Skip to main content
Erschienen in: Polymer Bulletin 4/2015

01.04.2015 | Review

Graphene modifications in polylactic acid nanocomposites: a review

verfasst von: H. Norazlina, Y. Kamal

Erschienen in: Polymer Bulletin | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Considerable interest has been devoted to graphene since this material has shown promising and excellent results in mechanical and thermal properties. This finding has attracted more researchers to discover the attributes of graphene due to its extensive and potential applications. This paper reviewed the recent advances in the modification of graphene and the fabrication of polylactic acid/graphene nanocomposite. The different techniques that have been employed to prepare graphene, such as reduction of graphene oxide and chemical vapor deposition, are discussed briefly. The preparations of PLA/graphene nanocomposites are described using in situ polymerization, solution, and melt blending; and the properties of these nanocomposites are reviewed. Due to the difficulties in obtaining good dispersions, modifications of nanomaterials have been the critical issues that lead to excellent mechanical properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669
2.
Zurück zum Zitat Avéros L (2008) Polylactic acid: synthesis, properties and applications. In: Belgacem MN, Gandini A (eds) Book Chapter 21: Monomers, polymers, and composites from renewable resources. pp 433–50 Avéros L (2008) Polylactic acid: synthesis, properties and applications. In: Belgacem MN, Gandini A (eds) Book Chapter 21: Monomers, polymers, and composites from renewable resources. pp 433–50
4.
Zurück zum Zitat Doi Y, Steinbúchel A (2002) Biopolymers, applications and commercial products—polyesters III. Wiley-VCH, Weiheim, p 410 Doi Y, Steinbúchel A (2002) Biopolymers, applications and commercial products—polyesters III. Wiley-VCH, Weiheim, p 410
5.
Zurück zum Zitat Sódergárd A, Stolt M (2010) In Chapter 3: Industrial production of high molecular weight poly(lactic acid). In: Auras R, Lim LT, Selke SEM, Tsuji H (eds) Poly(lactic acid): synthesis, structures, properties, processing and applications. Wiley, New Jersey Sódergárd A, Stolt M (2010) In Chapter 3: Industrial production of high molecular weight poly(lactic acid). In: Auras R, Lim LT, Selke SEM, Tsuji H (eds) Poly(lactic acid): synthesis, structures, properties, processing and applications. Wiley, New Jersey
6.
Zurück zum Zitat Korhonen H, Helminen A, Seppala JV (2001) Synthesis of polylactide in the presence of co-initiators with different number of hydroxyl groups. Polymer 42:7541–7549 Korhonen H, Helminen A, Seppala JV (2001) Synthesis of polylactide in the presence of co-initiators with different number of hydroxyl groups. Polymer 42:7541–7549
7.
Zurück zum Zitat Han DK, Hubbell JA (1996) Lactide-based poly(ethylene glycol) polymer networks for scaffolds in tissue engineering. Macromolecules 29:5233–5235 Han DK, Hubbell JA (1996) Lactide-based poly(ethylene glycol) polymer networks for scaffolds in tissue engineering. Macromolecules 29:5233–5235
8.
Zurück zum Zitat Zhang X, MacDonald DA, Goosen MF, McAuley KB (1994) Mechanism of lactide polymerization in the presence of stannous octoate: The effect of hydroxyl and carboxylic acid substances. J Polym Sci Part A Polym Chem 32:2965–2970 Zhang X, MacDonald DA, Goosen MF, McAuley KB (1994) Mechanism of lactide polymerization in the presence of stannous octoate: The effect of hydroxyl and carboxylic acid substances. J Polym Sci Part A Polym Chem 32:2965–2970
9.
Zurück zum Zitat Hyon SH, Jamshidi K, Ikada Y (1997) Synthesis of polylactide with different molecular weights. Biomaterials 18:1503–1508 Hyon SH, Jamshidi K, Ikada Y (1997) Synthesis of polylactide with different molecular weights. Biomaterials 18:1503–1508
10.
Zurück zum Zitat Jacobsen S, Fritz HG, Degee P, Dubois P, Jerome R (2000) New developments on the ring-opening polymerization of polylactide. Ind Crops Prod 11(2–3):265–275 Jacobsen S, Fritz HG, Degee P, Dubois P, Jerome R (2000) New developments on the ring-opening polymerization of polylactide. Ind Crops Prod 11(2–3):265–275
11.
Zurück zum Zitat Rafier G, Lang J, Jobmann M, Bechthhold I (2003) Process for manufacturing homo and copolyesters of lactic acid. U.S. Patent 6,657,042, 2 Dec 2003 Rafier G, Lang J, Jobmann M, Bechthhold I (2003) Process for manufacturing homo and copolyesters of lactic acid. U.S. Patent 6,657,042, 2 Dec 2003
12.
Zurück zum Zitat Griffith LG (2000) Polymeric biomaterials. Acta Mater 48:263–277 Griffith LG (2000) Polymeric biomaterials. Acta Mater 48:263–277
13.
Zurück zum Zitat Cheng Y, Deng S, Chen P, Ruan R (2009) Polylactic acid (PLA) synthesis and modifications: a review. Front Chem China 4:259–264 Cheng Y, Deng S, Chen P, Ruan R (2009) Polylactic acid (PLA) synthesis and modifications: a review. Front Chem China 4:259–264
14.
Zurück zum Zitat Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Biores Technol 101:8493–8501 Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Biores Technol 101:8493–8501
15.
Zurück zum Zitat Sódergárd A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci (Oxford) 27:1123–1163 Sódergárd A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci (Oxford) 27:1123–1163
16.
Zurück zum Zitat Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864 Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864
17.
Zurück zum Zitat Oyama HT, Tanaka Y, Kadosaka A (2009) Rapid controlled hydrolytic degradation of poly(i-lactic acid) by blending with poly(aspartic acid-co-i-lactide). Polym Degrad Stab 94:1419–1426 Oyama HT, Tanaka Y, Kadosaka A (2009) Rapid controlled hydrolytic degradation of poly(i-lactic acid) by blending with poly(aspartic acid-co-i-lactide). Polym Degrad Stab 94:1419–1426
18.
Zurück zum Zitat Taubner V, Shishoo R (2001) Influence of processing parameters on the degradation of poly(l-lactide) during extrusion. J Appl Polym Sci 79:2128–2135 Taubner V, Shishoo R (2001) Influence of processing parameters on the degradation of poly(l-lactide) during extrusion. J Appl Polym Sci 79:2128–2135
19.
Zurück zum Zitat Anderson KS, Schreck KM, Hilmyer MA (2008) Toughening polylactide. Polym Rev 48:85–108 Anderson KS, Schreck KM, Hilmyer MA (2008) Toughening polylactide. Polym Rev 48:85–108
20.
Zurück zum Zitat Mark JE (2009) Polymer data handbook. Oxford University Press, London, p 1264 Mark JE (2009) Polymer data handbook. Oxford University Press, London, p 1264
21.
Zurück zum Zitat Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic) acid modifications. Prog Polym Sci 35:338–356 Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic) acid modifications. Prog Polym Sci 35:338–356
22.
Zurück zum Zitat Clarinval AM, Halleux J (2005) Classification of biodegradable polymers. In: Smith R (ed) Biodegradable polymers for industrial applications, 1st edn. CRC Press, Boca Raton, FL, pp 3–31 Clarinval AM, Halleux J (2005) Classification of biodegradable polymers. In: Smith R (ed) Biodegradable polymers for industrial applications, 1st edn. CRC Press, Boca Raton, FL, pp 3–31
23.
Zurück zum Zitat Lim L-T, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852 Lim L-T, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852
24.
