Skip to main content
Erschienen in: Software and Systems Modeling 3/2021

16.11.2020 | Regular Paper

Graphical composite modeling and simulation for multi-aircraft collision avoidance

verfasst von: Feng Zhu, Jun Tang

Erschienen in: Software and Systems Modeling | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modeling and simulation for multi-aircraft collision avoidance to understand the mechanistic behavior is an important activity. Building models using general programming language typically requires specialist knowledge, and this limits the spread of modeling and simulation approach among multi-aircraft collision avoidance scenario. Thus, a software environment is needed to support convenient development of models by assembling components, when analysis demands changes. In this work, the graphical composite modeling and simulation software (GMAS extended) for multi-aircraft collision avoidance is introduced, with the basic graphical components and a graphical assembly editor. We define the serial and parallel execution semantics of GMASE-based model and then introduce the high-level graphical modeling interface, the low-level runtime engine of GMAS, and the simulation-based decision tree, which transforms a complex decision-making process into a collection of simpler decisions of finding the no collision or optimal sequence from some initial state to the goal state. To validate its efficiency and practicability, a three-aircraft collision avoidance model with TCAS operations is built on GMAS, which shows that using GMAS increases reusability and hiding complexity in graphical programming by splitting complex behavior into data flow and function components. The experimental result proves that GMAS not only provides a better representation for multi-aircraft collision avoidance, but also a useful approach for analyzing the potential collision occurrences.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kuchar, J.K., Yang, L.C.: A review of conflict detection and resolution modeling methods. IEEE Trans. Intell. Transp. Syst. 1(4), 179–189 (2000)CrossRef Kuchar, J.K., Yang, L.C.: A review of conflict detection and resolution modeling methods. IEEE Trans. Intell. Transp. Syst. 1(4), 179–189 (2000)CrossRef
2.
Zurück zum Zitat Love, W.D.: Preview of TCAS II Version 7. Air Traffic Control Q. Int. J. Eng. Oper. 6(4), 231–247 (2016)CrossRef Love, W.D.: Preview of TCAS II Version 7. Air Traffic Control Q. Int. J. Eng. Oper. 6(4), 231–247 (2016)CrossRef
3.
Zurück zum Zitat Billingsley, T. B., Espindle, I. P., Griffith, J. D.: TCAS multiple threat encounter analysis[R]. MIT Lincoln Laboratory, Project Report ATC-359, 2009 Billingsley, T. B., Espindle, I. P., Griffith, J. D.: TCAS multiple threat encounter analysis[R]. MIT Lincoln Laboratory, Project Report ATC-359, 2009
4.
Zurück zum Zitat Tang, J., Piera, M.A., Guasch, T.: Colored Petri net-based traffic collision avoidance system encounter model for the analysis of potential induced collisions. Transp. Res. Part C 67, 357–377 (2016)CrossRef Tang, J., Piera, M.A., Guasch, T.: Colored Petri net-based traffic collision avoidance system encounter model for the analysis of potential induced collisions. Transp. Res. Part C 67, 357–377 (2016)CrossRef
5.
Zurück zum Zitat Haeusler, M., Trojer, T., Kessler, J., et al.: ChronoSphere: a graph-based EMF model repository for IT landscape models. Softw. Syst. Model. 4, 1–40 (2019) Haeusler, M., Trojer, T., Kessler, J., et al.: ChronoSphere: a graph-based EMF model repository for IT landscape models. Softw. Syst. Model. 4, 1–40 (2019)
6.
Zurück zum Zitat Mirko, W., Simon, O., Manfred, K., Nikolaus, V., Asfour, T.: The ArmarX statechart concept: graphical programing of robot behavior. Front. Robot. AI 3, 33 (2016) Mirko, W., Simon, O., Manfred, K., Nikolaus, V., Asfour, T.: The ArmarX statechart concept: graphical programing of robot behavior. Front. Robot. AI 3, 33 (2016)
7.
Zurück zum Zitat Tang, J., Zhu, F., Fan, L.: Simulation modelling of traffic collision avoidance system with wind disturbance. IEEE A&E Syst. Mag. 33(4), 36–45 (2018)CrossRef Tang, J., Zhu, F., Fan, L.: Simulation modelling of traffic collision avoidance system with wind disturbance. IEEE A&E Syst. Mag. 33(4), 36–45 (2018)CrossRef
8.
