Skip to main content
Erschienen in: Journal of Iron and Steel Research International 8/2021

19.02.2021 | Original Paper

Graphical method based on modified maximum force criterion to indicate forming limit curves of 22MnB5 boron steel sheets at elevated temperatures

verfasst von: The-Thanh Luyen, Quoc-Tuan Pham, Thi-Bich Mac, Tien-Long Banh, Duc-Toan Nguyen

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 8/2021

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new approach for predicting forming limit curves (FLCs) at elevated temperatures was proposed herein. FLCs are often used to predict failure and determine the optimal forming parameters of automotive parts. First, a graphical method based on a modified maximum force criterion was applied to estimate the FLCs of 22MnB5 boron steel sheets at room temperature using various hardening laws. Subsequently, the predicted FLC data at room temperature were compared with corresponding data obtained from Nakazima’s tests to obtain the best prediction. To estimate the FLC at elevated temperatures, tensile tests were conducted at various temperatures to determine the ratios of equivalent fracture strains between the corresponding elevated temperatures and room temperature. FLCs at elevated temperatures could be established based on obtained ratios. However, the predicted FLCs at elevated temperatures did not agree well with the corresponding FLC experimental data of Zhou et al. A new method was proposed herein to improve the prediction of FLCs at elevated temperatures. An FLC calculated at room temperature was utilized to predict the failure of Nakazima’s samples via finite element simulation. Based on the simulation results at room temperature, the mathematical relationships between the equivalent ductile fracture strain versus stress triaxiality and strain ratio were established and then combined with ratios between elevated and room temperatures to calculate the FLCs at different temperatures. The predicted FLCs at elevated temperatures agree well with the corresponding experimental FLC data.
Literatur
[1]
Zurück zum Zitat C. Robert, A. Delamézière, P. Dal Santo, J.L. Batoz, J. Mater. Process. Technol. 212 (2012) 1123–1131.CrossRef C. Robert, A. Delamézière, P. Dal Santo, J.L. Batoz, J. Mater. Process. Technol. 212 (2012) 1123–1131.CrossRef
[2]
Zurück zum Zitat E. Fictorie, A.H. van den Boogaard, E.H. Atzema, Int. J. Mater. Form. 3 (2010) 1179–1182.CrossRef E. Fictorie, A.H. van den Boogaard, E.H. Atzema, Int. J. Mater. Form. 3 (2010) 1179–1182.CrossRef
[3]
Zurück zum Zitat Z.M. Yue, H. Badreddine, T. Dang, K. Saanouni, A.E. Tekkaya, J. Mater. Process. Technol. 218 (2015) 80–88.CrossRef Z.M. Yue, H. Badreddine, T. Dang, K. Saanouni, A.E. Tekkaya, J. Mater. Process. Technol. 218 (2015) 80–88.CrossRef
[4]
[5]
[6]
Zurück zum Zitat M.C. Butuc, J.J. Gracio, A. Barata da Rocha, J. Mater. Process. Technol. 142 (2003) 714–724.CrossRef M.C. Butuc, J.J. Gracio, A. Barata da Rocha, J. Mater. Process. Technol. 142 (2003) 714–724.CrossRef
[7]
Zurück zum Zitat P. Hora, L. Tong, B. Berisha, Int. J. Mater. Form. 6 (2013) 267–279.CrossRef P. Hora, L. Tong, B. Berisha, Int. J. Mater. Form. 6 (2013) 267–279.CrossRef
[8]
Zurück zum Zitat D. Banabic, H. Aretz, L. Paraianu, P. Jurco, Modelling Simul. Mater. Sci. Eng. 13 (2005) 759–769.CrossRef D. Banabic, H. Aretz, L. Paraianu, P. Jurco, Modelling Simul. Mater. Sci. Eng. 13 (2005) 759–769.CrossRef
[9]
Zurück zum Zitat N. Manopulo, P. Hora, P. Peters, M. Gorji, F. Barlat, Int. J. Plasticity 75 (2015) 189–203.CrossRef N. Manopulo, P. Hora, P. Peters, M. Gorji, F. Barlat, Int. J. Plasticity 75 (2015) 189–203.CrossRef
[10]
[11]
Zurück zum Zitat Q.T. Pham, B.H. Lee, K.C. Park, Y.S. Kim, Int. J. Mech. Sci. 140 (2018) 521–536.CrossRef Q.T. Pham, B.H. Lee, K.C. Park, Y.S. Kim, Int. J. Mech. Sci. 140 (2018) 521–536.CrossRef
[12]
Zurück zum Zitat Q.T. Pham, D.T. Nguyen, J.J. Kim, Y.S. Kim, Key Eng. Mater. 794 (2019) 55–62.CrossRef Q.T. Pham, D.T. Nguyen, J.J. Kim, Y.S. Kim, Key Eng. Mater. 794 (2019) 55–62.CrossRef
[13]
Zurück zum Zitat T.T. Luyen, Q.T. Pham, Y.S. Kim, D.T. Nguyen, J. Korean Soc. Precis. Eng. 36 (2019) 883–890.CrossRef T.T. Luyen, Q.T. Pham, Y.S. Kim, D.T. Nguyen, J. Korean Soc. Precis. Eng. 36 (2019) 883–890.CrossRef
