers of Graphene and Carbon Nanotubes

Verlag: Springer Japan

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The higher the electron mobility is, the stricter the requirement for the contact resistivity becomes, especially for graphene, which has an extremely high electron mobility. Although the ohmic contact due to no bandgap was reported in the supplemental of the first graphene paper, the contact resistivity is intrinsically high due to the small density of states in graphene. In this chapter, the issues concerning metal/graphene interface properties are reviewed, and the guidelines to reduce the contact resistivity are discussed, based on the recent understanding of metal/graphene/substrate interactions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nagashio K, Nishimura T, Kita K, Toriumi A (2009) Metal/graphene contact as a performance killer of ultra-high mobility graphene -analysis of intrinsic mobility and contact resistance. IEDM Tech Dig 565 Nagashio K, Nishimura T, Kita K, Toriumi A (2009) Metal/graphene contact as a performance killer of ultra-high mobility graphene -analysis of intrinsic mobility and contact resistance. IEDM Tech Dig 565
2.
Zurück zum Zitat Blake P, Yang R, Morozov SV, Schedin F, Ponomarenko LA, Zhukov AA, Nair RR, Grigorieva IV, Novoselov KS, Geim AK (2009) Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point. Solid State Commun 149:1068CrossRef Blake P, Yang R, Morozov SV, Schedin F, Ponomarenko LA, Zhukov AA, Nair RR, Grigorieva IV, Novoselov KS, Geim AK (2009) Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point. Solid State Commun 149:1068CrossRef
3.
Zurück zum Zitat Nagashio K, Nishimura T, Kita K, Toriumi A (2010) Contact resistivity and current flow path at metal/graphene contact. Appl Phys Lett 97:143514CrossRef Nagashio K, Nishimura T, Kita K, Toriumi A (2010) Contact resistivity and current flow path at metal/graphene contact. Appl Phys Lett 97:143514CrossRef
4.
Zurück zum Zitat Venugopal A, Colombo L, Vogel EM (2010) Contact resistance in few and multilayer graphene devices. Appl Phys Lett 96:013512CrossRef Venugopal A, Colombo L, Vogel EM (2010) Contact resistance in few and multilayer graphene devices. Appl Phys Lett 96:013512CrossRef
5.
Zurück zum Zitat Russo S, Cracuin MF, Yamamoto M, Morpurgo AF, Tarucha S (2010) Contact resistance in graphene-based devices. Physica E 42:677CrossRef Russo S, Cracuin MF, Yamamoto M, Morpurgo AF, Tarucha S (2010) Contact resistance in graphene-based devices. Physica E 42:677CrossRef
6.
Zurück zum Zitat Hsu A, Wang H, Kim KK, Kong K, Palacios T (2011) Impact of graphene interface quality on contact resistance and RF device performance. IEEE Electron Device Lett 32:1008CrossRef Hsu A, Wang H, Kim KK, Kong K, Palacios T (2011) Impact of graphene interface quality on contact resistance and RF device performance. IEEE Electron Device Lett 32:1008CrossRef
7.
Zurück zum Zitat Nagashio K, Toriumi A (2011) Density-of-states limited contact resistance in graphene field-effect transistors. Jpn J Appl Phys 50:070108CrossRef Nagashio K, Toriumi A (2011) Density-of-states limited contact resistance in graphene field-effect transistors. Jpn J Appl Phys 50:070108CrossRef
8.
Zurück zum Zitat Xia F, Perebeinos V, Lin Y-M, Wu Y, Avouris P (2011) The origins and limits of metal–graphene junction resistance. Nat Nanotech 6:179CrossRef Xia F, Perebeinos V, Lin Y-M, Wu Y, Avouris P (2011) The origins and limits of metal–graphene junction resistance. Nat Nanotech 6:179CrossRef
9.
Zurück zum Zitat Robinson JA, LaBella M, Zhu M, Hollander M, Kasarda R, Hughes Z, Trumbull K, Cavalero R, Snyder D (2011) Contacting graphene. Appl Phys Lett 98:053103CrossRef Robinson JA, LaBella M, Zhu M, Hollander M, Kasarda R, Hughes Z, Trumbull K, Cavalero R, Snyder D (2011) Contacting graphene. Appl Phys Lett 98:053103CrossRef
10.
