Skip to main content

2023 | OriginalPaper | Buchkapitel

4. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Environmental Applications

verfasst von : Rashmi Acharya, Subhasish Mishra, Lopamudra Acharya, Kulamani Parida

Erschienen in: Two-Dimensional Materials for Environmental Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The alarmingly rising environmental pollution adversely affects the sustainable growth of modern civilization. Scientists have persistently been putting tremendous efforts over the decades to develop environment benevolent technologies to overcome this major challenge. Photocatalysis is one such technology which needs renewable solar energy and abundantly available water resources as driving forces for pollutants’ degradation. In addition, the selection of an appropriate semiconductor is highly essential to degrade toxic organic compounds, hazardous heavy metals and noxious gases into harmless products efficiently. Among various semiconductor photocatalysts, g‑C3N4 (GCN) is considered a robust photocatalyst because of several fascinating properties like metal-free chemical nature, visible-light-responsive activity with moderate band gap of 2.7 eV, tunable electronic structure, facile synthesis, low cost, high thermal and chemical stability. However, low surface area (∼10 m2 g−1), high rate of charge carriers recombination, incomplete solar spectrum absorbance and inadequate valence band position (1.4 eV vs NHE) are some of the limitations due to which expected photocatalytic performance of GCN is yet to be achieved. Therefore, modification strategies such as exfoliating bulk GCN into nanosheets, incorporating foreign elements into its crystal structure and heterostructure formation have been employed to overcome these limitations to achieve high photocatalytic efficiency. In this chapter discusses the basic principle of photocatalytic pollutant degradation over a semiconductor surface. Recent developments in modification strategies to enhance the photoactivity of GCN have been summarised systematically. Photocatalytic applications of GCN-based photocatalysts with respect to environmental remediation are presented in this chapter. The challenges and future perspectives in designing GCN-based photocatalysts for efficient performance towards environmental applications are addressed along with the conclusion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Acharya, K. Parida, A review on TiO2/g–C3N4 visible-light-responsive photocatalysts for sustainable energy generation and environmental remediation. J. Environ. Chem. Eng. 8, 103896 (2020)CrossRef R. Acharya, K. Parida, A review on TiO2/g–C3N4 visible-light-responsive photocatalysts for sustainable energy generation and environmental remediation. J. Environ. Chem. Eng. 8, 103896 (2020)CrossRef
2.
Zurück zum Zitat C. Zhai, M. Zhu, Y. Lu, F. Ren, C. Wang, Y. Du, P. Yang, Reduced graphene oxide modified highly ordered TiO2 nanotube arrays photoelectrode with enhanced photoelectrocatalytic performance under visible-light irradiation. Phys. Chem. Chem. Phys. 16(28), 14800 (2014)CrossRef C. Zhai, M. Zhu, Y. Lu, F. Ren, C. Wang, Y. Du, P. Yang, Reduced graphene oxide modified highly ordered TiO2 nanotube arrays photoelectrode with enhanced photoelectrocatalytic performance under visible-light irradiation. Phys. Chem. Chem. Phys. 16(28), 14800 (2014)CrossRef
3.
Zurück zum Zitat V.K. Gupta, R. Kumar, A. Nayak, T.A. Saleh, M.A. Barakat, Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv. Colloid Interf. Sci. 193, 24–34 (2013)CrossRef V.K. Gupta, R. Kumar, A. Nayak, T.A. Saleh, M.A. Barakat, Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv. Colloid Interf. Sci. 193, 24–34 (2013)CrossRef
4.
Zurück zum Zitat Z. Jiang, H. Sun, T. Wang, B. Wang, W. Wei, H. Li, S. Yuan, T. An, H. Zhao, J. Yu, P.K. Wong, Nature-based catalyst for visible-light-driven photocatalytic CO2 reduction, energy environ. Sci. 11, 2382–2389 (2018) Z. Jiang, H. Sun, T. Wang, B. Wang, W. Wei, H. Li, S. Yuan, T. An, H. Zhao, J. Yu, P.K. Wong, Nature-based catalyst for visible-light-driven photocatalytic CO2 reduction, energy environ. Sci. 11, 2382–2389 (2018)
5.
Zurück zum Zitat R. Acharya, A. Lenka, K. Parida, Magnetite modified amino group based polymer nanocomposites towards efficient adsorptive detoxification of aqueous Cr (VI): a review. J. Mol. Liq. 337, 116487 (2021)CrossRef R. Acharya, A. Lenka, K. Parida, Magnetite modified amino group based polymer nanocomposites towards efficient adsorptive detoxification of aqueous Cr (VI): a review. J. Mol. Liq. 337, 116487 (2021)CrossRef
6.