Zurück zum Zitat Billingsley, T.B., Kochenderfer, M.J., Chryssanthacopoulos, J.P.: Collision avoidance for general aviation. IEEE Aerosp. Electron. Syst. Mag. 27(7), 4–12 (2012)CrossRef Billingsley, T.B., Kochenderfer, M.J., Chryssanthacopoulos, J.P.: Collision avoidance for general aviation. IEEE Aerosp. Electron. Syst. Mag. 27(7), 4–12 (2012)CrossRef
9.
Zurück zum Zitat Kochenderfer, M.J., Holland, J.E., Chryssanthacopoulos, J.P.: Next-generation airborne collision avoidance system. Linc. Lab. J. 19(1), 17–33 (2012) Kochenderfer, M.J., Holland, J.E., Chryssanthacopoulos, J.P.: Next-generation airborne collision avoidance system. Linc. Lab. J. 19(1), 17–33 (2012)
10.
Zurück zum Zitat Kochenderfer, M.J., Chryssanthacopoulos, J.P., Weibel, R.E.: A new approach for designing safer collision avoidance systems. Air Traffic Control Q. 20(1), 27–45 (2012)CrossRef Kochenderfer, M.J., Chryssanthacopoulos, J.P., Weibel, R.E.: A new approach for designing safer collision avoidance systems. Air Traffic Control Q. 20(1), 27–45 (2012)CrossRef
11.
Zurück zum Zitat Holland, J.E., Kochenderfer, M.J., Olson, W.A.: Optimizing the next generation collision avoidance system for safe, suitable, and acceptable operational performance. Air Traffic Control Q. 21(3), 275–297 (2013)CrossRef Holland, J.E., Kochenderfer, M.J., Olson, W.A.: Optimizing the next generation collision avoidance system for safe, suitable, and acceptable operational performance. Air Traffic Control Q. 21(3), 275–297 (2013)CrossRef
12.
Zurück zum Zitat Yang, L., Yang, J. H., Kuchar, J., et al.: A real-time Monte Carlo implementation for computing probability of conflict. In: AIAA Guidance, Navigation and Control Conference. August 2004 Yang, L., Yang, J. H., Kuchar, J., et al.: A real-time Monte Carlo implementation for computing probability of conflict. In: AIAA Guidance, Navigation and Control Conference. August 2004
13.
Zurück zum Zitat Kochenderfer, M. J., Kuchar, J., Griffith, J., Espindle, L.: A Bayesian approach to aircraft encounter modeling. In: AIAA Guidance, Navigation and Control Conference. August 2008 Kochenderfer, M. J., Kuchar, J., Griffith, J., Espindle, L.: A Bayesian approach to aircraft encounter modeling. In: AIAA Guidance, Navigation and Control Conference. August 2008
14.
Zurück zum Zitat Griffith, J. D., Edwards, M. W., Miraflor, R. M., Weinert. A. J.: “Due regard encounter model version 1.0,” Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, MA, Project Report ATC-397, August 2013 Griffith, J. D., Edwards, M. W., Miraflor, R. M., Weinert. A. J.: “Due regard encounter model version 1.0,” Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, MA, Project Report ATC-397, August 2013
15.
Zurück zum Zitat Kochenderfer, M.J., Edwards, M.W., Espindle, L.P., et al.: Airspace encounter models for estimating collision risk. J. Guid. Control Dyn. 33(2), 487–499 (2010)CrossRef Kochenderfer, M.J., Edwards, M.W., Espindle, L.P., et al.: Airspace encounter models for estimating collision risk. J. Guid. Control Dyn. 33(2), 487–499 (2010)CrossRef
16.
Zurück zum Zitat Asmar, D.M., Kochenderfer, M.J., Chryssanthacopoulos, J.P.: Vertical state estimation for aircraft collision avoidance with quantized measurements. J. Guid. Control Dyn. 36(6), 1797–1802 (2013)CrossRef Asmar, D.M., Kochenderfer, M.J., Chryssanthacopoulos, J.P.: Vertical state estimation for aircraft collision avoidance with quantized measurements. J. Guid. Control Dyn. 36(6), 1797–1802 (2013)CrossRef
17.
Zurück zum Zitat Alonso-Ayuso, A., Escudero, L.F., Martín-Campo, F.J.: On modeling the air traffic control coordination in the collision avoidance problem by mixed integer linear optimization. Ann. Oper. Res. 222(1), 89–105 (2014)MathSciNetCrossRef Alonso-Ayuso, A., Escudero, L.F., Martín-Campo, F.J.: On modeling the air traffic control coordination in the collision avoidance problem by mixed integer linear optimization. Ann. Oper. Res. 222(1), 89–105 (2014)MathSciNetCrossRef
18.