Zurück zum Zitat Malec CE, Davidovic D (2011) Vacuum-annealed Cu contacts for graphene electronics. Solid State Commun 151:1791CrossRef Malec CE, Davidovic D (2011) Vacuum-annealed Cu contacts for graphene electronics. Solid State Commun 151:1791CrossRef
11.
Zurück zum Zitat Franklin AD, Han S-J, Bol AA, Haensch W (2011) Effects of nanoscale contacts to graphene. IEEE Electron Device Lett 32:1035CrossRef Franklin AD, Han S-J, Bol AA, Haensch W (2011) Effects of nanoscale contacts to graphene. IEEE Electron Device Lett 32:1035CrossRef
12.
Zurück zum Zitat Watanabe E, Conwill A, Tsuya D, Koide Y (2012) Low contact resistance metals for graphene based devices. Diam Relat Mater 24:171CrossRef Watanabe E, Conwill A, Tsuya D, Koide Y (2012) Low contact resistance metals for graphene based devices. Diam Relat Mater 24:171CrossRef
13.
Zurück zum Zitat Franklin AD, Han S-J, Bol AA, Perebeinos V (2012) Double contacts for improved performance of graphene transistors. IEEE Electron Device Lett 33:17CrossRef Franklin AD, Han S-J, Bol AA, Perebeinos V (2012) Double contacts for improved performance of graphene transistors. IEEE Electron Device Lett 33:17CrossRef
14.
Zurück zum Zitat Wolf EL (2012) Principles of electron tunneling spectroscopy. Oxford University Press, New York Wolf EL (2012) Principles of electron tunneling spectroscopy. Oxford University Press, New York
15.
Zurück zum Zitat Sze SM, Ng KK (2007) Physics of semiconductor devices. John Wiley & Sons, Hoboken, New Jersey Sze SM, Ng KK (2007) Physics of semiconductor devices. John Wiley & Sons, Hoboken, New Jersey
16.
Zurück zum Zitat Tersoff J (1999) Contact resistance of carbon nanotubes. Appl Phys Lett 74:2122CrossRef Tersoff J (1999) Contact resistance of carbon nanotubes. Appl Phys Lett 74:2122CrossRef
17.
Zurück zum Zitat Floyd RB, Walmsley DG (1978) Tunnelling conductance of clean and doped Al-I-Pb junctions. J Phys C: Solid State Phys 11:4601CrossRef Floyd RB, Walmsley DG (1978) Tunnelling conductance of clean and doped Al-I-Pb junctions. J Phys C: Solid State Phys 11:4601CrossRef
18.
19.
Zurück zum Zitat Burns G (1985) Solid state physics. Academic Press, Orland, Florida Burns G (1985) Solid state physics. Academic Press, Orland, Florida
20.
Zurück zum Zitat Miyazaki H, Odaka S, Sato T, Tanaka S, Goto H, Kanda A, Tsukagoshi K, Ootuka Y, Aoyagi Y (2008) Inter-layer screening length to electric field in thin graphite film. Appl Phys Express 1:034007CrossRef Miyazaki H, Odaka S, Sato T, Tanaka S, Goto H, Kanda A, Tsukagoshi K, Ootuka Y, Aoyagi Y (2008) Inter-layer screening length to electric field in thin graphite film. Appl Phys Express 1:034007CrossRef
21.
Zurück zum Zitat Giovannetti G, Khomyakov PA, Brocks G, Karpan VM, van der Brink J, Kelly PJ (2008) Doping graphene with metal contacts. Phys Rev Lett 101:026803CrossRef Giovannetti G, Khomyakov PA, Brocks G, Karpan VM, van der Brink J, Kelly PJ (2008) Doping graphene with metal contacts. Phys Rev Lett 101:026803CrossRef
22.