Zurück zum Zitat T.X.H. Le, R. Esmilaire, M. Drobek, M. Bechelany, C. Vallicari, D.L. Nguyen, A. Julbe, S. Tingry, M. Cretin, Design of a novel fuel cell-Fenton system: a smart approach to zero energy depollution. J. Mater. Chem. A. 4, 17686–17693 (2016)CrossRef T.X.H. Le, R. Esmilaire, M. Drobek, M. Bechelany, C. Vallicari, D.L. Nguyen, A. Julbe, S. Tingry, M. Cretin, Design of a novel fuel cell-Fenton system: a smart approach to zero energy depollution. J. Mater. Chem. A. 4, 17686–17693 (2016)CrossRef
7.
Zurück zum Zitat R. Acharya, K. Parida, A review on adsorptive remediation of Cr (VI) by magnetic iron oxides and their modified form, 2020. Biointerf. Res. Appl. Chem. 10, 5266–5272 (2020)CrossRef R. Acharya, K. Parida, A review on adsorptive remediation of Cr (VI) by magnetic iron oxides and their modified form, 2020. Biointerf. Res. Appl. Chem. 10, 5266–5272 (2020)CrossRef
8.
Zurück zum Zitat R. Acharya, K. Parida, Valorization of agricultural wastes as low-cost adsorbents towards efficient removal of aqueous Cr(VI), in: Shahid-ul-Islam, Shalla, A.H., Khan, S.A. (Eds.), Handbook of Biomass Valorization for Industrial Applications, John Wiley & Sons, pp. 507–530 (2022) R. Acharya, K. Parida, Valorization of agricultural wastes as low-cost adsorbents towards efficient removal of aqueous Cr(VI), in: Shahid-ul-Islam, Shalla, A.H., Khan, S.A. (Eds.), Handbook of Biomass Valorization for Industrial Applications, John Wiley & Sons, pp. 507–530 (2022)
9.
Zurück zum Zitat R. Acharya, S. Martha, K.M. Parida, Remediation of Cr (VI) using clay minerals, biomasses and industrial wastes as adsorbents, in Shahid-ul-Islam (ed.) Advanced Materials for Wastewater Treatment, Scrivener Publishing LLC, pp. 129–170 (2017) R. Acharya, S. Martha, K.M. Parida, Remediation of Cr (VI) using clay minerals, biomasses and industrial wastes as adsorbents, in Shahid-ul-Islam (ed.) Advanced Materials for Wastewater Treatment, Scrivener Publishing LLC, pp. 129–170 (2017)
10.
Zurück zum Zitat R. Acharya, B. Naik, K.M. Parida, Adsorption of Cr (VI) and textile dyes on to mesoporous silica, titanate nanotubes and layer double hydroxides, in: Shahid ul-Islam, B.S. Butola (eds.) Nanomaterials in the Wet Processing of Textiles, John Wiley Scrivener USA, pp. 219–260 (2018) R. Acharya, B. Naik, K.M. Parida, Adsorption of Cr (VI) and textile dyes on to mesoporous silica, titanate nanotubes and layer double hydroxides, in: Shahid ul-Islam, B.S. Butola (eds.) Nanomaterials in the Wet Processing of Textiles, John Wiley Scrivener USA, pp. 219–260 (2018)
11.
Zurück zum Zitat M.V. Sofianou, M. Tassi, V. Psycharis, N. Boukos, S. Thanos, T. Vaimakis, J. Yu, C. Trapalis, Solvothermal synthesis and photocatalytic performance of Mn4+-doped anatase nanoplates with exposed 001 facets. Appl. Catal. B Environ. 162, 27 (2015)CrossRef M.V. Sofianou, M. Tassi, V. Psycharis, N. Boukos, S. Thanos, T. Vaimakis, J. Yu, C. Trapalis, Solvothermal synthesis and photocatalytic performance of Mn4+-doped anatase nanoplates with exposed 001 facets. Appl. Catal. B Environ. 162, 27 (2015)CrossRef
12.
Zurück zum Zitat T.X.H. Le, M. Bechelany, J. Champavert, M. Cretin, A highly active based graphene cathode for the electro-fenton reaction. RSC Adv. 5(53), 42536 (2015)CrossRef T.X.H. Le, M. Bechelany, J. Champavert, M. Cretin, A highly active based graphene cathode for the electro-fenton reaction. RSC Adv. 5(53), 42536 (2015)CrossRef
13.
