Skip to main content
Erschienen in: Journal of Materials Science 14/2019

17.04.2019 | Electronic materials

Graphene transparent conductive films directly grown on quartz substrates by assisted catalysis of Cu nanoparticles

verfasst von: Qing Lu, Liyue Liu, Xiaoling Zhang, Yuan Cheng, Yue Huang, Yongkui Shan, Qingbiao Zhao, Ganghua Zhang, Dezeng Li

Erschienen in: Journal of Materials Science | Ausgabe 14/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene-based transparent conductive films (TCFs) are promising alternative to indium tin oxide owing to their high transmittance and conductivity. Graphene films were directly deposited on quartz substrates by assisted catalysis of Cu nanoparticles in ambient pressure chemical vapor deposition. Growth conditions, including the concentration of Cu nanoparticles as catalyst, flow rate of CH4, temperature and growth time, were systematically investigated to optimize the quality and performance of graphene TCFs. With the optimized growth conditions, the obtained graphene TCFs exhibit good performance with sheet resistance of 2.48 kΩ sq−1 at transmittance of 82.83%. With this method, graphene TCFs with good performance were obtained without the need of a complex transfer process of graphene, opening a considerable route toward fabricating graphene TCFs on dielectric substrates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chen X, Zhang L, Chen S (2015) Large area CVD growth of graphene. Synth Met 210:95–108CrossRef Chen X, Zhang L, Chen S (2015) Large area CVD growth of graphene. Synth Met 210:95–108CrossRef
2.
Zurück zum Zitat Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9):351–355CrossRef Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9):351–355CrossRef
3.
Zurück zum Zitat Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5(10):722–726CrossRef Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5(10):722–726CrossRef
4.
Zurück zum Zitat Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT, Li XS, Yao Z, Huang R, Broido D, Mingo N, Ruoff RS, Shi L (2010) Two-dimensional phonon transport in supported graphene. Science 328(5975):213–216CrossRef Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT, Li XS, Yao Z, Huang R, Broido D, Mingo N, Ruoff RS, Shi L (2010) Two-dimensional phonon transport in supported graphene. Science 328(5975):213–216CrossRef
5.
Zurück zum Zitat Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin AA, Ruoff RS (2012) Thermal conductivity of isotopically modified graphene. Nat Mater 11(3):203–207CrossRef Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin AA, Ruoff RS (2012) Thermal conductivity of isotopically modified graphene. Nat Mater 11(3):203–207CrossRef
6.
Zurück zum Zitat Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308–1308CrossRef Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308–1308CrossRef
7.
Zurück zum Zitat Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388CrossRef Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388CrossRef
8.
Zurück zum Zitat Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2(12):1015–1024CrossRef Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2(12):1015–1024CrossRef
9.
Zurück zum Zitat Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9(5):1752–1758CrossRef Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9(5):1752–1758CrossRef
10.
Zurück zum Zitat Chen S, Cai W, Chen D, Ren Y, Li X, Zhu Y, Kang J, Ruoff RS (2010) Adsorption/desorption and electrically controlled flipping of ammonia molecules on graphene. New J Phys 12(12):125011CrossRef Chen S, Cai W, Chen D, Ren Y, Li X, Zhu Y, Kang J, Ruoff RS (2010) Adsorption/desorption and electrically controlled flipping of ammonia molecules on graphene. New J Phys 12(12):125011CrossRef
11.
Zurück zum Zitat Yuan W, Shi G (2013) Graphene-based gas sensors. J Mater Chem A 1(35):10078–10091CrossRef Yuan W, Shi G (2013) Graphene-based gas sensors. J Mater Chem A 1(35):10078–10091CrossRef
12.
Zurück zum Zitat Park S, An J, Suk JW, Ruoff RS (2010) Graphene-based actuators. Small 6(2):210–212CrossRef Park S, An J, Suk JW, Ruoff RS (2010) Graphene-based actuators. Small 6(2):210–212CrossRef
13.
