Skip to main content

2020 | OriginalPaper | Buchkapitel

Graphical Conditions for Rate Independence in Chemical Reaction Networks

verfasst von : Élisabeth Degrand, François Fages, Sylvain Soliman

Erschienen in: Computational Methods in Systems Biology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Chemical Reaction Networks (CRNs) provide a useful abstraction of molecular interaction networks in which molecular structures as well as mass conservation principles are abstracted away to focus on the main dynamical properties of the network structure. In their interpretation by ordinary differential equations, we say that a CRN with distinguished input and output species computes a positive real function \(f:\mathbb {R}_{+}\rightarrow \mathbb {R}_{+}\), if for any initial concentration x of the input species, the concentration of the output molecular species stabilizes at concentration f(x). The Turing-completeness of that notion of chemical analog computation has been established by proving that any computable real function can be computed by a CRN over a finite set of molecular species. Rate-independent CRNs form a restricted class of CRNs of high practical value since they enjoy a form of absolute robustness in the sense that the result is completely independent of the reaction rates and depends solely on the input concentrations. The functions computed by rate-independent CRNs have been characterized mathematically as the set of piecewise linear functions from input species. However, this does not provide a mean to decide whether a given CRN is rate-independent. In this paper, we provide graphical conditions on the Petri Net structure of a CRN which entail the rate-independence property either for all species or for some output species. We show that in the curated part of the Biomodels repository, among the 590 reaction models tested, 2 reaction graphs were found to satisfy our rate-independence conditions for all species, 94 for some output species, among which 29 for some non-trivial output species. Our graphical conditions are based on a non-standard use of the Petri net notions of place-invariants and siphons which are computed by constraint programming techniques for efficiency reasons.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
Literatur
1.
Zurück zum Zitat Angeli, D., Leenheer, P.D., Sontag, E.D.: A Petri net approach to persistence analysis in chemical reaction networks. In: Queinnec, I., Tarbouriech, S., Garcia, G., Niculescu, S.I. (eds.) Biology and Control Theory: Current Challenges. LNCIS, vol. 357, pp. 181–216. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71988-5_9CrossRef Angeli, D., Leenheer, P.D., Sontag, E.D.: A Petri net approach to persistence analysis in chemical reaction networks. In: Queinnec, I., Tarbouriech, S., Garcia, G., Niculescu, S.I. (eds.) Biology and Control Theory: Current Challenges. LNCIS, vol. 357, pp. 181–216. Springer, Heidelberg (2007). https://​doi.​org/​10.​1007/​978-3-540-71988-5_​9CrossRef
2.
Zurück zum Zitat Angeli, D., Leenheer, P.D., Sontag, E.D.: Persistence results for chemical reaction networks with time-dependent kinetics and no global conservation laws. In: Proceedings of the 48h IEEE Conference on Decision and Control (CDC), pp. 4559–4564. IEEE (2009) Angeli, D., Leenheer, P.D., Sontag, E.D.: Persistence results for chemical reaction networks with time-dependent kinetics and no global conservation laws. In: Proceedings of the 48h IEEE Conference on Decision and Control (CDC), pp. 4559–4564. IEEE (2009)
5.
Zurück zum Zitat Chaouiya, C.: Petri net modelling of biological networks. Brief. Bioinform. 8(4), 210–219 (2007)CrossRef Chaouiya, C.: Petri net modelling of biological networks. Brief. Bioinform. 8(4), 210–219 (2007)CrossRef
6.
Zurück zum Zitat Chaouiya, C., Remy, E., Thieffry, D.: Petri net modelling of biological regulatory networks. J. Discret. Algorithms 6(2), 165–177 (2008)MathSciNetMATHCrossRef Chaouiya, C., Remy, E., Thieffry, D.: Petri net modelling of biological regulatory networks. J. Discret. Algorithms 6(2), 165–177 (2008)MathSciNetMATHCrossRef
7.
Zurück zum Zitat Chelliah, V., Laibe, C., Novère, N.: Biomodels database: a repository of mathematical models of biological processes. In: Schneider, M.V. (ed.) In Silico Systems Biology, Methods in Molecular Biology, vol. 1021, pp. 189–199. Humana Press (2013) Chelliah, V., Laibe, C., Novère, N.: Biomodels database: a repository of mathematical models of biological processes. In: Schneider, M.V. (ed.) In Silico Systems Biology, Methods in Molecular Biology, vol. 1021, pp. 189–199. Humana Press (2013)
8.