Zurück zum Zitat D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hubner, Evaluation of advanced oxidation processes for water and wastewater treatment—a critical review. Water Res. 139, 118–131 (2018)CrossRef D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hubner, Evaluation of advanced oxidation processes for water and wastewater treatment—a critical review. Water Res. 139, 118–131 (2018)CrossRef
14.
Zurück zum Zitat X. Jiang, M. Manawan, T. Feng, R. Qian, T. Zhao, G. Zhou, F. Kong, Q. Wang, S. Dai, J.H. Pan, Anatase and rutile in evonik aeroxide P25: heterojunctioned or individual nanoparticles? Catal. Today 300(2018), 12–17 (2018)CrossRef X. Jiang, M. Manawan, T. Feng, R. Qian, T. Zhao, G. Zhou, F. Kong, Q. Wang, S. Dai, J.H. Pan, Anatase and rutile in evonik aeroxide P25: heterojunctioned or individual nanoparticles? Catal. Today 300(2018), 12–17 (2018)CrossRef
15.
Zurück zum Zitat S. Mansingh, S. Sultana, R. Acharya, M.K. Ghosh, K. Parida, Efficient Photon conversion via double charge dynamics CeO2-BiFeO3 p-n heterojunction photocatalyst promising toward N2 fixation and Phenol-Cr (VI) detoxification. Inorg. Chem. 59, 3856–3873 (2020)CrossRef S. Mansingh, S. Sultana, R. Acharya, M.K. Ghosh, K. Parida, Efficient Photon conversion via double charge dynamics CeO2-BiFeO3 p-n heterojunction photocatalyst promising toward N2 fixation and Phenol-Cr (VI) detoxification. Inorg. Chem. 59, 3856–3873 (2020)CrossRef
16.
Zurück zum Zitat S. Mansingh, R. Acharya, S. Martha, K.M. Parida, Pyrochlore Ce2Zr2O7 decorated over rGO: a photocatalyst that proves to be efficient towards the reduction of 4-nitrophenol and degradation of ciprofloxacin under visible light. Phys. Chem. Chem. Phys. 20, 9872–9885 (2018)CrossRef S. Mansingh, R. Acharya, S. Martha, K.M. Parida, Pyrochlore Ce2Zr2O7 decorated over rGO: a photocatalyst that proves to be efficient towards the reduction of 4-nitrophenol and degradation of ciprofloxacin under visible light. Phys. Chem. Chem. Phys. 20, 9872–9885 (2018)CrossRef
17.
Zurück zum Zitat S. Mishra, R. Acharya, Photocatalytic applications of graphene based semiconductor composites: a review. Mater. Today Proceed. 35(2021), 164–169 (2021)CrossRef S. Mishra, R. Acharya, Photocatalytic applications of graphene based semiconductor composites: a review. Mater. Today Proceed. 35(2021), 164–169 (2021)CrossRef
18.
Zurück zum Zitat R. Acharya, B. Naik, K.M. Parida, Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction, Beilstein. J. Nanotechnol. 9, 1448–1470 (2018) R. Acharya, B. Naik, K.M. Parida, Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction, Beilstein. J. Nanotechnol. 9, 1448–1470 (2018)
19.
Zurück zum Zitat A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37 (1972) A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37 (1972)
20.
Zurück zum Zitat J.H. Carey, J. Lawrence, H.M. Tosine, Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions Bull. Environ. Contam. Toxicol. 16, 697–701 (1976)CrossRef J.H. Carey, J. Lawrence, H.M. Tosine, Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions Bull. Environ. Contam. Toxicol. 16, 697–701 (1976)CrossRef
21.
Zurück zum Zitat M. Nasr, C. Eid, R. Habchi, P. Miele, M. Bechelany, Recent progress on TiO2 nanomaterials for photocatalytic applications. Chem Sus Chem 11, 3023–3047 (2018)CrossRef M. Nasr, C. Eid, R. Habchi, P. Miele, M. Bechelany, Recent progress on TiO2 nanomaterials for photocatalytic applications. Chem Sus Chem 11, 3023–3047 (2018)CrossRef
22.