Zurück zum Zitat Underhill, N., Harkleroad, E., Guendel, R., Maki, D., Edwards, M.: Correlated encounter model for cooperative aircraft in the national airspace system; Version 2.0,” Massachusetts Institute Technology Lincoln Laboratory Lexington United States, May 2018 Underhill, N., Harkleroad, E., Guendel, R., Maki, D., Edwards, M.: Correlated encounter model for cooperative aircraft in the national airspace system; Version 2.0,” Massachusetts Institute Technology Lincoln Laboratory Lexington United States, May 2018
19.
Zurück zum Zitat Smith, K.A., Vela, A.E., Kochenderfer, M.J., et al.: Optimizing a collision-avoidance system for closely spaced parallel operations. J. Aerosp. Inf. Syst. 12(10), 1–16 (2015) Smith, K.A., Vela, A.E., Kochenderfer, M.J., et al.: Optimizing a collision-avoidance system for closely spaced parallel operations. J. Aerosp. Inf. Syst. 12(10), 1–16 (2015)
20.
Zurück zum Zitat Murata T.: Petri nets: properties, analysis and applications. In: Proceedings of the IEEE, pp. 541–580 (1989) Murata T.: Petri nets: properties, analysis and applications. In: Proceedings of the IEEE, pp. 541–580 (1989)
21.
Zurück zum Zitat Sarkar, S., Dutta, A.: Petri net based modelling of railway intersection collision avoidance system. In: IEEE international conference on intelligent rail transportation, pp. 356–361 (2016) Sarkar, S., Dutta, A.: Petri net based modelling of railway intersection collision avoidance system. In: IEEE international conference on intelligent rail transportation, pp. 356–361 (2016)
22.
Zurück zum Zitat Tang, J., Zhu, F., Piera, M.A.: A causal encounter model of traffic collision avoidance system operations for safety assessment and advisory optimization in high-density airspace. Transp. Res. Part C 96, 347–365 (2018)CrossRef Tang, J., Zhu, F., Piera, M.A.: A causal encounter model of traffic collision avoidance system operations for safety assessment and advisory optimization in high-density airspace. Transp. Res. Part C 96, 347–365 (2018)CrossRef
23.
Zurück zum Zitat Jensen, L., Kristensen, L.M.: Coloured petri nets—modelling and validation of concurrent systems[M]. Springer, Berlin (2009)CrossRef Jensen, L., Kristensen, L.M.: Coloured petri nets—modelling and validation of concurrent systems[M]. Springer, Berlin (2009)CrossRef
24.
Zurück zum Zitat Kummer, O., Wienberg, F., Duvigneau, M., et al.: An extensible editor and simulation engine for petri nets: renew. In: International conference on applications and theory of petri nets and other models of concurrency (ICATPN 2004), vol. 3099, pp. 484–493 (2004) Kummer, O., Wienberg, F., Duvigneau, M., et al.: An extensible editor and simulation engine for petri nets: renew. In: International conference on applications and theory of petri nets and other models of concurrency (ICATPN 2004), vol. 3099, pp. 484–493 (2004)
25.
Zurück zum Zitat Aalst, W. M., Stahl, C., Westergaard, M.: Strategies for modeling complex processes using colored petri nets. Transactions on Petri Nets and Other Models of Concurrency VII, pp. 6–55 (2013) Aalst, W. M., Stahl, C., Westergaard, M.: Strategies for modeling complex processes using colored petri nets. Transactions on Petri Nets and Other Models of Concurrency VII, pp. 6–55 (2013)
26.
Zurück zum Zitat Schruben, L.: Simulation modeling with event graphs. Commun. ACM 26(11), 957–963 (1983)CrossRef Schruben, L.: Simulation modeling with event graphs. Commun. ACM 26(11), 957–963 (1983)CrossRef
27.
Zurück zum Zitat Buss, A., Blais, C.: Composability and component-based discrete event simulation. In: Proceedings of the 2007 Winter Simulation Conference, pp. 694–702 (2007) Buss, A., Blais, C.: Composability and component-based discrete event simulation. In: Proceedings of the 2007 Winter Simulation Conference, pp. 694–702 (2007)
28.
Zurück zum Zitat Lara, J.D.: Distributed event graphs formalizing component-based modeling and simulation. Electron. Notes Theor. Comput. Sci. 127, 145–162 (2005)CrossRef Lara, J.D.: Distributed event graphs formalizing component-based modeling and simulation. Electron. Notes Theor. Comput. Sci. 127, 145–162 (2005)CrossRef
29.