Zurück zum Zitat Bangert U, Bleloch A, Gass MH, Seepujak A, van den Berg J (2010) Doping of few-layered graphene and carbon nanotubes using ion implantation. Phys Rev B 81:245423CrossRef Bangert U, Bleloch A, Gass MH, Seepujak A, van den Berg J (2010) Doping of few-layered graphene and carbon nanotubes using ion implantation. Phys Rev B 81:245423CrossRef
23.
Zurück zum Zitat Yuge K (2009) Phase stability of boron carbon nitride in a heterographene structure: a first-principles stud. Phys Rev B 79:144109CrossRef Yuge K (2009) Phase stability of boron carbon nitride in a heterographene structure: a first-principles stud. Phys Rev B 79:144109CrossRef
24.
Zurück zum Zitat Khomyakov PA, Giovannetti G, Rusu PC, Brocks G, van den Brink J, Kelly PJ (2009) First-principles study of the interaction and charge transfer between graphene and metals. Phys Rev B 79:195425CrossRef Khomyakov PA, Giovannetti G, Rusu PC, Brocks G, van den Brink J, Kelly PJ (2009) First-principles study of the interaction and charge transfer between graphene and metals. Phys Rev B 79:195425CrossRef
25.
Zurück zum Zitat Vanin M, Mortensen JJ, Kelkkanen AK, Garcia-Lastra JM, Thygesen KS, Jacobsen KW (2010) Graphene on metals: a van der Waals density functional study. Phys Rev B 81 081408(R) Vanin M, Mortensen JJ, Kelkkanen AK, Garcia-Lastra JM, Thygesen KS, Jacobsen KW (2010) Graphene on metals: a van der Waals density functional study. Phys Rev B 81 081408(R)
26.
Zurück zum Zitat Oshima C, Nagashima A (1997) Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J Phys Condens Matter 9:1CrossRef Oshima C, Nagashima A (1997) Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J Phys Condens Matter 9:1CrossRef
27.
Zurück zum Zitat Varykhalov A, Sanchez-Barriga J, Shkin AM, Biswas C, Vescovo E, Rybkin A, Marchenko D, Rader O (2008) Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys Rev Lett 101:157601CrossRef Varykhalov A, Sanchez-Barriga J, Shkin AM, Biswas C, Vescovo E, Rybkin A, Marchenko D, Rader O (2008) Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys Rev Lett 101:157601CrossRef
28.
Zurück zum Zitat Hammer B, Norskov JK (1995) Why gold is the noblest of all the metals. Nature 376:238CrossRef Hammer B, Norskov JK (1995) Why gold is the noblest of all the metals. Nature 376:238CrossRef
29.
Zurück zum Zitat Hammer B, Norskov JK (2000) Theoretical surface science and catalysis—calculations and concepts. Adv Catal 45:71 Hammer B, Norskov JK (2000) Theoretical surface science and catalysis—calculations and concepts. Adv Catal 45:71
30.
Zurück zum Zitat Batzill M (2012) The surface science of graphene: metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf Sci Rep 67:83CrossRef Batzill M (2012) The surface science of graphene: metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf Sci Rep 67:83CrossRef
31.
Zurück zum Zitat Ishigami M, Chen JH, Cullen WG, Fuhrer MS, Willians ED (2007) Atomic structure of graphene on SiO2. Nano Lett 7:1643CrossRef Ishigami M, Chen JH, Cullen WG, Fuhrer MS, Willians ED (2007) Atomic structure of graphene on SiO2. Nano Lett 7:1643CrossRef
32.
Zurück zum Zitat Cheng Z, Zhou Q, Wang C, Li Q, Wang C, Fang Y (2011) Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Lett 11:767CrossRef Cheng Z, Zhou Q, Wang C, Li Q, Wang C, Fang Y (2011) Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Lett 11:767CrossRef
33.
Zurück zum Zitat Goossens AM, Calado VE, Barreiro A, Watanabe K, Taniguchi T, Vandersypen LMK (2012) Mechanical cleaning of graphene. Appl Phys Lett 100:073110CrossRef Goossens AM, Calado VE, Barreiro A, Watanabe K, Taniguchi T, Vandersypen LMK (2012) Mechanical cleaning of graphene. Appl Phys Lett 100:073110CrossRef
34.