Zurück zum Zitat Ryu J, Kim Y, Won D, Kim N, Park JS, Lee EK, Cho D, Cho SP, Kim SJ, Ryu GH, Shin HAS, Lee Z, Hong BH, Cho S (2014) Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition. ACS Nano 8(1):950–956CrossRef Ryu J, Kim Y, Won D, Kim N, Park JS, Lee EK, Cho D, Cho SP, Kim SJ, Ryu GH, Shin HAS, Lee Z, Hong BH, Cho S (2014) Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition. ACS Nano 8(1):950–956CrossRef
14.
Zurück zum Zitat Chen ZT, Guo XL, Zhua L, LiL Liu YY, Zhao L, Zhang WJ, Chen J, Zhang Y, Zhao YH (2018) Direct growth of graphene on vertically standing glass by a metal-free chemical vapor deposition method. J Mater Sci Technol 34(10):209–214CrossRef Chen ZT, Guo XL, Zhua L, LiL Liu YY, Zhao L, Zhang WJ, Chen J, Zhang Y, Zhao YH (2018) Direct growth of graphene on vertically standing glass by a metal-free chemical vapor deposition method. J Mater Sci Technol 34(10):209–214CrossRef
15.
Zurück zum Zitat Sun J, Chen Z, Yuan L, Chen YB, Ning J, Liu SW, Ma DL, Song XJ, Priydarshi MK, Bachmatiuk A, Rümmeli MH, Ma TB, Zhi LJ, Huang LB, Zhang YF, Liu ZF (2016) Direct-chemical-vapor-deposition-fabricated, large-scale graphene glass with high carrier mobility and uniformity for touch panel applications. ACS Nano 10(2016):11136–11144CrossRef Sun J, Chen Z, Yuan L, Chen YB, Ning J, Liu SW, Ma DL, Song XJ, Priydarshi MK, Bachmatiuk A, Rümmeli MH, Ma TB, Zhi LJ, Huang LB, Zhang YF, Liu ZF (2016) Direct-chemical-vapor-deposition-fabricated, large-scale graphene glass with high carrier mobility and uniformity for touch panel applications. ACS Nano 10(2016):11136–11144CrossRef
16.
Zurück zum Zitat Zhang ZK, Du JH, Zhang DD, Sun HD, Yin LC, Ma LP, Chen JS, Ma DG, Cheng HM, Ren WC (2017) Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nat Commun 8:14560CrossRef Zhang ZK, Du JH, Zhang DD, Sun HD, Yin LC, Ma LP, Chen JS, Ma DG, Cheng HM, Ren WC (2017) Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nat Commun 8:14560CrossRef
17.
Zurück zum Zitat Park IJ, Kim TI, Kang S, Shim GW, Woo Y, Kim TS, Choi SY (2018) Stretchable thin-film transistors with molybdenum disulfide channels and graphene electrodes. Nanoscale 10:16069–16078CrossRef Park IJ, Kim TI, Kang S, Shim GW, Woo Y, Kim TS, Choi SY (2018) Stretchable thin-film transistors with molybdenum disulfide channels and graphene electrodes. Nanoscale 10:16069–16078CrossRef
18.
Zurück zum Zitat Park IJ, Kim TI, Cho IT, Song CW, Yang JW, Park H, Cheong WS, Im SG, Lee JH, Choi SY (2017) Graphene electrode with tunable charge transport in thin-film transistors. Nano Res 11:274–286CrossRef Park IJ, Kim TI, Cho IT, Song CW, Yang JW, Park H, Cheong WS, Im SG, Lee JH, Choi SY (2017) Graphene electrode with tunable charge transport in thin-film transistors. Nano Res 11:274–286CrossRef
19.
Zurück zum Zitat Loh KP, Tong SW, Wu JS (2016) Graphene and graphene-like molecules: prospects in solar cells. J Am Chem Soc 138(4):1095–1102CrossRef Loh KP, Tong SW, Wu JS (2016) Graphene and graphene-like molecules: prospects in solar cells. J Am Chem Soc 138(4):1095–1102CrossRef
20.