Zurück zum Zitat Fang Q, Hanna MA (1999) Rheological properties of amorphous and semicrystalline polylactic acid polymers. Ind Crops Prod 10:47–53 Fang Q, Hanna MA (1999) Rheological properties of amorphous and semicrystalline polylactic acid polymers. Ind Crops Prod 10:47–53
25.
Zurück zum Zitat Dorgan JR, Lehermeier HJ, Mang M (2000) Thermal and rheological properties of commercial-grade poly(lactic acid)s. J Polym Environ 8:1–9 Dorgan JR, Lehermeier HJ, Mang M (2000) Thermal and rheological properties of commercial-grade poly(lactic acid)s. J Polym Environ 8:1–9
26.
Zurück zum Zitat Lehermeier HJ, Dorgan JR (2000) Poly(lactic acid) properties and prospect of an environmentally benign plastic: melt rheology of linear and branched blends. In: Fourteenth symposium on thermophysical properties Lehermeier HJ, Dorgan JR (2000) Poly(lactic acid) properties and prospect of an environmentally benign plastic: melt rheology of linear and branched blends. In: Fourteenth symposium on thermophysical properties
27.
Zurück zum Zitat Zhang W, Zheng S (2007) Synthesis and characterization of dendritic star poly(l-lactide)s. Polym Bull 58:767–775 Zhang W, Zheng S (2007) Synthesis and characterization of dendritic star poly(l-lactide)s. Polym Bull 58:767–775
28.
Zurück zum Zitat Lehermeier HJ, Dorgan JR (2001) Melt rheology of poly(lactic acid): consequences of blending chain architectures. Polym Eng Sci 41:2172–2184 Lehermeier HJ, Dorgan JR (2001) Melt rheology of poly(lactic acid): consequences of blending chain architectures. Polym Eng Sci 41:2172–2184
29.
Zurück zum Zitat Heyrovska R (2008) Atomic structures of graphene, benzene and methane with bond lengths as sums of the single, double and resonance bond radii of carbon. Cornell University Library, USA Heyrovska R (2008) Atomic structures of graphene, benzene and methane with bond lengths as sums of the single, double and resonance bond radii of carbon. Cornell University Library, USA
30.
Zurück zum Zitat Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259 Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259
31.
Zurück zum Zitat Hull AW (1917) A new method of X-ray crystal analysis. Phys Rev 10:661 Hull AW (1917) A new method of X-ray crystal analysis. Phys Rev 10:661
32.
Zurück zum Zitat Bernal JD (1924) The structure of graphite. Proc R Soc Lond A106:749–773 Bernal JD (1924) The structure of graphite. Proc R Soc Lond A106:749–773
33.
Zurück zum Zitat Boehm HP, Clauss A, Fischer G, Hofmann U (1962) In: Proceedings of the Fifth Conference on Carbon, Pergamon Press Boehm HP, Clauss A, Fischer G, Hofmann U (1962) In: Proceedings of the Fifth Conference on Carbon, Pergamon Press
34.
Zurück zum Zitat DiVincenzo DP, Mele EJ (1984) Self-consistent effective mass theory for intralayer screening in graphite intercalation compounds. Phys Rev B 295:1685 DiVincenzo DP, Mele EJ (1984) Self-consistent effective mass theory for intralayer screening in graphite intercalation compounds. Phys Rev B 295:1685
35.
Zurück zum Zitat Oshima C, Nagashima A (1997) Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J Phys Condens Matter 9:1 Oshima C, Nagashima A (1997) Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J Phys Condens Matter 9:1
36.
Zurück zum Zitat Novoselov KS et al (2005) Two-dimensional gas of massless dirac fermions in graphene. Nature 438:197–200 Novoselov KS et al (2005) Two-dimensional gas of massless dirac fermions in graphene. Nature 438:197–200
37.
Zurück zum Zitat Gusynin VP, Sharapov SG (2005) Unconventional integer quantum Hall effect in graphene. Phys Rev Lett 9:146801 Gusynin VP, Sharapov SG (2005) Unconventional integer quantum Hall effect in graphene. Phys Rev Lett 9:146801
38.
Zurück zum Zitat Zhang Y, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204 Zhang Y, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204
39.
Zurück zum Zitat Meyer J et al (2007) The structure of suspended graphene sheets. Nature 446:60–63 Meyer J et al (2007) The structure of suspended graphene sheets. Nature 446:60–63
40.
Zurück zum Zitat Geim AK, Kim P (2008) Carbon wonderland. Sci Amer 298:90–97 Geim AK, Kim P (2008) Carbon wonderland. Sci Amer 298:90–97
42.
Zurück zum Zitat Li J-L, Kudin KN, McAllister MJ, Prud’homme RK, Aksay IA, Car R (2006) Oxygen-driven unzipping of graphitic materials. Phys Rev Lett 96:176101 Li J-L, Kudin KN, McAllister MJ, Prud’homme RK, Aksay IA, Car R (2006) Oxygen-driven unzipping of graphitic materials. Phys Rev Lett 96:176101
43.
Zurück zum Zitat Suk JW, Piner RD, An J, Ruoff RS (2010) Mechanical properties of monolayer graphene oxide. ACS Nano 4:6557–6564 Suk JW, Piner RD, An J, Ruoff RS (2010) Mechanical properties of monolayer graphene oxide. ACS Nano 4:6557–6564
44.
Zurück zum Zitat Mahanta NK, Abramson AR (2012) Thermal conductivity of graphene and graphene oxide nanoplatelets. Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) 2012 13th IEEE Intersociety Conference on 2012, pp 1–6 Mahanta NK, Abramson AR (2012) Thermal conductivity of graphene and graphene oxide nanoplatelets. Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) 2012 13th IEEE Intersociety Conference on 2012, pp 1–6
45.
Zurück zum Zitat Gao W, Alemany LB, Ci L, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1:403–408 Gao W, Alemany LB, Ci L, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1:403–408
46.
Zurück zum Zitat Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57:1061–1105 Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57:1061–1105
47.
Zurück zum Zitat Afanasov IM, Morozov VA, Kepman AV, Ionov SG, Seleznev AN, Tendeloo GV, Avdeev VV (2009) Preparation, electrical and thermal properties of new exfoliated graphite-based composites. Carbon 47:263–270 Afanasov IM, Morozov VA, Kepman AV, Ionov SG, Seleznev AN, Tendeloo GV, Avdeev VV (2009) Preparation, electrical and thermal properties of new exfoliated graphite-based composites. Carbon 47:263–270
48.
Zurück zum Zitat Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Sci 320:1308 Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Sci 320:1308
49.
Zurück zum Zitat Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu Z (2012) A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy and magnetic resonance imaging. Nano Res 5:199–212 Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu Z (2012) A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy and magnetic resonance imaging. Nano Res 5:199–212
50.
Zurück zum Zitat Shen A-J, Li D-L, Cai X-J, Dong C-Y, Dong H-Q, Wen H-Y, Dai G-H, Wang P-J, Li Y-Y (2012) Multifunctional nanocomposite based on graphene oxide for in vitro hepatocarcinoma diagnosis and treatment. J Biomed Mater Res A 100A:2499–2506 Shen A-J, Li D-L, Cai X-J, Dong C-Y, Dong H-Q, Wen H-Y, Dai G-H, Wang P-J, Li Y-Y (2012) Multifunctional nanocomposite based on graphene oxide for in vitro hepatocarcinoma diagnosis and treatment. J Biomed Mater Res A 100A:2499–2506
51.
Zurück zum Zitat Goenka S, Sant V, Sant S (2014) Graphene-based nanomaterials for drug delivery and tissue engineering. J Controll Release 173:75–88 Goenka S, Sant V, Sant S (2014) Graphene-based nanomaterials for drug delivery and tissue engineering. J Controll Release 173:75–88
52.