Zurück zum Zitat Chen, H.L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. Nat. Comput. 7433, 25–42 (2012)MATH Chen, H.L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. Nat. Comput. 7433, 25–42 (2012)MATH
9.
Zurück zum Zitat Chen, H.L., Doty, D., Soloveichik, D.: Rate-independent computation in continuous chemical reaction networks. In: Proceedings of the 5th Conference on Innovations in Theoretical Computer Science, ITCS 2014, pp. 313–326. ACM, New York (2014) Chen, H.L., Doty, D., Soloveichik, D.: Rate-independent computation in continuous chemical reaction networks. In: Proceedings of the 5th Conference on Innovations in Theoretical Computer Science, ITCS 2014, pp. 313–326. ACM, New York (2014)
10.
Zurück zum Zitat Chen, Y., et al.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8, 755–762 (2013)CrossRef Chen, Y., et al.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8, 755–762 (2013)CrossRef
12.
Zurück zum Zitat Courbet, A., Amar, P., Fages, F., Renard, E., Molina, F.: Computer-aided biochemical programming of synthetic microreactors as diagnostic devices. Mol. Syst. Biol. 14(4), e7845 (2018)CrossRef Courbet, A., Amar, P., Fages, F., Renard, E., Molina, F.: Computer-aided biochemical programming of synthetic microreactors as diagnostic devices. Mol. Syst. Biol. 14(4), e7845 (2018)CrossRef
13.
Zurück zum Zitat Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL 1977: Proceedings of the 6th ACM Symposium on Principles of Programming Languages, pp. 238–252. ACM Press, New York, Los Angeles (1977) Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL 1977: Proceedings of the 6th ACM Symposium on Principles of Programming Languages, pp. 238–252. ACM Press, New York, Los Angeles (1977)
14.
Zurück zum Zitat Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction networks: II. The species-reaction graph. SIAM J. Appl. Math. 66(4), 1321–1338 (2006)MathSciNetMATHCrossRef Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction networks: II. The species-reaction graph. SIAM J. Appl. Math. 66(4), 1321–1338 (2006)MathSciNetMATHCrossRef
15.
16.
Zurück zum Zitat Fages, F., Gay, S., Soliman, S.: Inferring reaction systems from ordinary differential equations. Theor. Comput. Sci. 599, 64–78 (2015)MathSciNetMATHCrossRef Fages, F., Gay, S., Soliman, S.: Inferring reaction systems from ordinary differential equations. Theor. Comput. Sci. 599, 64–78 (2015)MathSciNetMATHCrossRef
17.
19.
Zurück zum Zitat Feinberg, M.: Mathematical aspects of mass action kinetics. In: Lapidus, L., Amundson, N.R. (eds.) Chemical Reactor Theory: A Review, Chap. 1, pp. 1–78. Prentice-Hall (1977) Feinberg, M.: Mathematical aspects of mass action kinetics. In: Lapidus, L., Amundson, N.R. (eds.) Chemical Reactor Theory: A Review, Chap. 1, pp. 1–78. Prentice-Hall (1977)
20.
Zurück zum Zitat Gilbert, D., Heiner, M.: From petri nets to differential equations – an integrative approach for biochemical network analysis. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 181–200. Springer, Heidelberg (2006). https://doi.org/10.1007/11767589_11CrossRef Gilbert, D., Heiner, M.: From petri nets to differential equations – an integrative approach for biochemical network analysis. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 181–200. Springer, Heidelberg (2006). https://​doi.​org/​10.​1007/​11767589_​11CrossRef
22.
Zurück zum Zitat Hucka, M., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)CrossRef Hucka, M., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)CrossRef
23.
Zurück zum Zitat Johnston, M.D., Anderson, D.F., Craciun, G., Brijder, R.: Conditions for extinction events in chemical reaction networks with discrete state spaces. J. Math. Biol. 76(6), 1535–1558 (2018)MathSciNetMATHCrossRef Johnston, M.D., Anderson, D.F., Craciun, G., Brijder, R.: Conditions for extinction events in chemical reaction networks with discrete state spaces. J. Math. Biol. 76(6), 1535–1558 (2018)MathSciNetMATHCrossRef
24.