Zurück zum Zitat W. Zhang, H. He, H. Li, L. Duan, L. Zu, Y. Zhai, W. Li, L. Wang, H. Fu, D. Zhao, Visible-light responsive TiO2-based materials for efficient solar energy utilization. Adv. Energy Mater. 11, 2003303 (2021)CrossRef W. Zhang, H. He, H. Li, L. Duan, L. Zu, Y. Zhai, W. Li, L. Wang, H. Fu, D. Zhao, Visible-light responsive TiO2-based materials for efficient solar energy utilization. Adv. Energy Mater. 11, 2003303 (2021)CrossRef
23.
Zurück zum Zitat X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009)CrossRef X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009)CrossRef
24.
Zurück zum Zitat G. Liao, Y. Gong, L. Zhang, H. Gao, G.-J. Yang, B. Fang, Semiconductor polymeric graphitic carbon nitride photocatalysts: the ‘“holy grail”’ for the photocatalytic hydrogen evolution reaction under visible light, Energy Environ. Sci. 12, 2080–2147 (2019) G. Liao, Y. Gong, L. Zhang, H. Gao, G.-J. Yang, B. Fang, Semiconductor polymeric graphitic carbon nitride photocatalysts: the ‘“holy grail”’ for the photocatalytic hydrogen evolution reaction under visible light, Energy Environ. Sci. 12, 2080–2147 (2019)
25.
Zurück zum Zitat S. Pati, R. Acharya, An overview on g-C3N4 as a robust photocatalyst towards the sustainable generation of H2 energy. Mater. Today Proceed. 35, 175–178 (2021)CrossRef S. Pati, R. Acharya, An overview on g-C3N4 as a robust photocatalyst towards the sustainable generation of H2 energy. Mater. Today Proceed. 35, 175–178 (2021)CrossRef
26.
Zurück zum Zitat S. Zhang, P. Gu, R. Ma, C. Luo, T. Wen, G. Zhao, W. Cheng, X. Wang, Recent developments in fabrication and structure regulation of visible-light driven g-C3N4-based photocatalysts towards water purification: a critical review. Catal. Today 335, 65–77 (2019)CrossRef S. Zhang, P. Gu, R. Ma, C. Luo, T. Wen, G. Zhao, W. Cheng, X. Wang, Recent developments in fabrication and structure regulation of visible-light driven g-C3N4-based photocatalysts towards water purification: a critical review. Catal. Today 335, 65–77 (2019)CrossRef
27.
Zurück zum Zitat J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72–123 (2017)CrossRef J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72–123 (2017)CrossRef
28.
Zurück zum Zitat W.-J. Ong, L.-L. Tan, Y.H. Ng, S.T. Yong, S.-P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116, 7159–7329 (2016)CrossRef W.-J. Ong, L.-L. Tan, Y.H. Ng, S.T. Yong, S.-P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116, 7159–7329 (2016)CrossRef
29.
Zurück zum Zitat Q. Zhang, X. Liu, M. Chaker, D. Ma, Advancing graphitic carbon nitride-based photocatalysts toward broadband solar energy harvesting. ACS Materials Lett. 3, 663–697 (2021)CrossRef Q. Zhang, X. Liu, M. Chaker, D. Ma, Advancing graphitic carbon nitride-based photocatalysts toward broadband solar energy harvesting. ACS Materials Lett. 3, 663–697 (2021)CrossRef
30.
Zurück zum Zitat S. Sahoo, R. Acharya, An overview on recent developments in synthesis and molecular level structure of visible-light responsive g-C3N4 photocatalyst towards environmental remediation. Mater. Today Proceed. 35, 150–155 (2021)CrossRef S. Sahoo, R. Acharya, An overview on recent developments in synthesis and molecular level structure of visible-light responsive g-C3N4 photocatalyst towards environmental remediation. Mater. Today Proceed. 35, 150–155 (2021)CrossRef
31.
Zurück zum Zitat L. Acharya, B.P. Mishra, S.P. Pattnaik, R. Acharya, K. Parida, Incorporating nitrogen vacancies in exfoliated B-doped g-C3N4 towards improved photocatalytic ciprofloxacin degradation and hydrogen evolution. New. J. Chem. 46, 3493–3503 (2022)CrossRef L. Acharya, B.P. Mishra, S.P. Pattnaik, R. Acharya, K. Parida, Incorporating nitrogen vacancies in exfoliated B-doped g-C3N4 towards improved photocatalytic ciprofloxacin degradation and hydrogen evolution. New. J. Chem. 46, 3493–3503 (2022)CrossRef
32.