[14]
Zurück zum Zitat N. Duc-Toan, K. Young-Suk, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 234 (2019) 189–203.CrossRef N. Duc-Toan, K. Young-Suk, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 234 (2019) 189–203.CrossRef
[15]
Zurück zum Zitat M. Merklein, J. Lecher, V. Gödel, S. Bruschi, A. Ghiotti, A. Turetta, Key Eng. Mater. 344 (2007) 79–86.CrossRef M. Merklein, J. Lecher, V. Gödel, S. Bruschi, A. Ghiotti, A. Turetta, Key Eng. Mater. 344 (2007) 79–86.CrossRef
[16]
[17]
[18]
Zurück zum Zitat P. Hu, D. Shi, L. Ying, G. Shen, W. Liu, Mater. Des. 69 (2015) 141–152.CrossRef P. Hu, D. Shi, L. Ying, G. Shen, W. Liu, Mater. Des. 69 (2015) 141–152.CrossRef
[19]
Zurück zum Zitat B.T. Tang, S. Bruschi, A. Ghiotti, P.F. Bariani, J. Mater. Process. Technol. 228 (2016) 76–87.CrossRef B.T. Tang, S. Bruschi, A. Ghiotti, P.F. Bariani, J. Mater. Process. Technol. 228 (2016) 76–87.CrossRef
[20]
Zurück zum Zitat D.Y. Shi, L. Ying, P. Hu, J.D. Lu, X. Zhao, W.Q. Liu, AIP Conf. Proc. 1532, (2013) 406–413.CrossRef D.Y. Shi, L. Ying, P. Hu, J.D. Lu, X. Zhao, W.Q. Liu, AIP Conf. Proc. 1532, (2013) 406–413.CrossRef
[21]
[22]
Zurück zum Zitat J. Min, J. Lin, J. Li, W. Bao, Comput. Mater. Sci. 49 (2010) 326–332.CrossRef J. Min, J. Lin, J. Li, W. Bao, Comput. Mater. Sci. 49 (2010) 326–332.CrossRef
[23]
[24]
Zurück zum Zitat F.F. Li, M.W. Fu, J.P. Lin, X.N. Wang, Int. J. Adv. Manuf. Technol. 71 (2014) 297–306.CrossRef F.F. Li, M.W. Fu, J.P. Lin, X.N. Wang, Int. J. Adv. Manuf. Technol. 71 (2014) 297–306.CrossRef
[25]
Zurück zum Zitat H. Liu, J. Cui, K. Jiang, G. Zhou, J. Mater. Eng. Perform. 25 (2016) 4894–4901.CrossRef H. Liu, J. Cui, K. Jiang, G. Zhou, J. Mater. Eng. Perform. 25 (2016) 4894–4901.CrossRef
[26]
Zurück zum Zitat S.P. Keeler, W.A. Backofen, Trans. ASM 56 (1963) 25–48. S.P. Keeler, W.A. Backofen, Trans. ASM 56 (1963) 25–48.
[27]
Zurück zum Zitat S.S. Hecker, Sheet Met. Ind. 52 (1975) 671–676. S.S. Hecker, Sheet Met. Ind. 52 (1975) 671–676.
[28]
Zurück zum Zitat R. Hashemi, H. Mamusi, A. Masoumi, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 228 (2014) 1582–1591.CrossRef R. Hashemi, H. Mamusi, A. Masoumi, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 228 (2014) 1582–1591.CrossRef
[29]
Zurück zum Zitat Z. Shao, Q. Bai, N. Li, J. Lin, Z. Shi, M. Stanton, D. Watson, T. Dean, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 232 (2018) 465–474.CrossRef Z. Shao, Q. Bai, N. Li, J. Lin, Z. Shi, M. Stanton, D. Watson, T. Dean, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 232 (2018) 465–474.CrossRef
[30]
Zurück zum Zitat Y.W. Lee, Fracture prediction in metal sheets, Massachusetts Institute of Technology, Cambridge, MA, USA, 2005. Y.W. Lee, Fracture prediction in metal sheets, Massachusetts Institute of Technology, Cambridge, MA, USA, 2005.
[33]
Zurück zum Zitat P. Ludwik, Elemente der Technologischen Mechanik, J. Springer, 1909. P. Ludwik, Elemente der Technologischen Mechanik, J. Springer, 1909.
[34]
Zurück zum Zitat E. Voce, J. Inst. Metals 74 (1948) 537–562. E. Voce, J. Inst. Metals 74 (1948) 537–562.
[35]
Zurück zum Zitat D. Li, G. Wang, H. Liu, Q. Chen, in: 2016 International Conference on Advanced Manufacture Technology and Industrial Application, DEStech Trans. Eng. Technol. Res. Shanghai, China, 2016, pp. 292–300. D. Li, G. Wang, H. Liu, Q. Chen, in: 2016 International Conference on Advanced Manufacture Technology and Industrial Application, DEStech Trans. Eng. Technol. Res. Shanghai, China, 2016, pp. 292–300.
[36]
Zurück zum Zitat D. Hibbit, B. Karlsson, P. Sorensen, ABAQUS/CAE user’s manual, Ver. 6.10.1. ABAQUS Inc, 2010. D. Hibbit, B. Karlsson, P. Sorensen, ABAQUS/CAE user’s manual, Ver. 6.10.1. ABAQUS Inc, 2010.
Metadaten
Titel
Graphical method based on modified maximum force criterion to indicate forming limit curves of 22MnB5 boron steel sheets at elevated temperatures
verfasst von
The-Thanh Luyen
Quoc-Tuan Pham
Thi-Bich Mac
Tien-Long Banh
Duc-Toan Nguyen
Publikationsdatum
19.02.2021
Verlag
Springer Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 8/2021
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-021-00567-5

Weitere Artikel der Ausgabe 8/2021

Journal of Iron and Steel Research International 8/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.