Zurück zum Zitat Hsieh C-T, Chen WY (2011) Water/oil repellency and work of adhesion of liquid droplets on graphene oxide and graphene surfaces. Surf Coat Technol 205:4554–4561 Hsieh C-T, Chen WY (2011) Water/oil repellency and work of adhesion of liquid droplets on graphene oxide and graphene surfaces. Surf Coat Technol 205:4554–4561
53.
Zurück zum Zitat Hasan SA, Rigueur JL, Harl RR, Krejci AJ, Gonzalo-Juan I, Rogers BR, Dickerson JH (2010) Transferable graphene oxide films with tunable microstructures. ACS Nano 4:7367–7372 Hasan SA, Rigueur JL, Harl RR, Krejci AJ, Gonzalo-Juan I, Rogers BR, Dickerson JH (2010) Transferable graphene oxide films with tunable microstructures. ACS Nano 4:7367–7372
54.
Zurück zum Zitat Yang S-T, Chang Y, Wang H, Liu G, Chen S, Wang Y, Liu Y, Cao A (2010) Folding/aggregation of graphene oxide and its application in Cu2+ removal. J Colloid Interface Sci 351:122–127 Yang S-T, Chang Y, Wang H, Liu G, Chen S, Wang Y, Liu Y, Cao A (2010) Folding/aggregation of graphene oxide and its application in Cu2+ removal. J Colloid Interface Sci 351:122–127
55.
Zurück zum Zitat Cote LJ, Kim F, Huang J (2008) Langmuir–Blodgett assembly of graphite oxide single layers. J Am Chem Soc 131:1043–1049 Cote LJ, Kim F, Huang J (2008) Langmuir–Blodgett assembly of graphite oxide single layers. J Am Chem Soc 131:1043–1049
56.
Zurück zum Zitat Segal M (2009) Selling graphene by the ton. Nat Nanotech 4:612–614 Segal M (2009) Selling graphene by the ton. Nat Nanotech 4:612–614
57.
Zurück zum Zitat EUROPA-PRESS RELEASES. Graphene and Human Brain Project win largest research excellence award in history, as battle for sustained science funding continues. Europa.eu 28-01-2013 EUROPA-PRESS RELEASES. Graphene and Human Brain Project win largest research excellence award in history, as battle for sustained science funding continues. Europa.eu 28-01-2013
58.
Zurück zum Zitat Xuan Y, Wu YQ, Shen T et al (2006) Atomic-layer graphene gilms. Phys Rev Lett 97:036803–036806 Xuan Y, Wu YQ, Shen T et al (2006) Atomic-layer graphene gilms. Phys Rev Lett 97:036803–036806
59.
Zurück zum Zitat Liang X (2014) Ch. 19: Transition from tubes to sheets—a comparison of the properties and applications of carbon nanotubes and graphene. Nanotube superfiber materials: changing engineering design. pp 519–68 Liang X (2014) Ch. 19: Transition from tubes to sheets—a comparison of the properties and applications of carbon nanotubes and graphene. Nanotube superfiber materials: changing engineering design. pp 519–68
60.
Zurück zum Zitat Yang XM, Tu YF, Li L et al (2010) Well-dispersed chitosan/graphene oxide nanocomposites. ACS Appl Mater Interfaces 2:1707–1713 Yang XM, Tu YF, Li L et al (2010) Well-dispersed chitosan/graphene oxide nanocomposites. ACS Appl Mater Interfaces 2:1707–1713
61.
Zurück zum Zitat Fan HL, Wang LL, Zhao KK et al (2010) Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules 11:2345–2351 Fan HL, Wang LL, Zhao KK et al (2010) Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules 11:2345–2351
62.
Zurück zum Zitat Bai H, Li C, Wang XL et al (2010) A pH-sensitive graphene oxide composite hydrogel. Chem Commun 46:2376–2378 Bai H, Li C, Wang XL et al (2010) A pH-sensitive graphene oxide composite hydrogel. Chem Commun 46:2376–2378
63.
Zurück zum Zitat Sun ST, Wu PY (2011) A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating polymer hydrogel networks. J Mater Chem 21:4095–4097 Sun ST, Wu PY (2011) A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating polymer hydrogel networks. J Mater Chem 21:4095–4097
64.
Zurück zum Zitat Liu C, Alwarappan S, Chen ZF et al (2010) Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosens Bioelectron 25:1829–1833 Liu C, Alwarappan S, Chen ZF et al (2010) Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosens Bioelectron 25:1829–1833
65.
Zurück zum Zitat Stoller MD, Park S, Zhu YW et al (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502 Stoller MD, Park S, Zhu YW et al (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502
66.
Zurück zum Zitat Wang L, Lee K, Sun YY et al (2009) Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano 121:4879–4881 Wang L, Lee K, Sun YY et al (2009) Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano 121:4879–4881
67.
Zurück zum Zitat Goli P, Legedza S, Dhar A, Salgado R, Renteria J, Balandin AA (2014) Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. J Power Sources 248:37–43 Goli P, Legedza S, Dhar A, Salgado R, Renteria J, Balandin AA (2014) Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. J Power Sources 248:37–43
68.
Zurück zum Zitat Lu CH, Yang HH, Zhu CL et al (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 121:4879–4881 Lu CH, Yang HH, Zhu CL et al (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 121:4879–4881
69.
Zurück zum Zitat Zhu L, Jia Y, Gai G, Ji X, Luo J, Yao Y (2014) Ambipolarity of large-area Pt-functionalized graphene observed in H2 sensing. Sens Actuators B Chem 190:134–140 Zhu L, Jia Y, Gai G, Ji X, Luo J, Yao Y (2014) Ambipolarity of large-area Pt-functionalized graphene observed in H2 sensing. Sens Actuators B Chem 190:134–140
70.
Zurück zum Zitat Qu LT, Liu Y, Baek JB et al (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–1326 Qu LT, Liu Y, Baek JB et al (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–1326
71.
Zurück zum Zitat Wang H, Yuan X, Wu Y, Huang H, Peng X et al (2013) Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and waste gas and hydrogen storage/generation. Adv Colloid Interface Sci 195–196:19–40 Wang H, Yuan X, Wu Y, Huang H, Peng X et al (2013) Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and waste gas and hydrogen storage/generation. Adv Colloid Interface Sci 195–196:19–40
72.
Zurück zum Zitat Ji Z, Shen X, Yang J, Zhu G, Chen K (2014) A novel reduced graphene oxide/Ag/CeO2 ternary nanocomposite: green synthesis and catalytic properties. Appl Catal B 144:454–461 Ji Z, Shen X, Yang J, Zhu G, Chen K (2014) A novel reduced graphene oxide/Ag/CeO2 ternary nanocomposite: green synthesis and catalytic properties. Appl Catal B 144:454–461
73.
Zurück zum Zitat Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130:10876–10877 Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130:10876–10877
74.
Zurück zum Zitat Sun XM, Liu Z, Welsher K et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212 Sun XM, Liu Z, Welsher K et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212
75.
Zurück zum Zitat Loh KP, Bao QL, Eda G et al (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024 Loh KP, Bao QL, Eda G et al (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024
76.
Zurück zum Zitat Jing W, Yin-song W, Xiao-ying Y, Yuan-yuan I, Jin-rong Y, Rui Y, Ning Z (2012) Graphene oxide used a carrier for adriamycin can reverse drug resistance in breast cancer cells. Nanotech 23:355101 Jing W, Yin-song W, Xiao-ying Y, Yuan-yuan I, Jin-rong Y, Rui Y, Ning Z (2012) Graphene oxide used a carrier for adriamycin can reverse drug resistance in breast cancer cells. Nanotech 23:355101
77.