Zurück zum Zitat Acharya M, Strano MS, Mathews JP, Billinge SJL, Petkov V, Subramoney S, Foley HC (1999) Simulation of nanoporous carbons: a chemically constrained structure. Philos Mag B 79:1499CrossRef Acharya M, Strano MS, Mathews JP, Billinge SJL, Petkov V, Subramoney S, Foley HC (1999) Simulation of nanoporous carbons: a chemically constrained structure. Philos Mag B 79:1499CrossRef
35.
Zurück zum Zitat Moriyama T, Nagashio K, Nishimura T, Toriumi A (2013) Carrier density modulation in graphene underneath Ni electrode. J Appl Phys 114:024503CrossRef Moriyama T, Nagashio K, Nishimura T, Toriumi A (2013) Carrier density modulation in graphene underneath Ni electrode. J Appl Phys 114:024503CrossRef
36.
Zurück zum Zitat Chen Z, Appenzeller J (2008) Mobility extraction and quantum capacitance impact in high performance graphene field-effect transistor devices. IEDM Tech Dig 509 Chen Z, Appenzeller J (2008) Mobility extraction and quantum capacitance impact in high performance graphene field-effect transistor devices. IEDM Tech Dig 509
37.
Zurück zum Zitat Ponomarenko LA, Yang R, Grobachev RV, Blake P, Mayorov AS, Novoselov KS, Katsnelson MI, Geim AK (2010) Density of states and zero landau level probed through capacitance of graphene. Phys Rev Lett 105:136801CrossRef Ponomarenko LA, Yang R, Grobachev RV, Blake P, Mayorov AS, Novoselov KS, Katsnelson MI, Geim AK (2010) Density of states and zero landau level probed through capacitance of graphene. Phys Rev Lett 105:136801CrossRef
38.
Zurück zum Zitat Xu H, Zhang Z, Wang Z, Wang S, Liang X, Peng L-M (2011) Quantum capacitance limited vertical scaling of graphene field-effect transistor. ACS NANO 5:2340CrossRef Xu H, Zhang Z, Wang Z, Wang S, Liang X, Peng L-M (2011) Quantum capacitance limited vertical scaling of graphene field-effect transistor. ACS NANO 5:2340CrossRef
39.
Zurück zum Zitat Nagashio K, Nishimura T, Toriumi A (2013) Estimation of residual carrier density near the Dirac point in graphene through quantum capacitance measurement. Appl Phys Lett 102:173507CrossRef Nagashio K, Nishimura T, Toriumi A (2013) Estimation of residual carrier density near the Dirac point in graphene through quantum capacitance measurement. Appl Phys Lett 102:173507CrossRef
40.
Zurück zum Zitat Fang T, Konar A, Xing H, Jena D (2007) Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl Phys Lett 91:092109CrossRef Fang T, Konar A, Xing H, Jena D (2007) Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl Phys Lett 91:092109CrossRef
41.
Zurück zum Zitat Ifuku R, Nagashio K, Nishimura T, Toriumi A (2013) The density of states of graphene underneath a metal electrode and its correlation with the contact resistivity. Appl Phys Lett 103:033514CrossRef Ifuku R, Nagashio K, Nishimura T, Toriumi A (2013) The density of states of graphene underneath a metal electrode and its correlation with the contact resistivity. Appl Phys Lett 103:033514CrossRef
42.
Zurück zum Zitat Li G, Luican A, Andrei EY (2009) Scanning tunneling spectroscopy of graphene on graphite. Phys Rev Lett 102:176804CrossRef Li G, Luican A, Andrei EY (2009) Scanning tunneling spectroscopy of graphene on graphite. Phys Rev Lett 102:176804CrossRef
43.
Zurück zum Zitat Monch W (2004) Electronic properties of semiconductor interface. Springer, BerlinCrossRef Monch W (2004) Electronic properties of semiconductor interface. Springer, BerlinCrossRef
44.