Zurück zum Zitat Wang, B., Deng, B., Xing, F., Wang, D., Yao, Y.: Partitioned event graph: formalizing LP-based modelling of parallel discrete-event simulation. Math. Comput. Modell. Dyn. Syst. 21(2), 153–179 (2014)MathSciNetCrossRef Wang, B., Deng, B., Xing, F., Wang, D., Yao, Y.: Partitioned event graph: formalizing LP-based modelling of parallel discrete-event simulation. Math. Comput. Modell. Dyn. Syst. 21(2), 153–179 (2014)MathSciNetCrossRef
30.
Zurück zum Zitat Harel, D.: Statecharts: a visual formalism for computer system. Sci. Comput. Program. 8(3), 231–274 (1987)CrossRef Harel, D.: Statecharts: a visual formalism for computer system. Sci. Comput. Program. 8(3), 231–274 (1987)CrossRef
31.
Zurück zum Zitat Cicirelli, F., Furfaro, A., Nigro, L.: Modelling and simulation of complex manufacturing systems using statechart-based actors. Simul. Model. Pract. Theory 19(2), 685–703 (2011)CrossRef Cicirelli, F., Furfaro, A., Nigro, L.: Modelling and simulation of complex manufacturing systems using statechart-based actors. Simul. Model. Pract. Theory 19(2), 685–703 (2011)CrossRef
32.
Zurück zum Zitat Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of modeling and simulation: integrating discrete event and continuous complex dynamic systems. Academic Press, Hoboken (2000) Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of modeling and simulation: integrating discrete event and continuous complex dynamic systems. Academic Press, Hoboken (2000)
33.
Zurück zum Zitat Palaniappan, S., Sarjoughian, H. S.: Application of the DEVS framework in construction simulation. In: Proceedings of the 2006 winter simulation conference, pp. 2077–2086 (2006) Palaniappan, S., Sarjoughian, H. S.: Application of the DEVS framework in construction simulation. In: Proceedings of the 2006 winter simulation conference, pp. 2077–2086 (2006)
34.
Zurück zum Zitat Wainer, G. A.: Modeling and simulation of complex systems with CELL-DEVS. In: Proceedings of the 2004 Winter Simulation Conference, pp. 49–60 (2004) Wainer, G. A.: Modeling and simulation of complex systems with CELL-DEVS. In: Proceedings of the 2004 Winter Simulation Conference, pp. 49–60 (2004)
35.
Zurück zum Zitat Cobanoglu, B., Zengin, A., Ekiz, H., et al.: Implementation of DEVS based distributed network simulator for large-scale networks. Int. J. Simul. Modell. 13(2), 147–158 (2014)CrossRef Cobanoglu, B., Zengin, A., Ekiz, H., et al.: Implementation of DEVS based distributed network simulator for large-scale networks. Int. J. Simul. Modell. 13(2), 147–158 (2014)CrossRef
36.
Zurück zum Zitat Tang, J., Zhu, F.: Graphical modelling and analysis software for state space-based optimization of discrete event systems. IEEE Access. 99, 1–15 (2018) Tang, J., Zhu, F.: Graphical modelling and analysis software for state space-based optimization of discrete event systems. IEEE Access. 99, 1–15 (2018)
37.
Zurück zum Zitat Tang, W., Yao, Y., Zhu, F.: A hierarchical parallel discrete event simulation kernel for multicore platform. Cluster Comput. 16(3), 379–387 (2013)CrossRef Tang, W., Yao, Y., Zhu, F.: A hierarchical parallel discrete event simulation kernel for multicore platform. Cluster Comput. 16(3), 379–387 (2013)CrossRef
38.
Zurück zum Zitat FAA. Introduction to TCAS II version 7.1. Federal Aviation Administration, 2011 FAA. Introduction to TCAS II version 7.1. Federal Aviation Administration, 2011
Metadaten
Titel
Graphical composite modeling and simulation for multi-aircraft collision avoidance
verfasst von
Feng Zhu
Jun Tang
Publikationsdatum
16.11.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Software and Systems Modeling / Ausgabe 3/2021
Print ISSN: 1619-1366
Elektronische ISSN: 1619-1374
DOI
https://doi.org/10.1007/s10270-020-00830-5

Weitere Artikel der Ausgabe 3/2021

Software and Systems Modeling 3/2021 Zur Ausgabe