Zurück zum Zitat Yang ZR, Wang HF, Zhao J et al (2007) Recent developments in the use of adenoviruses and immunotoxins in cancer gene therapy. Cancer Gene Ther 14:599–615 Yang ZR, Wang HF, Zhao J et al (2007) Recent developments in the use of adenoviruses and immunotoxins in cancer gene therapy. Cancer Gene Ther 14:599–615
78.
Zurück zum Zitat Shen H, Zhang L, Liu M, Zhang Z (2012) Biomedical applications of graphene. Theranostics 2:283–294 Shen H, Zhang L, Liu M, Zhang Z (2012) Biomedical applications of graphene. Theranostics 2:283–294
79.
Zurück zum Zitat Zhang L, Lu Z, Zhao Q, Huang J, Shen H, Zhang Z (2011) Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small 7:460–464 Zhang L, Lu Z, Zhao Q, Huang J, Shen H, Zhang Z (2011) Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small 7:460–464
80.
Zurück zum Zitat Chen B, Liu M, Zhang L, Huang J, Yao J, Zhang Z (2011) Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector. J Mater Chem 21:7736–7741 Chen B, Liu M, Zhang L, Huang J, Yao J, Zhang Z (2011) Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector. J Mater Chem 21:7736–7741
81.
Zurück zum Zitat Feng L, Zhang S, Liu Z (2011) Graphene based gene transfection. Nanoscale 3:1252–1257 Feng L, Zhang S, Liu Z (2011) Graphene based gene transfection. Nanoscale 3:1252–1257
82.
Zurück zum Zitat Kim H, Namgung R, Singha K, Oh I-K, Kim WJ (2011) Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjug Chem 22:2558–2567 Kim H, Namgung R, Singha K, Oh I-K, Kim WJ (2011) Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjug Chem 22:2558–2567
83.
Zurück zum Zitat Bao HQ, Pan YZ, Ping Y et al (2011) Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small 7:1569–1578 Bao HQ, Pan YZ, Ping Y et al (2011) Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small 7:1569–1578
84.
Zurück zum Zitat Shen H, Liu M, He H, Zhang L, Huang J, Chong Y, Dai J, Zhang Z (2012) PEGylated graphene oxide-mediated protein delivery for cell function regulation. ACS Appl Mat Interfaces 4:6317–6323 Shen H, Liu M, He H, Zhang L, Huang J, Chong Y, Dai J, Zhang Z (2012) PEGylated graphene oxide-mediated protein delivery for cell function regulation. ACS Appl Mat Interfaces 4:6317–6323
85.
Zurück zum Zitat Somani PR, Somani SP, Umeno M (2006) Planer nano-graphenes from camphor by CVD. Chem Phys Lett 430:56–59 Somani PR, Somani SP, Umeno M (2006) Planer nano-graphenes from camphor by CVD. Chem Phys Lett 430:56–59
86.
Zurück zum Zitat Kim KS, Zhao Y, Jang H, Lee YS, Kim JM et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nat 457:706–710 Kim KS, Zhao Y, Jang H, Lee YS, Kim JM et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nat 457:706–710
87.
Zurück zum Zitat Li X, Cai W, An J, Kim S, Nah J, Yang D et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Sci 324:1312–1314 Li X, Cai W, An J, Kim S, Nah J, Yang D et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Sci 324:1312–1314
88.
Zurück zum Zitat Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V et al (2008) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35 Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V et al (2008) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35
89.
Zurück zum Zitat Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271 Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271
90.
Zurück zum Zitat Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapour deposition and its electrical properties. Nano Lett 9:1752–1758 Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapour deposition and its electrical properties. Nano Lett 9:1752–1758
91.
Zurück zum Zitat Reddy ALM, Srivasta A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM (2010) Synthesis of nitrogen-doped graphene films for lithium battery applications. ACS Nano 4:6337–6342 Reddy ALM, Srivasta A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM (2010) Synthesis of nitrogen-doped graphene films for lithium battery applications. ACS Nano 4:6337–6342
92.
Zurück zum Zitat Terasawa T, Saiki K (2012) Growth of graphene on Cu by plasma enhanced chemical vapour deposition. Carbon 50:869–874 Terasawa T, Saiki K (2012) Growth of graphene on Cu by plasma enhanced chemical vapour deposition. Carbon 50:869–874
93.
Zurück zum Zitat Sutter P (2009) Epitaxial graphene: how silicon leaves the scene. Nat Mater 8:171–172 Sutter P (2009) Epitaxial graphene: how silicon leaves the scene. Nat Mater 8:171–172
94.
Zurück zum Zitat Patterned thin film graphite devices and method for making same. US Patern 7015142 Patterned thin film graphite devices and method for making same. US Patern 7015142
95.
Zurück zum Zitat Moon JS et al (2009) Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates. IEEE Electro Device Lett 30:650–652 Moon JS et al (2009) Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates. IEEE Electro Device Lett 30:650–652
96.
Zurück zum Zitat Kedzierski J et al (2008) Epitaxial graphene transistors on Sic substrates. IEEE Trans Electron Devices 55:2078–2085 Kedzierski J et al (2008) Epitaxial graphene transistors on Sic substrates. IEEE Trans Electron Devices 55:2078–2085
97.
Zurück zum Zitat Parga ALVD, Calleja F, Borca BMCG, Passeggi J, Hinarejos JJ, Guinea F et al (2008) Periodically rippled graphene: growth and spatially resolved electronic structure. Phys Rev Lett 100:056807 Parga ALVD, Calleja F, Borca BMCG, Passeggi J, Hinarejos JJ, Guinea F et al (2008) Periodically rippled graphene: growth and spatially resolved electronic structure. Phys Rev Lett 100:056807
98.
Zurück zum Zitat Pletikosić I, Kralj M, Brako R, Coraux J, N’Diaye AT, Busse C, Michely T (2009) Dirac cones and minigaps for graphene on Ir (1 1 1). Phys Rev Lett 102:056808 Pletikosić I, Kralj M, Brako R, Coraux J, N’Diaye AT, Busse C, Michely T (2009) Dirac cones and minigaps for graphene on Ir (1 1 1). Phys Rev Lett 102:056808
99.
Zurück zum Zitat Rafiee J, Mi X, Gullapalli H, Thomas AV, Yayari F, Shi Y, Ajayan PM, Koratkar NA (2012) Wetting transparency of graphene. Nat Mater 11:217–222 Rafiee J, Mi X, Gullapalli H, Thomas AV, Yayari F, Shi Y, Ajayan PM, Koratkar NA (2012) Wetting transparency of graphene. Nat Mater 11:217–222
100.
Zurück zum Zitat Wassei JK, Mecklenburg M, Torres JA, Jesse DF, Regan BC, Richard BK, Bruce HW (2012) Chemical vapour deposition of graphene on copper from methane, ethane and propane: evidence for bilayer selectivity. Small 8:1415–1422 Wassei JK, Mecklenburg M, Torres JA, Jesse DF, Regan BC, Richard BK, Bruce HW (2012) Chemical vapour deposition of graphene on copper from methane, ethane and propane: evidence for bilayer selectivity. Small 8:1415–1422
101.
Zurück zum Zitat Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour JM (2010) Growth of graphene from solid carbon sources. Nat 468:549–552 Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour JM (2010) Growth of graphene from solid carbon sources. Nat 468:549–552
103.
Zurück zum Zitat Hassan M, Reddy KR, Haque E, Minett AI, Gomes VG (2013) High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J Colloid Interf Sci 410:43–51 Hassan M, Reddy KR, Haque E, Minett AI, Gomes VG (2013) High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J Colloid Interf Sci 410:43–51
104.