Zurück zum Zitat Du JH, Jin H, Zhang ZK, Zhang DD, Jia S, Ma LP, Ren WC, Cheng HM, Burn PL (2017) Efficient organic photovoltaic cells on a single layer graphene transparent conductive electrode using MoOx as an interfacial layer. Nanoscale 9:251–257CrossRef Du JH, Jin H, Zhang ZK, Zhang DD, Jia S, Ma LP, Ren WC, Cheng HM, Burn PL (2017) Efficient organic photovoltaic cells on a single layer graphene transparent conductive electrode using MoOx as an interfacial layer. Nanoscale 9:251–257CrossRef
21.
Zurück zum Zitat Tsuboi Y, Wang F, Kozawa D, Funahashi K, Mouri S, Miyauchi Y, Takenobu T, Matsuda K (2015) Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS2 thin film. Nanoscale 7:14476–14482CrossRef Tsuboi Y, Wang F, Kozawa D, Funahashi K, Mouri S, Miyauchi Y, Takenobu T, Matsuda K (2015) Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS2 thin film. Nanoscale 7:14476–14482CrossRef
22.
Zurück zum Zitat Peng Y, Liu ZK, Tai QD, Liu SH (2015) Efficient semitransparent perovskite solar cells with graphene electrodes. Adv Mater 27(24):3632–3638CrossRef Peng Y, Liu ZK, Tai QD, Liu SH (2015) Efficient semitransparent perovskite solar cells with graphene electrodes. Adv Mater 27(24):3632–3638CrossRef
23.
Zurück zum Zitat Yoon J, Sung H, Lee G, Cho W, Ahn N, Jung HS, Choi M (2017) Super flexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ Sci 10:337–345CrossRef Yoon J, Sung H, Lee G, Cho W, Ahn N, Jung HS, Choi M (2017) Super flexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ Sci 10:337–345CrossRef
24.
Zurück zum Zitat Notte LL, Bianco GV, Palma AL, Carlo AD, Bruno G, Reale A (2018) Sprayed organic photovoltaic cells and mini-modules based on chemical vapor deposited graphene as transparent conductive electrode. Carbon 129:878–883CrossRef Notte LL, Bianco GV, Palma AL, Carlo AD, Bruno G, Reale A (2018) Sprayed organic photovoltaic cells and mini-modules based on chemical vapor deposited graphene as transparent conductive electrode. Carbon 129:878–883CrossRef
25.
Zurück zum Zitat Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314CrossRef Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314CrossRef
26.
Zurück zum Zitat Chen CS, Hsieh CK (2014) An easy, low-cost method to transfer large-scale graphene onto polyethylene terephthalate as a transparent conductive flexible substrate. Thin Solid Films 570:595–598CrossRef Chen CS, Hsieh CK (2014) An easy, low-cost method to transfer large-scale graphene onto polyethylene terephthalate as a transparent conductive flexible substrate. Thin Solid Films 570:595–598CrossRef
27.
Zurück zum Zitat Arco LGD, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4(5):2865–2873CrossRef Arco LGD, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4(5):2865–2873CrossRef
28.
Zurück zum Zitat Zhang J, Hu P, Wang X, Wang Z, Liu D, Yang B, Cao W (2012) CVD growth of large area and uniform graphene on tilted copper foil for high performance flexible transparent conductive film. J Mater Chem 22(35):18283–18290CrossRef Zhang J, Hu P, Wang X, Wang Z, Liu D, Yang B, Cao W (2012) CVD growth of large area and uniform graphene on tilted copper foil for high performance flexible transparent conductive film. J Mater Chem 22(35):18283–18290CrossRef
29.
Zurück zum Zitat Kobayashia T, Bando M, Kimura N, Shimizu K, Kadono K (2013) Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl Phys Lett 102(2):023112CrossRef Kobayashia T, Bando M, Kimura N, Shimizu K, Kadono K (2013) Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl Phys Lett 102(2):023112CrossRef
30.
Zurück zum Zitat Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner RD, Colombo L, Ruoff RS (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9(12):4359–4363CrossRef Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner RD, Colombo L, Ruoff RS (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9(12):4359–4363CrossRef
31.