Zurück zum Zitat Tersoff J (1984) Schottky barrier heights and the continuum of gap states. Phys Rev Lett 52:465CrossRef Tersoff J (1984) Schottky barrier heights and the continuum of gap states. Phys Rev Lett 52:465CrossRef
45.
Zurück zum Zitat Ziman JM (1976) Principles of the theory of solids. Cambridge University Press, Cambridge Ziman JM (1976) Principles of the theory of solids. Cambridge University Press, Cambridge
46.
Zurück zum Zitat Pi K, McCreary KM, Bao W, Han W, Chiang YF, Li Y, Tsai S-W, Lau CN, Kawakami RK (2009) Electronic doping and scattering by transition metals on graphene. Phys Rev B 80:075406CrossRef Pi K, McCreary KM, Bao W, Han W, Chiang YF, Li Y, Tsai S-W, Lau CN, Kawakami RK (2009) Electronic doping and scattering by transition metals on graphene. Phys Rev B 80:075406CrossRef
47.
Zurück zum Zitat Xia F, Mueller T, Golizadeh-Mojarad R, Feritag M, Lin Y-M, Tsang J, Perebeinos V, Avouris P (2009) Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett 9:1039CrossRef Xia F, Mueller T, Golizadeh-Mojarad R, Feritag M, Lin Y-M, Tsang J, Perebeinos V, Avouris P (2009) Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett 9:1039CrossRef
48.
Zurück zum Zitat Yu Y-J, Zhao Y, Ryu S, Brus LE, Kim KS, Kim P (2009) Tuning the graphene work function by electric field effect. Nano Lett 9:3430CrossRef Yu Y-J, Zhao Y, Ryu S, Brus LE, Kim KS, Kim P (2009) Tuning the graphene work function by electric field effect. Nano Lett 9:3430CrossRef
49.
Zurück zum Zitat Nagamura N, Horiba K, Toyoda S, Kurosumi S, Shinohara T, Oshima M, Fukidome H, Suemitsu M, Nagashio K, Toriumi A (2013) Direct observation of charge transfer region at interfaces in graphene devices. Appl Phys Lett 102:241604CrossRef Nagamura N, Horiba K, Toyoda S, Kurosumi S, Shinohara T, Oshima M, Fukidome H, Suemitsu M, Nagashio K, Toriumi A (2013) Direct observation of charge transfer region at interfaces in graphene devices. Appl Phys Lett 102:241604CrossRef
50.
Zurück zum Zitat Khomyakov PA, Starikov AA, Brocks G, Kelly PJ (2010) Nonlinear screening of charges induced in graphene by metal contacts. Phys Rev B 82:115437CrossRef Khomyakov PA, Starikov AA, Brocks G, Kelly PJ (2010) Nonlinear screening of charges induced in graphene by metal contacts. Phys Rev B 82:115437CrossRef
51.
Zurück zum Zitat Huard B, Stander N, Sulpizio JA, Goldhaber-Gordon D (2008) Evidence of the role of contacts on the observed electron–hole asymmetry in graphene Phys Rev B 78 121402(R) Huard B, Stander N, Sulpizio JA, Goldhaber-Gordon D (2008) Evidence of the role of contacts on the observed electron–hole asymmetry in graphene Phys Rev B 78 121402(R)
52.
Zurück zum Zitat Huard B, Sulpizio JA, Stander N, Todd K, Yang B, Goldhaber-Gordon D (2007) Transport measurements across a tunable potential barrier in graphene. Phys Rev Lett 98:236803CrossRef Huard B, Sulpizio JA, Stander N, Todd K, Yang B, Goldhaber-Gordon D (2007) Transport measurements across a tunable potential barrier in graphene. Phys Rev Lett 98:236803CrossRef
53.
Zurück zum Zitat Nouchi R, Shiraishi M, Suzuki Y (2008) Transfer characteristics in graphene field-effect transistors with Co contacts. Appl Phys Lett 93:152104CrossRef Nouchi R, Shiraishi M, Suzuki Y (2008) Transfer characteristics in graphene field-effect transistors with Co contacts. Appl Phys Lett 93:152104CrossRef
54.