Zurück zum Zitat Zhou K, Shi Y, Jiang S, Song L, Hu Y, Ghui Z (2013) A facile liquid exfoliation method to prepare graphene sheets with different sizes expandable graphite. Mater Res Bull 48:2985–2992 Zhou K, Shi Y, Jiang S, Song L, Hu Y, Ghui Z (2013) A facile liquid exfoliation method to prepare graphene sheets with different sizes expandable graphite. Mater Res Bull 48:2985–2992
105.
Zurück zum Zitat Terrones M, Botello-Méndez AR, Campos-Delgado J, López-Urías F, Vega-Cantú YI et al (2010) Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nanotoday 5:351–372 Terrones M, Botello-Méndez AR, Campos-Delgado J, López-Urías F, Vega-Cantú YI et al (2010) Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nanotoday 5:351–372
106.
Zurück zum Zitat Chakrabarti A, Lu J, Sakrabutenas JC, Xu T, Xiao Z, Maquire JA, Hosmane NS (2011) Conversion of carbon dioxide to few-layer graphene. J Mater Chem 21:9491–9493 Chakrabarti A, Lu J, Sakrabutenas JC, Xu T, Xiao Z, Maquire JA, Hosmane NS (2011) Conversion of carbon dioxide to few-layer graphene. J Mater Chem 21:9491–9493
107.
Zurück zum Zitat Zhao WF, Fang M, Wu H, Wang LW, Chen GH (2010) Preparation of graphene by exfoliation of graphite using wet ball milling. J Mater Chem 20:5817–5819 Zhao WF, Fang M, Wu H, Wang LW, Chen GH (2010) Preparation of graphene by exfoliation of graphite using wet ball milling. J Mater Chem 20:5817–5819
108.
Zurück zum Zitat Leon V, Quintana M, Herrero MA, Fierro JLG, de la Hoz A, Prato M et al (2011) Few-layer graphenes from ball-milling of graphite with melamine. Chem Commun 47:10936–10938 Leon V, Quintana M, Herrero MA, Fierro JLG, de la Hoz A, Prato M et al (2011) Few-layer graphenes from ball-milling of graphite with melamine. Chem Commun 47:10936–10938
109.
Zurück zum Zitat Zhao WF, Wu FE, Wu H, Chen GH (2010) Preparation of colloidal dispersions of graphene sheets in organic solvents by using ball milling. J Nanometer. doi:10.1155/2010/528235 Zhao WF, Wu FE, Wu H, Chen GH (2010) Preparation of colloidal dispersions of graphene sheets in organic solvents by using ball milling. J Nanometer. doi:10.​1155/​2010/​528235
110.
Zurück zum Zitat Pu NW, Wang CA, Sung Y, Liu YM, Ger MD (2009) Production of few-layer graphene by supercritical CO(2) exfoliation of graphite. Mater Lett 63:1987–1989 Pu NW, Wang CA, Sung Y, Liu YM, Ger MD (2009) Production of few-layer graphene by supercritical CO(2) exfoliation of graphite. Mater Lett 63:1987–1989
111.
Zurück zum Zitat Rangappa D, Sone K, Wang MS, Gautam UK, Goldberg D, Itoh H et al (2010) Rapid and direct conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation. Chem Eur J 16:6488–6494 Rangappa D, Sone K, Wang MS, Gautam UK, Goldberg D, Itoh H et al (2010) Rapid and direct conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation. Chem Eur J 16:6488–6494
112.
Zurück zum Zitat Sim HS, Kim TA, Lee KH, Park M (2012) Preparation of graphene nanosheets through repeated supercritical carbon dioxide process. Mater Lett 89:343–346 Sim HS, Kim TA, Lee KH, Park M (2012) Preparation of graphene nanosheets through repeated supercritical carbon dioxide process. Mater Lett 89:343–346
113.
Zurück zum Zitat Hummers WS Jr, Offeman RE (1957) Preparation of graphitic oxide. J Am Chem Soc 80:1339 Hummers WS Jr, Offeman RE (1957) Preparation of graphitic oxide. J Am Chem Soc 80:1339
114.
Zurück zum Zitat Achaby ME, Arrakhiz FZ, Vaudreuil S, Essassi EM, Qaiss A (2012) Piezoelectric β-polymorph formation and properties enhancement in graphene oxide-PVDF nanocomposite films. Appl Surf Sci 258:7668–7677 Achaby ME, Arrakhiz FZ, Vaudreuil S, Essassi EM, Qaiss A (2012) Piezoelectric β-polymorph formation and properties enhancement in graphene oxide-PVDF nanocomposite films. Appl Surf Sci 258:7668–7677
115.
Zurück zum Zitat Parades JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD (2008) Graphene oxide dispersion in organic solvent. Langmuir 24:10560–10564 Parades JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD (2008) Graphene oxide dispersion in organic solvent. Langmuir 24:10560–10564
116.
Zurück zum Zitat Chen D, Zhu H, Liu T (2010) In situ thermal preparation of polyimide nanocomposite films containing functionalized graphene sheets. ACS Appl Mater Interfaces 2:3702–3708 Chen D, Zhu H, Liu T (2010) In situ thermal preparation of polyimide nanocomposite films containing functionalized graphene sheets. ACS Appl Mater Interfaces 2:3702–3708
117.
Zurück zum Zitat Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50:3210–3228 Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50:3210–3228
118.
Zurück zum Zitat Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnol 3:270–274 Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnol 3:270–274
119.
Zurück zum Zitat Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M et al (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7:3449–3503 Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M et al (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7:3449–3503
120.
Zurück zum Zitat Lee C-G, Park S, Ruoff RS, Dodabalapor A (2009) Integration of reduced graphene oxide into organic field-effect transistors as conducting electrodes and as a metal modification layer. Appl Phys Lett 95:023304 Lee C-G, Park S, Ruoff RS, Dodabalapor A (2009) Integration of reduced graphene oxide into organic field-effect transistors as conducting electrodes and as a metal modification layer. Appl Phys Lett 95:023304
121.
Zurück zum Zitat Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I (2003) Graphite oxide: chemical reduction to graphite and surface modification with aliphatic amines and amino acids. Langmuir 19:6050–6055 Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I (2003) Graphite oxide: chemical reduction to graphite and surface modification with aliphatic amines and amino acids. Langmuir 19:6050–6055
122.
Zurück zum Zitat Shin H-J, Kim KK, Benayad A, Yoon S-M, Park HK, Jung I-S et al (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19:1987–1992 Shin H-J, Kim KK, Benayad A, Yoon S-M, Park HK, Jung I-S et al (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19:1987–1992
123.
Zurück zum Zitat Fernández-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascón JMD (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem 114:6426–6432 Fernández-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascón JMD (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem 114:6426–6432
124.
Zurück zum Zitat Gao J, Liu F, Liu Y, Ma N, Wang Z, Zhang X (2010) Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem Mater 22:2213–2218 Gao J, Liu F, Liu Y, Ma N, Wang Z, Zhang X (2010) Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem Mater 22:2213–2218
125.
Zurück zum Zitat Guo H, Peng M, Zhu Z, Sun L (2013) Preparation of reduced graphene oxide by infrared irradiation induced photothermal reduction. Nanoscale 5:9040–9048 Guo H, Peng M, Zhu Z, Sun L (2013) Preparation of reduced graphene oxide by infrared irradiation induced photothermal reduction. Nanoscale 5:9040–9048
126.
Zurück zum Zitat Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491 Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491
127.
Zurück zum Zitat Williams G, Kamat PV (2009) Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25:13869–13873 Williams G, Kamat PV (2009) Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25:13869–13873
128.
Zurück zum Zitat Cote LJ, Cruz-Silva R, Huang J (2009) Fush reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc 131:11027–11032 Cote LJ, Cruz-Silva R, Huang J (2009) Fush reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc 131:11027–11032
129.