Zurück zum Zitat T. Su, Q. Shao, Z. Qin, Z. Guo, B. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 8, 2253–2276 (2018)CrossRef T. Su, Q. Shao, Z. Qin, Z. Guo, B. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 8, 2253–2276 (2018)CrossRef
33.
Zurück zum Zitat R. Acharya, S. Pati, K. Parida, A review on visible light driven spinel ferrite-g-C3N4 photocatalytic systems with enhanced solar light utilization. J. Mol. Liq. 357, 119105 (2022)CrossRef R. Acharya, S. Pati, K. Parida, A review on visible light driven spinel ferrite-g-C3N4 photocatalytic systems with enhanced solar light utilization. J. Mol. Liq. 357, 119105 (2022)CrossRef
34.
Zurück zum Zitat S. Yin, J. Han, T. Zhou, R. Xu, Recent progress in g-C3N4 based low cost photocatalytic system: activity enhancement and emerging applications. Catal. Sci. Technol. 5, 5048–5061 (2015)CrossRef S. Yin, J. Han, T. Zhou, R. Xu, Recent progress in g-C3N4 based low cost photocatalytic system: activity enhancement and emerging applications. Catal. Sci. Technol. 5, 5048–5061 (2015)CrossRef
35.
Zurück zum Zitat J. Fu, J. Yu, C. Jiang, B. Cheng, g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 8, 1701503 (2018)CrossRef J. Fu, J. Yu, C. Jiang, B. Cheng, g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 8, 1701503 (2018)CrossRef
36.
Zurück zum Zitat J. Yang, H. Wang, L. Jiang, H. Yu, Y. Zhao, H. Chen, X. Yuan, L. Liang, H. Li, Z. Wu, Defective polymeric carbon nitride: Fabrications, photocatalytic applications and perspectives. Chem. Eng. J. 427, 130991 (2022)CrossRef J. Yang, H. Wang, L. Jiang, H. Yu, Y. Zhao, H. Chen, X. Yuan, L. Liang, H. Li, Z. Wu, Defective polymeric carbon nitride: Fabrications, photocatalytic applications and perspectives. Chem. Eng. J. 427, 130991 (2022)CrossRef
37.
Zurück zum Zitat A. Naseri, M. Samadi, A. Pourjavadi, A.Z. Moshfegh, S. Ramakrishna, Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions. J. Mater. Chem. A. 5, 23406 (2017)CrossRef A. Naseri, M. Samadi, A. Pourjavadi, A.Z. Moshfegh, S. Ramakrishna, Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions. J. Mater. Chem. A. 5, 23406 (2017)CrossRef
38.
Zurück zum Zitat X. Li, J. Yu, M. Jaroniec, Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603–2636 (2016)CrossRef X. Li, J. Yu, M. Jaroniec, Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603–2636 (2016)CrossRef
39.
Zurück zum Zitat X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, X. Chen, Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A. 3, 2485–2534 (2015)CrossRef X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, X. Chen, Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A. 3, 2485–2534 (2015)CrossRef
40.
Zurück zum Zitat R. Acharya, L. Acharya, K. Parida, BiFeO3-based materials for augmented photoactivity, Khursheed Ahmad and Waseem Raza (eds.) Perovskite Materials for Energy and Environmental Applications, John Wiley & Sons, Inc. p167–217 (2022) R. Acharya, L. Acharya, K. Parida, BiFeO3-based materials for augmented photoactivity, Khursheed Ahmad and Waseem Raza (eds.) Perovskite Materials for Energy and Environmental Applications, John Wiley & Sons, Inc. p167–217 (2022)
41.
Zurück zum Zitat S. Borthakur, L. Saikia, ZnFe2O4@g-C3N4 nanocomposites: an efficient catalyst for Fenton-like photodegradation of environmentally pollutant Rhodamine B. J. Environ. Chem. Eng. 7, 103035 (2019)CrossRef S. Borthakur, L. Saikia, ZnFe2O4@g-C3N4 nanocomposites: an efficient catalyst for Fenton-like photodegradation of environmentally pollutant Rhodamine B. J. Environ. Chem. Eng. 7, 103035 (2019)CrossRef
42.
Zurück zum Zitat S. Kim, K.H. Kim, C. Oh, K. Zhang, J.H. Park, Artificial photosynthesis for high-value-added chemicals: Old material, new opportunity. Carbon Energy 4, 21–44 (2022)CrossRef S. Kim, K.H. Kim, C. Oh, K. Zhang, J.H. Park, Artificial photosynthesis for high-value-added chemicals: Old material, new opportunity. Carbon Energy 4, 21–44 (2022)CrossRef
43.