Zurück zum Zitat Golanski L, Rouchon D, Okuno H, Fugier P (2016) Graphene monolayer produced on Pt reusable substrates for transparent conductive electrodes applications. Int J Nanotechnol 13(8–9):678–684CrossRef Golanski L, Rouchon D, Okuno H, Fugier P (2016) Graphene monolayer produced on Pt reusable substrates for transparent conductive electrodes applications. Int J Nanotechnol 13(8–9):678–684CrossRef
32.
Zurück zum Zitat Liu M, Gao Y, Zhang Y, Zhang Y, Ma D, Ji Q, Gao T, Chen Y, Liu Z (2013) Single and polycrystalline graphene on Rh (111) following different growth mechanisms. Small 9(8):1360–1366CrossRef Liu M, Gao Y, Zhang Y, Zhang Y, Ma D, Ji Q, Gao T, Chen Y, Liu Z (2013) Single and polycrystalline graphene on Rh (111) following different growth mechanisms. Small 9(8):1360–1366CrossRef
33.
Zurück zum Zitat Kwon SY, Ciobanu CV, Petrova V, Shenoy VB, Bareño J, Gambin V, Petrov I, Kodambaka S (2009) Growth of semiconducting graphene on palladium. Nano Lett 9(12):3985–3990CrossRef Kwon SY, Ciobanu CV, Petrova V, Shenoy VB, Bareño J, Gambin V, Petrov I, Kodambaka S (2009) Growth of semiconducting graphene on palladium. Nano Lett 9(12):3985–3990CrossRef
34.
Zurück zum Zitat Bi H, Sun S, Huang F, Xie X, Jiang M (2012) Direct growth of few-layer graphene films on SiO2 substrates and their photovoltaic applications. J Mater Chem 22(2):411–416CrossRef Bi H, Sun S, Huang F, Xie X, Jiang M (2012) Direct growth of few-layer graphene films on SiO2 substrates and their photovoltaic applications. J Mater Chem 22(2):411–416CrossRef
35.
Zurück zum Zitat Yan Z, Peng Z, Sun Z, Yao J, Zhu Y, Liu Z, Ajayan PM, Tour JM (2011) Growth of bilayer graphene on insulating substrates. ACS Nano 5(10):8187–8192CrossRef Yan Z, Peng Z, Sun Z, Yao J, Zhu Y, Liu Z, Ajayan PM, Tour JM (2011) Growth of bilayer graphene on insulating substrates. ACS Nano 5(10):8187–8192CrossRef
36.
Zurück zum Zitat Kaplas T, Sharma D, Svirko Y (2012) Few-layer graphene synthesis on a dielectric substrate. Carbon 50(4):1503–1509CrossRef Kaplas T, Sharma D, Svirko Y (2012) Few-layer graphene synthesis on a dielectric substrate. Carbon 50(4):1503–1509CrossRef
37.
Zurück zum Zitat Ismach A, Druzgalski C, Penwell S, Schwartzberg A, Zheng M, Javey A, Bokor J, Zhang Y (2010) Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett 10(5):1542–1548CrossRef Ismach A, Druzgalski C, Penwell S, Schwartzberg A, Zheng M, Javey A, Bokor J, Zhang Y (2010) Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett 10(5):1542–1548CrossRef
38.
Zurück zum Zitat Wang Z, Xue Z, Zhang M, Wang Y, Xie X, Chu PK, Zhou P, Di Z, Wang X (2017) Germanium-assisted direct growth of graphene on arbitrary dielectric substrates for heating devices. Small 13(28):1700929CrossRef Wang Z, Xue Z, Zhang M, Wang Y, Xie X, Chu PK, Zhou P, Di Z, Wang X (2017) Germanium-assisted direct growth of graphene on arbitrary dielectric substrates for heating devices. Small 13(28):1700929CrossRef
39.
Zurück zum Zitat Teng PY, Lu CC, Hasegawa KA, Lin YC, Yeh CH, Suenaga K, Chiu PW (2012) Remote catalyzation for direct formation of graphene layers on oxides. Nano Lett 12(3):1379–1384CrossRef Teng PY, Lu CC, Hasegawa KA, Lin YC, Yeh CH, Suenaga K, Chiu PW (2012) Remote catalyzation for direct formation of graphene layers on oxides. Nano Lett 12(3):1379–1384CrossRef
40.