Zurück zum Zitat Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS (2010) Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48:2118–2122 Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS (2010) Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48:2118–2122
130.
Zurück zum Zitat Wakeland S, Martinez R, Grey JK, Luhrs CC (2010) Production of graphene from graphite oxide using urea as expansion-reducing agent. Carbon 48:3463–3470 Wakeland S, Martinez R, Grey JK, Luhrs CC (2010) Production of graphene from graphite oxide using urea as expansion-reducing agent. Carbon 48:3463–3470
131.
Zurück zum Zitat Jin J, Fu X, Liu Q, Liu Y, Wei Z, Niu K, Zhang J (2013) Identifying the active site in nitrogen-doped graphene for the VO2+/VO2 + redox reaction. ACS Nano 7:4764–4773 Jin J, Fu X, Liu Q, Liu Y, Wei Z, Niu K, Zhang J (2013) Identifying the active site in nitrogen-doped graphene for the VO2+/VO2 + redox reaction. ACS Nano 7:4764–4773
132.
Zurück zum Zitat Roy N, Sengupta R, Bhowmick A (2012) Modifications of carbon for polymer composites and nanocomposites. Prog Polym Sci 37:781–819 Roy N, Sengupta R, Bhowmick A (2012) Modifications of carbon for polymer composites and nanocomposites. Prog Polym Sci 37:781–819
133.
Zurück zum Zitat Young RJ, Kinloch IA, Gong L, Novoselov KS (2012) The mechanics of graphene nanocomposites: a review. Compos Sci Tecnol 72:1459–1476 Young RJ, Kinloch IA, Gong L, Novoselov KS (2012) The mechanics of graphene nanocomposites: a review. Compos Sci Tecnol 72:1459–1476
134.
Zurück zum Zitat Zhang HB, Zheng WG, Yan Q, Yang Y, Wang J, Lu ZH et al (2010) Electrically, conductive polyethylene terephthalate/graphene nanocomposites prepared by melt blending. Polymer 51:1191–1196 Zhang HB, Zheng WG, Yan Q, Yang Y, Wang J, Lu ZH et al (2010) Electrically, conductive polyethylene terephthalate/graphene nanocomposites prepared by melt blending. Polymer 51:1191–1196
135.
Zurück zum Zitat Huang Y, Qin Y, Zhou Y, Niu H, Yu Z-Z, Dong J-Y (2010) Poly propylene/graphene oxide nanocomposites prepared by in situ Ziegler–Natta polymerization. Chem Matter 22:4096–4102 Huang Y, Qin Y, Zhou Y, Niu H, Yu Z-Z, Dong J-Y (2010) Poly propylene/graphene oxide nanocomposites prepared by in situ Ziegler–Natta polymerization. Chem Matter 22:4096–4102
136.
Zurück zum Zitat Fim FDC, Guterres JM, Basso NRS, Galland GB (2010) Polyethylene/graphite nanocomposites obtained by in situ polymerization. J Polym Sci Part A Polym Chem 48:692–698 Fim FDC, Guterres JM, Basso NRS, Galland GB (2010) Polyethylene/graphite nanocomposites obtained by in situ polymerization. J Polym Sci Part A Polym Chem 48:692–698
137.
Zurück zum Zitat Jang JY, Kim MS, Jeong HM, Shin CM (2009) Graphite oxide/poly(methyl methacrylate) nanocomposites prepared by a novel method utilizing macroazoinitiator. Compos Sci Technol 69:186–191 Jang JY, Kim MS, Jeong HM, Shin CM (2009) Graphite oxide/poly(methyl methacrylate) nanocomposites prepared by a novel method utilizing macroazoinitiator. Compos Sci Technol 69:186–191
138.
Zurück zum Zitat Yang J-H, Lin S-H, Lee Y-D (2012) Preparation and characterization of poly(L-lactide)-graphene composites using the in situ ring-opening polymerization of PLLA with graphene as the initiator. J Mater Chem 22:10805 Yang J-H, Lin S-H, Lee Y-D (2012) Preparation and characterization of poly(L-lactide)-graphene composites using the in situ ring-opening polymerization of PLLA with graphene as the initiator. J Mater Chem 22:10805
139.
Zurück zum Zitat Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84 Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84
140.
Zurück zum Zitat Li W, Xu Z, Chen L, Shan M, Tian X et al (2014) A facile method to produce graphene oxide-g-poly(l-lactic acid) as an promising reinforcement for PLLA nanocomposites. Chem Eng J 237:291–299 Li W, Xu Z, Chen L, Shan M, Tian X et al (2014) A facile method to produce graphene oxide-g-poly(l-lactic acid) as an promising reinforcement for PLLA nanocomposites. Chem Eng J 237:291–299
141.
Zurück zum Zitat Achmad F, Yamane K, Quan S, Kokugan T (2009) Synthesis of polylactic acid by direct polycondensation under vacuum without catalysts, solvents and initiators. Chem Eng J 151:342–350 Achmad F, Yamane K, Quan S, Kokugan T (2009) Synthesis of polylactic acid by direct polycondensation under vacuum without catalysts, solvents and initiators. Chem Eng J 151:342–350
142.
Zurück zum Zitat Song W, Zheng Z, Tang W, Wang X (2007) A facile approach to covalently functionalized carbon nanotubes with biocompatible polymer. Polymer 48:3658–3663 Song W, Zheng Z, Tang W, Wang X (2007) A facile approach to covalently functionalized carbon nanotubes with biocompatible polymer. Polymer 48:3658–3663
143.
Zurück zum Zitat Yoon JT, Jeong YG, Lee SC, Min BG (2009) Influences of poly(lactic acid)-grafted carbon nanotube on thermal, mechanical and electrical properties of poly(lactic acid). Polym Adv Technol 20:631–638 Yoon JT, Jeong YG, Lee SC, Min BG (2009) Influences of poly(lactic acid)-grafted carbon nanotube on thermal, mechanical and electrical properties of poly(lactic acid). Polym Adv Technol 20:631–638
144.
Zurück zum Zitat Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA et al (2006) Graphene-based composite materials. Nature 442:282–286 Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA et al (2006) Graphene-based composite materials. Nature 442:282–286
145.
Zurück zum Zitat Lee WD, Im SS (2007) Thermomechanical properties and crystallization behavior of layered double hydroxide hydroxide/poly(ethylene terephthalate) nanocomposites prepared by in situ polymerization. J Polym Sci Part B Polym Phys 45:28–40 Lee WD, Im SS (2007) Thermomechanical properties and crystallization behavior of layered double hydroxide hydroxide/poly(ethylene terephthalate) nanocomposites prepared by in situ polymerization. J Polym Sci Part B Polym Phys 45:28–40
146.
Zurück zum Zitat Sing VK, Shukla A, Patra MK, Saini L, Jani RK, Vadera SR, Kumar N (2012) Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. Carbon 50:2022–2028 Sing VK, Shukla A, Patra MK, Saini L, Jani RK, Vadera SR, Kumar N (2012) Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. Carbon 50:2022–2028
147.
Zurück zum Zitat Cao Y, Feng J, Wu P (2010) Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly(lactic acid) composites. Carbon 48:3834–3839 Cao Y, Feng J, Wu P (2010) Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly(lactic acid) composites. Carbon 48:3834–3839
148.
Zurück zum Zitat Wang H, Qiu Z (2011) Crystallization behaviours biodegradable poly(l-lactic acid)/graphene oxide nanocomposites from the amorphous state. Thermochim Acta 526:229–236 Wang H, Qiu Z (2011) Crystallization behaviours biodegradable poly(l-lactic acid)/graphene oxide nanocomposites from the amorphous state. Thermochim Acta 526:229–236
149.