Zurück zum Zitat Lee EJH, Balasibramanian K, Weitz RT, Burghard M, Kern L (2008) Contact and edge effects in graphene devices. Nat Nanotech 3:486CrossRef Lee EJH, Balasibramanian K, Weitz RT, Burghard M, Kern L (2008) Contact and edge effects in graphene devices. Nat Nanotech 3:486CrossRef
55.
Zurück zum Zitat Schroder DK (2006) Semiconductor material and device characterization. John Wiley & Sons, Hoboken, New Jersey Schroder DK (2006) Semiconductor material and device characterization. John Wiley & Sons, Hoboken, New Jersey
56.
Zurück zum Zitat Proctor SJ, Linholm LW, Mazer JA (1983) Direct measurements of interfacial contact resistance, end contact resistance, and interfacial contact layer uniformity. IEEE Trans Electron Device 30:1535CrossRef Proctor SJ, Linholm LW, Mazer JA (1983) Direct measurements of interfacial contact resistance, end contact resistance, and interfacial contact layer uniformity. IEEE Trans Electron Device 30:1535CrossRef
57.
Zurück zum Zitat Nagashio K, Nishimura T, Kita K, Toriumi A (2009) Mobility variations in mono- and multi-layer graphene films. Appl Phys Express 2:025003CrossRef Nagashio K, Nishimura T, Kita K, Toriumi A (2009) Mobility variations in mono- and multi-layer graphene films. Appl Phys Express 2:025003CrossRef
58.
Zurück zum Zitat Nagashio K, Nishimura T, Kita K, Toriumi A (2010) Systematic investigation of the intrinsic channel properties and contact resistance of monolayer and multilayer graphene field-effect transistor. Jpn J Appl Phys 49:051304CrossRef Nagashio K, Nishimura T, Kita K, Toriumi A (2010) Systematic investigation of the intrinsic channel properties and contact resistance of monolayer and multilayer graphene field-effect transistor. Jpn J Appl Phys 49:051304CrossRef
59.
Zurück zum Zitat Xu H, Wang S, Zhang Z, Wang Z, Xu H, Peng L-M (2012) Contact length scaling in graphene field-effect transistors. Appl Phys Lett 100:103501CrossRef Xu H, Wang S, Zhang Z, Wang Z, Xu H, Peng L-M (2012) Contact length scaling in graphene field-effect transistors. Appl Phys Lett 100:103501CrossRef
60.
Zurück zum Zitat Chen Z, Appenzeller J (2009) Gate modulation of graphene contacts – on the scaling of graphene FETs. Symp VLSI Tech Dig 128 Chen Z, Appenzeller J (2009) Gate modulation of graphene contacts – on the scaling of graphene FETs. Symp VLSI Tech Dig 128
61.
Zurück zum Zitat Berdebes D, Low T, Sui Y, Appenzeller J, Lundstrom MS (2011) Substrate gating of contact resistance in graphene transistors. IEEE Trans Electron Device 58:3925CrossRef Berdebes D, Low T, Sui Y, Appenzeller J, Lundstrom MS (2011) Substrate gating of contact resistance in graphene transistors. IEEE Trans Electron Device 58:3925CrossRef
62.
Zurück zum Zitat Knoch J, Chen Z, Appenzeller J (2012) Properties of metal–graphene contacts. IEEE Trans Nanotechnol 11:513CrossRef Knoch J, Chen Z, Appenzeller J (2012) Properties of metal–graphene contacts. IEEE Trans Nanotechnol 11:513CrossRef
63.
Zurück zum Zitat Huang B-C, Zhang M, Wang Y, Woo J (2011) Contact resistance in top-gated graphene field-effect transistors. Appl Phys Lett 99:032107CrossRef Huang B-C, Zhang M, Wang Y, Woo J (2011) Contact resistance in top-gated graphene field-effect transistors. Appl Phys Lett 99:032107CrossRef
64.