Zurück zum Zitat Zhang C, Man BY, Yang C, Jiang SZ, Liu M, Chen CS, Xu SC, Sun ZC, Gao XG, Chen XJ (2013) Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system. Nanotechnology 24(39):395603CrossRef Zhang C, Man BY, Yang C, Jiang SZ, Liu M, Chen CS, Xu SC, Sun ZC, Gao XG, Chen XJ (2013) Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system. Nanotechnology 24(39):395603CrossRef
41.
Zurück zum Zitat Kim H, Song I, Park C, Son M, Hong M, Kim Y, Kim JS, Shin HJ, Baik J, Choi HC (2013) Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. ACS Nano 7(8):6575–6582CrossRef Kim H, Song I, Park C, Son M, Hong M, Kim Y, Kim JS, Shin HJ, Baik J, Choi HC (2013) Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. ACS Nano 7(8):6575–6582CrossRef
42.
Zurück zum Zitat Han SS, Yang F, Liu LY, Zhou M, Shan YK, Li DZ (2017) Direct growth of graphene on different templates to fabricate special shapes of graphene by remote catalyzation of Cu nanoparticles. J Mater Sci Technol 33:800–806CrossRef Han SS, Yang F, Liu LY, Zhou M, Shan YK, Li DZ (2017) Direct growth of graphene on different templates to fabricate special shapes of graphene by remote catalyzation of Cu nanoparticles. J Mater Sci Technol 33:800–806CrossRef
43.
Zurück zum Zitat Han SS, Liu LY, Shan YK, Yang F, Li DZ (2017) Research of graphene/antireflection nanostructure composite transparent conducting films. J Inorg Mater 32:197–202CrossRef Han SS, Liu LY, Shan YK, Yang F, Li DZ (2017) Research of graphene/antireflection nanostructure composite transparent conducting films. J Inorg Mater 32:197–202CrossRef
44.
Zurück zum Zitat Liu LY, Cheng Y, Zhang XL, Shan YK, Zhang X, Wang WY, Li DZ (2017) Graphene-based transparent conductive films with enhanced transmittance and conductivity by introducing antireflection nanostructure. Surf Coat Technol 325:611–616CrossRef Liu LY, Cheng Y, Zhang XL, Shan YK, Zhang X, Wang WY, Li DZ (2017) Graphene-based transparent conductive films with enhanced transmittance and conductivity by introducing antireflection nanostructure. Surf Coat Technol 325:611–616CrossRef
45.
Zurück zum Zitat Malarda LM, Pimentaa MA, Dresselhausb G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473(5):51–87CrossRef Malarda LM, Pimentaa MA, Dresselhausb G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473(5):51–87CrossRef
46.
Zurück zum Zitat Trinsoutrot P, Rabot C, Vergnes H, Delamoreanu A, Zenasni A, Caussat B (2014) The role of the gas phase in graphene formation by CVD on copper. Chem Vap Deposition 20:51–58CrossRef Trinsoutrot P, Rabot C, Vergnes H, Delamoreanu A, Zenasni A, Caussat B (2014) The role of the gas phase in graphene formation by CVD on copper. Chem Vap Deposition 20:51–58CrossRef
47.
Zurück zum Zitat Cancado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhães-Paniago R, Pimenta MA (2006) General equation for the determination of the crystallite size L a of nanographite by Raman spectroscopy. Appl Phys Lett 88(1–3):163106CrossRef Cancado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhães-Paniago R, Pimenta MA (2006) General equation for the determination of the crystallite size L a of nanographite by Raman spectroscopy. Appl Phys Lett 88(1–3):163106CrossRef
Metadaten
Titel
Graphene transparent conductive films directly grown on quartz substrates by assisted catalysis of Cu nanoparticles
verfasst von
Qing Lu
Liyue Liu
Xiaoling Zhang
Yuan Cheng
Yue Huang
Yongkui Shan
Qingbiao Zhao
Ganghua Zhang
Dezeng Li
Publikationsdatum
17.04.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 14/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03621-6

Weitere Artikel der Ausgabe 14/2019

Journal of Materials Science 14/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.