Zurück zum Zitat Yoon OJ, Jung CY, Sohn IY, Kim HJ, Hong B et al (2011) Nanocomposite nanofibers of poly(d, l-lactic-co-glycolic acid) and graphene oxide nanosheets. Compos Part A 42:1978–1984 Yoon OJ, Jung CY, Sohn IY, Kim HJ, Hong B et al (2011) Nanocomposite nanofibers of poly(d, l-lactic-co-glycolic acid) and graphene oxide nanosheets. Compos Part A 42:1978–1984
150.
Zurück zum Zitat Pinto AM, Moreira S, Gonҫalves IC, Gama FM, Mendes AM, Magalhães FD (2013) Biocompatibility of poly(lactic acid) with incorporated graphene-based materials. Colloids Surf B Biointerfaces 104:229–238 Pinto AM, Moreira S, Gonҫalves IC, Gama FM, Mendes AM, Magalhães FD (2013) Biocompatibility of poly(lactic acid) with incorporated graphene-based materials. Colloids Surf B Biointerfaces 104:229–238
151.
Zurück zum Zitat Murariu M, Dechief AL, Bonnaud L, Paint Y, Gallos A, Fontaine G et al (2010) The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stab 95:889–900 Murariu M, Dechief AL, Bonnaud L, Paint Y, Gallos A, Fontaine G et al (2010) The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stab 95:889–900
152.
Zurück zum Zitat Hassouna F, Laachachi A, Chapron D, Moedden YE, Toniazzo V, Ruch D (2011) Development of new approach based on Raman spectroscopy to study the dispersion of expanded graphite in poly(lactide). Polym Degrad Stab 96:2040–2047 Hassouna F, Laachachi A, Chapron D, Moedden YE, Toniazzo V, Ruch D (2011) Development of new approach based on Raman spectroscopy to study the dispersion of expanded graphite in poly(lactide). Polym Degrad Stab 96:2040–2047
153.
Zurück zum Zitat Antar Z, Feller JF, Noël H, Glouannec P, Elleuch K (2012) Thermoelectric behaviour of melt processed carbon nanotube/graphite/poly(lactic acid) conductive biopolymer nanocomposites (CPC). Mater Lett 67:210–214 Antar Z, Feller JF, Noël H, Glouannec P, Elleuch K (2012) Thermoelectric behaviour of melt processed carbon nanotube/graphite/poly(lactic acid) conductive biopolymer nanocomposites (CPC). Mater Lett 67:210–214
154.
Zurück zum Zitat Kim IH, Jeong YG (2010) Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. J Polym Sci Part B Polym Phys 48:850–858 Kim IH, Jeong YG (2010) Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. J Polym Sci Part B Polym Phys 48:850–858
155.
Zurück zum Zitat Lei L, Qiu J, Sakai E (2012) Preparing conductive poly(lactic acid)(PLA) with poly(methyl methacrylate)(PMMA) functionalized graphene (PFG) by admicellar polymerization. Chem Eng J 209:20–27 Lei L, Qiu J, Sakai E (2012) Preparing conductive poly(lactic acid)(PLA) with poly(methyl methacrylate)(PMMA) functionalized graphene (PFG) by admicellar polymerization. Chem Eng J 209:20–27
156.
Zurück zum Zitat Yooprasert N, Pongprayoon T, Suwanmala P, Hemvichian K, Tumcharem G (2010) Radiation-induced admicellar polymerization of isoprene on silica: effects of surfactant’s chain length. Chem Eng J 156:193–199 Yooprasert N, Pongprayoon T, Suwanmala P, Hemvichian K, Tumcharem G (2010) Radiation-induced admicellar polymerization of isoprene on silica: effects of surfactant’s chain length. Chem Eng J 156:193–199
157.
Zurück zum Zitat Maity J, Kothary P, O’Rear EA, Jacob C (2010) Preparation and comparison of hydrophobic cotton fabric obtained by direct fluorination and admicellar polymerization of fluoromonomers. Ind Eng Chem Res 49:6075–6079 Maity J, Kothary P, O’Rear EA, Jacob C (2010) Preparation and comparison of hydrophobic cotton fabric obtained by direct fluorination and admicellar polymerization of fluoromonomers. Ind Eng Chem Res 49:6075–6079
158.
Zurück zum Zitat Das S, Wajid AS, Shelburne JL, Liao YC, Green MJ (2011) Localized in situ polymerization on graphene surfaces for stabilized graphene dispersions. ACS Appl Mater Interfaces 3:1844–1851 Das S, Wajid AS, Shelburne JL, Liao YC, Green MJ (2011) Localized in situ polymerization on graphene surfaces for stabilized graphene dispersions. ACS Appl Mater Interfaces 3:1844–1851
159.
Zurück zum Zitat Wang X, Song L, Yang YH, Xing WY, Lu HD, Hu Y (2012) Cobalt oxide/graphene composite for highly efficient CO oxidation and its application in reducing the fire hazards of aliphatic polyesters. J Mater Chem 22:3426–3431 Wang X, Song L, Yang YH, Xing WY, Lu HD, Hu Y (2012) Cobalt oxide/graphene composite for highly efficient CO oxidation and its application in reducing the fire hazards of aliphatic polyesters. J Mater Chem 22:3426–3431
160.
Zurück zum Zitat Xie X, Li Y, Liu ZQ, Haruta M, Shen W (2009) Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458:746–749 Xie X, Li Y, Liu ZQ, Haruta M, Shen W (2009) Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458:746–749
161.
Zurück zum Zitat Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR et al (2010) Graphene and graphene oxide: synthesis, properties and applications. Adv Mater 22:3906–3924 Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR et al (2010) Graphene and graphene oxide: synthesis, properties and applications. Adv Mater 22:3906–3924
162.
Zurück zum Zitat Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–723 Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–723
163.
Zurück zum Zitat Huang KJ, Niu DJ, Sun JY, Han CH, Wu ZW, Li YL et al (2010) Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloids Surf B Biointerfaces 82:543–549 Huang KJ, Niu DJ, Sun JY, Han CH, Wu ZW, Li YL et al (2010) Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloids Surf B Biointerfaces 82:543–549
164.
Zurück zum Zitat Ang PK, Jaiswal M, Lim CH, Wang Y, Sankaran J, Li A et al (2010) A bioelectronic platform using a graphene–lipid bilayer interface. ACS Nano 4:7387–7394 Ang PK, Jaiswal M, Lim CH, Wang Y, Sankaran J, Li A et al (2010) A bioelectronic platform using a graphene–lipid bilayer interface. ACS Nano 4:7387–7394
165.
Zurück zum Zitat Ryoo SR, Kim YK, Kim MH, Min DH (2010) Behaviors of NIH-3T3 Fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion and gene transfection studies. ACS Nano 4:6587–6598 Ryoo SR, Kim YK, Kim MH, Min DH (2010) Behaviors of NIH-3T3 Fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion and gene transfection studies. ACS Nano 4:6587–6598
166.
Zurück zum Zitat Fukushima H, Drzal LT, Rook BP, Rich MJ (2006) Thermal conductivity of exfoliated graphite nanocomposites. J Therm Anal Calorim 85:235–238 Fukushima H, Drzal LT, Rook BP, Rich MJ (2006) Thermal conductivity of exfoliated graphite nanocomposites. J Therm Anal Calorim 85:235–238
167.
Zurück zum Zitat Cancadoa LG, Takaia K, Enokia T, Endob M, Kimb Y, Mizusakib H et al (2008) Measuring the degree of stacking order in graphite by Raman spectroscopy. Carbon 46:272–275 Cancadoa LG, Takaia K, Enokia T, Endob M, Kimb Y, Mizusakib H et al (2008) Measuring the degree of stacking order in graphite by Raman spectroscopy. Carbon 46:272–275
168.