Zurück zum Zitat Li W, Liang Y, Yu D, Peng L, Pernstich KP, Shen T, Hight Walker AR, Cheng G, Hacker CA, Richter CA, Li Q, Gundlach DJ, Liang X (2013) Ultraviolet/ozone treatment to reduce metal-graphene contact resistance. Appl Phys Lett 102:183110CrossRef Li W, Liang Y, Yu D, Peng L, Pernstich KP, Shen T, Hight Walker AR, Cheng G, Hacker CA, Richter CA, Li Q, Gundlach DJ, Liang X (2013) Ultraviolet/ozone treatment to reduce metal-graphene contact resistance. Appl Phys Lett 102:183110CrossRef
65.
Zurück zum Zitat Gong C, Hinojos D, Wang W, Nijem N, Shan B, Wallace RM, Cho K, Chabal Y (2012) Metal_graphene_metal sandwich contacts for enhanced interface bonding and work function control. ACS NANO 6:5381CrossRef Gong C, Hinojos D, Wang W, Nijem N, Shan B, Wallace RM, Cho K, Chabal Y (2012) Metal_graphene_metal sandwich contacts for enhanced interface bonding and work function control. ACS NANO 6:5381CrossRef
66.
Zurück zum Zitat Adamska L, Lin Y, Ross AJ, Batzill M, Oleynik II (2012) Atomic and electronic structure of simple metal/graphene and complex metal/graphene/metal interfaces. Phys Rev B 85:195443CrossRef Adamska L, Lin Y, Ross AJ, Batzill M, Oleynik II (2012) Atomic and electronic structure of simple metal/graphene and complex metal/graphene/metal interfaces. Phys Rev B 85:195443CrossRef
67.
Zurück zum Zitat Smith JT, Franklin AD, Farmer DB, Dimitrakopoulos CD (2013) Reducing contact resistance in graphene devices through contact area patterning. ACS NANO 7:3661CrossRef Smith JT, Franklin AD, Farmer DB, Dimitrakopoulos CD (2013) Reducing contact resistance in graphene devices through contact area patterning. ACS NANO 7:3661CrossRef
68.
Zurück zum Zitat Nagareddy VK, Nikitina IP, Gaskill DK, Tedesco JL, Myers-Ward RL, Eddy CR, Goss JP, Wright NG, Horsafall AB (2011) High temperature measurements of metal contacts on epitaxial graphene. Appl Phys Lett 99:073506CrossRef Nagareddy VK, Nikitina IP, Gaskill DK, Tedesco JL, Myers-Ward RL, Eddy CR, Goss JP, Wright NG, Horsafall AB (2011) High temperature measurements of metal contacts on epitaxial graphene. Appl Phys Lett 99:073506CrossRef
69.
Zurück zum Zitat Nagashio K, Ifuku R, Moriyama T, Nishimura T, Toriumi A (2012) Intrinsic graphene/metal contact IEDM Tech Dig 68 Nagashio K, Ifuku R, Moriyama T, Nishimura T, Toriumi A (2012) Intrinsic graphene/metal contact IEDM Tech Dig 68
70.
Zurück zum Zitat Wang L, Meric I, Huang PY, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos LM, Muller DA, Guo J, Kim P, Hone J, Shepard KL, Dean CR (2013) One-dimensional electrical contact to a two-dimensional material. Science 342:614CrossRef Wang L, Meric I, Huang PY, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos LM, Muller DA, Guo J, Kim P, Hone J, Shepard KL, Dean CR (2013) One-dimensional electrical contact to a two-dimensional material. Science 342:614CrossRef
71.
Zurück zum Zitat Chai Y, Hazeghi A, Takei K, Chen H-Y, Chan PCH, Javay A, Wong H-SP (2012) Low-resistance electrical contact to carbon nanotubes with graphitic interfacial layer. IEEE Trans Electron Device 59:12CrossRef Chai Y, Hazeghi A, Takei K, Chen H-Y, Chan PCH, Javay A, Wong H-SP (2012) Low-resistance electrical contact to carbon nanotubes with graphitic interfacial layer. IEEE Trans Electron Device 59:12CrossRef
Metadaten
Titel
Graphene/Metal Contact
verfasst von
Kosuke Nagashio
Akira Toriumi
Copyright-Jahr
2015
Verlag
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-55372-4_5

Neuer Inhalt