Zurück zum Zitat von Kamp, A., Schuster, S.: Metatool 5.0: fast and flexible elementary modes analysis. Bioinformatics 22(15), 1930–1931 (2006)CrossRef von Kamp, A., Schuster, S.: Metatool 5.0: fast and flexible elementary modes analysis. Bioinformatics 22(15), 1930–1931 (2006)CrossRef
25.
Zurück zum Zitat Lebeda, F.J., Adler, M., Erickson, K., Chushak, Y.: Onset dynamics of type A botulinum neurotoxin-induced paralysis. J. Pharmacok. Pharmacodyn. 35(3), 251–267 (2008)CrossRef Lebeda, F.J., Adler, M., Erickson, K., Chushak, Y.: Onset dynamics of type A botulinum neurotoxin-induced paralysis. J. Pharmacok. Pharmacodyn. 35(3), 251–267 (2008)CrossRef
26.
Zurück zum Zitat Nabli, F., Martinez, T., Fages, F., Soliman, S.: On enumerating minimal siphons in Petri nets using CLP and SAT solvers: theoretical and practical complexity. Constraints 21(2), 251–276 (2016)MathSciNetMATHCrossRef Nabli, F., Martinez, T., Fages, F., Soliman, S.: On enumerating minimal siphons in Petri nets using CLP and SAT solvers: theoretical and practical complexity. Constraints 21(2), 251–276 (2016)MathSciNetMATHCrossRef
27.
Zurück zum Zitat Ovchinnikov, S.: Max-min representation of piecewise linear functions. Contrib. Algebra Geom. 43(1), 297–302 (2002)MathSciNetMATH Ovchinnikov, S.: Max-min representation of piecewise linear functions. Contrib. Algebra Geom. 43(1), 297–302 (2002)MathSciNetMATH
28.
Zurück zum Zitat Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall, New Jersey (1981)MATH Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall, New Jersey (1981)MATH
30.
Zurück zum Zitat Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.N.: Petri net representations in metabolic pathways. In: Hunter, L., Searls, D.B., Shavlik, J.W. (eds.) Proceedings of the 1st International Conference on Intelligent Systems for Molecular Biology (ISMB), pp. 328–336. AAAI Press (1993) Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.N.: Petri net representations in metabolic pathways. In: Hunter, L., Searls, D.B., Shavlik, J.W. (eds.) Proceedings of the 1st International Conference on Intelligent Systems for Molecular Biology (ISMB), pp. 328–336. AAAI Press (1993)
31.
Zurück zum Zitat Sackmann, A., Heiner, M., Koch, I.: Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinform. 7, 482 (2006)CrossRef Sackmann, A., Heiner, M., Koch, I.: Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinform. 7, 482 (2006)CrossRef
32.
Zurück zum Zitat Schneider, F.S., et al.: Biomachines for medical diagnosis. Adv. Mater. Lett. 11(4), 1535–1558 (2020)CrossRef Schneider, F.S., et al.: Biomachines for medical diagnosis. Adv. Mater. Lett. 11(4), 1535–1558 (2020)CrossRef
33.
Zurück zum Zitat Senum, P., Riedel, M.: Rate-independent constructs for chemical computation. PLoS ONE 6(6), e21414 (2011)CrossRef Senum, P., Riedel, M.: Rate-independent constructs for chemical computation. PLoS ONE 6(6), e21414 (2011)CrossRef
34.
Zurück zum Zitat Soliman, S.: Invariants and other structural properties of biochemical models as a constraint satisfaction problem. Algorithms Mol. Biol. 7, 15 (2012)CrossRef Soliman, S.: Invariants and other structural properties of biochemical models as a constraint satisfaction problem. Algorithms Mol. Biol. 7, 15 (2012)CrossRef
Metadaten
Titel
Graphical Conditions for Rate Independence in Chemical Reaction Networks
verfasst von
Élisabeth Degrand
François Fages
Sylvain Soliman
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-60327-4_4