Zurück zum Zitat Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565 Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565
169.
Zurück zum Zitat Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M et al (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. PNAS 103:3357–3362 Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M et al (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. PNAS 103:3357–3362
170.
Zurück zum Zitat Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682 Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682
171.
Zurück zum Zitat Yoon OJ, Kim HW, Kim DJ, Lee HJ, Yun JY, Noh YH et al (2009) Nanocomposites of electrospun poly(d, l-lactic)-co-(glycolic acid) and plasma-functionalized single-walled carbon nanotubes for biomedical applications. Plasma Process Polym 6:101–109 Yoon OJ, Kim HW, Kim DJ, Lee HJ, Yun JY, Noh YH et al (2009) Nanocomposites of electrospun poly(d, l-lactic)-co-(glycolic acid) and plasma-functionalized single-walled carbon nanotubes for biomedical applications. Plasma Process Polym 6:101–109
172.
Zurück zum Zitat Chen C, Liang B, Lu D, Ogino A, Wang X, Nagatsu M (2010) Amino group introduction onto multiwall carbon nanotubes by NH3/Ar plasma treatment. Carbon 48:939–948 Chen C, Liang B, Lu D, Ogino A, Wang X, Nagatsu M (2010) Amino group introduction onto multiwall carbon nanotubes by NH3/Ar plasma treatment. Carbon 48:939–948
173.
Zurück zum Zitat Xu J, Chen T, Yang C, Li Z, Mao Y et al (2010) Isothermal crystallization of poly(l-lactide) induced by graphene nanosheets and carbon nanotubes: a comparative study. Macromolecules 43:5000–5008 Xu J, Chen T, Yang C, Li Z, Mao Y et al (2010) Isothermal crystallization of poly(l-lactide) induced by graphene nanosheets and carbon nanotubes: a comparative study. Macromolecules 43:5000–5008
174.
Zurück zum Zitat Jacobsen S, Fritz HG (1999) Plasticizing polylactide—the effect of different plasticizers on the mechanical properties. Polym Eng Sci 39:1303–1310 Jacobsen S, Fritz HG (1999) Plasticizing polylactide—the effect of different plasticizers on the mechanical properties. Polym Eng Sci 39:1303–1310
175.
Zurück zum Zitat Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219 Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219
176.
Zurück zum Zitat Oksman K, Skrifvars M, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Comp Sci Tech 63:1317–1324 Oksman K, Skrifvars M, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Comp Sci Tech 63:1317–1324
177.
Zurück zum Zitat Ljungberg N, Andersson T, Wesslen B (2003) Film extrusion and film weldability of poly(lactic acid) plasticized with triacetin and tributyl citrate. J Appl Polym Sci 88:3239–3247 Ljungberg N, Andersson T, Wesslen B (2003) Film extrusion and film weldability of poly(lactic acid) plasticized with triacetin and tributyl citrate. J Appl Polym Sci 88:3239–3247
178.
Zurück zum Zitat Ljungberg N, Wesslen B (2005) Preparation and properties of plasticized poly(lactic acid) films. Biomacromolecules 6:1789–1796 Ljungberg N, Wesslen B (2005) Preparation and properties of plasticized poly(lactic acid) films. Biomacromolecules 6:1789–1796
179.
Zurück zum Zitat Ljungberg N, Wesslen B (2003) Tributyl citrate oligomers as plasticizers for poly(lactic acid): thermo-mechanical film properties and aging. Polymer 44:7679–7688 Ljungberg N, Wesslen B (2003) Tributyl citrate oligomers as plasticizers for poly(lactic acid): thermo-mechanical film properties and aging. Polymer 44:7679–7688
180.
Zurück zum Zitat Murariu M, Ferreira ADS, Pluta M et al (2008) Polylactide (PLA)–CaSO4 composites toughened with low molecular weight and polymeric-ester like plasticizers and related performances. Euro Polym J 44:3842–3852 Murariu M, Ferreira ADS, Pluta M et al (2008) Polylactide (PLA)–CaSO4 composites toughened with low molecular weight and polymeric-ester like plasticizers and related performances. Euro Polym J 44:3842–3852
181.
Zurück zum Zitat Hu Y, Hu YS, Topolkaraev V, Hiltner A, Baer E (2003) Crystallization and phase separation in blends of high stereoregular poly(lactide) with poly(ethene glycol). Polymer 44:5681–5689 Hu Y, Hu YS, Topolkaraev V, Hiltner A, Baer E (2003) Crystallization and phase separation in blends of high stereoregular poly(lactide) with poly(ethene glycol). Polymer 44:5681–5689
182.
Zurück zum Zitat Hu Y, Rogunova M, Topolkaraev V, Hiltner A, Baer E (2003) Ageing of poly(lactide)/poly(ethylene glycol) blends. Part 1. Poly(lactide) with low stereoregularity. Polymer 44:5701–5710 Hu Y, Rogunova M, Topolkaraev V, Hiltner A, Baer E (2003) Ageing of poly(lactide)/poly(ethylene glycol) blends. Part 1. Poly(lactide) with low stereoregularity. Polymer 44:5701–5710
183.
Zurück zum Zitat Kulinski Z, Piorkowska E, Gadzinowska K, Stasiak M (2006) Plasticization of poly(lactide) with poly(propylene glycol). Biomacromolecules 7:2128–2135 Kulinski Z, Piorkowska E, Gadzinowska K, Stasiak M (2006) Plasticization of poly(lactide) with poly(propylene glycol). Biomacromolecules 7:2128–2135
184.
Zurück zum Zitat Focarete ML, Scandola M, Dobrzynski MS, Kowalczuk M (2002) Miscibility and mechanical properties of blends of (l)-lactide copolymers with atactic poly(3-hydroxybutyrate). Macromolecules 35:8472–8477 Focarete ML, Scandola M, Dobrzynski MS, Kowalczuk M (2002) Miscibility and mechanical properties of blends of (l)-lactide copolymers with atactic poly(3-hydroxybutyrate). Macromolecules 35:8472–8477
185.
Zurück zum Zitat Choi K-M, Choi M-C, Han D-H et al (2013) Plasticization of poly(lactic acid) (PLA) through chemical grafting of poly(ethylene glycol) (PEG) via in situ reactive blending. Euro Polym J 49:2356–2364 Choi K-M, Choi M-C, Han D-H et al (2013) Plasticization of poly(lactic acid) (PLA) through chemical grafting of poly(ethylene glycol) (PEG) via in situ reactive blending. Euro Polym J 49:2356–2364
186.
Zurück zum Zitat Chieng BW, Ibrahim N, Yunus WMZW et al (2014) Effects of graphene nanoplatelets and reduced graphene oxide on poly(lactic acid) and plasticized poly(lactic acid): a comparison study. Polymers 6:2232–2246 Chieng BW, Ibrahim N, Yunus WMZW et al (2014) Effects of graphene nanoplatelets and reduced graphene oxide on poly(lactic acid) and plasticized poly(lactic acid): a comparison study. Polymers 6:2232–2246
187.
Zurück zum Zitat Chieng BW, Ibrahim N, Yunus WMZW, Hussein MZ (2014) Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets. Polymers 6:93–104 Chieng BW, Ibrahim N, Yunus WMZW, Hussein MZ (2014) Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets. Polymers 6:93–104
Metadaten
Titel
Graphene modifications in polylactic acid nanocomposites: a review
verfasst von
H. Norazlina
Y. Kamal
Publikationsdatum
01.04.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 4/2015
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-015-1308-5

Weitere Artikel der Ausgabe 4/2015

Polymer Bulletin 4/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.