Zurück zum Zitat W. Zhang, L. Li, Y. Gao, D. Zhang, Graphitic carbon nitride-based materials for photocatalytic reduction of U(VI), New. J. Chem. 44, 19961–19976 (2020) W. Zhang, L. Li, Y. Gao, D. Zhang, Graphitic carbon nitride-based materials for photocatalytic reduction of U(VI), New. J. Chem. 44, 19961–19976 (2020)
44.
Zurück zum Zitat Y. Wang, Y. Zhang, T.C. Zhang, G. Xiang, C. Wang, S. Yuan, Removal of trace arsenite through simultaneous photocatalytic oxidation and adsorption by magnetic Fe3O4@PpPDA@TiO2 core–shell nanoparticles. ACS Appl. Nano Mater. 3, 8495–8504 (2020)CrossRef Y. Wang, Y. Zhang, T.C. Zhang, G. Xiang, C. Wang, S. Yuan, Removal of trace arsenite through simultaneous photocatalytic oxidation and adsorption by magnetic Fe3O4@PpPDA@TiO2 core–shell nanoparticles. ACS Appl. Nano Mater. 3, 8495–8504 (2020)CrossRef
45.
Zurück zum Zitat J. Feng, L. Peng, C. Wu, X. Sun, S. Hu, C. Lin, J. Dai, J. Yang, Y. Xie, Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater. 24, 1969–1974 (2012)CrossRef J. Feng, L. Peng, C. Wu, X. Sun, S. Hu, C. Lin, J. Dai, J. Yang, Y. Xie, Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater. 24, 1969–1974 (2012)CrossRef
46.
Zurück zum Zitat G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M.W. Chen, M. Chhowalla, Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 22, 7311 (2012)CrossRef G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M.W. Chen, M. Chhowalla, Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 22, 7311 (2012)CrossRef
47.
Zurück zum Zitat Y. Omomo, T. Sasaki, L.Z. Wang, M. Watanabe, Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. J. Am. Chem. Soc. 125, 3568 (2003)CrossRef Y. Omomo, T. Sasaki, L.Z. Wang, M. Watanabe, Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. J. Am. Chem. Soc. 125, 3568 (2003)CrossRef
48.
Zurück zum Zitat S. Ithurria, M.D. Tessier, B. Mahler, R.P.S.M. Lobo, B. Dubertret, A.L. Efros, Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 10, 936 (2011)CrossRef S. Ithurria, M.D. Tessier, B. Mahler, R.P.S.M. Lobo, B. Dubertret, A.L. Efros, Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 10, 936 (2011)CrossRef
49.
Zurück zum Zitat A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef
50.
Zurück zum Zitat H. Zhang, Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451 (2015)CrossRef H. Zhang, Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451 (2015)CrossRef
51.
Zurück zum Zitat P. Xia, B. Zhu, J. Yu, S. Cao, M. Jaronie, Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. J. Mater. Chem. A. 5, 3230 (2017)CrossRef P. Xia, B. Zhu, J. Yu, S. Cao, M. Jaronie, Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. J. Mater. Chem. A. 5, 3230 (2017)CrossRef
52.
Zurück zum Zitat J. Yang, Z. Chen, N. Mao, D. An, B.D. Wang, Fahlman, Ultrathin g-C3N4 nanosheets with an extended visible-light-responsive range for significant enhancement of photocatalysis. RSC Adv. 7, 2333 (2017)CrossRef J. Yang, Z. Chen, N. Mao, D. An, B.D. Wang, Fahlman, Ultrathin g-C3N4 nanosheets with an extended visible-light-responsive range for significant enhancement of photocatalysis. RSC Adv. 7, 2333 (2017)CrossRef
53.
Zurück zum Zitat P. Niu, L. Zhang, G. Liu, H.-M. Cheng, Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 22, 4763 (2012)CrossRef P. Niu, L. Zhang, G. Liu, H.-M. Cheng, Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 22, 4763 (2012)CrossRef
54.
Zurück zum Zitat F. Dong, Y. Li, Z. Wang, W.-K. Ho, Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation. Appl. Surf. Sci. 358, 393–403 (2015)CrossRef F. Dong, Y. Li, Z. Wang, W.-K. Ho, Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation. Appl. Surf. Sci. 358, 393–403 (2015)CrossRef
55.
Zurück zum Zitat K. Schwinghammer, M.B. Mesch, V. Duppel, C. Ziegler, J. Senker, B.V. Lotsch, Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am. Chem. Soc. 136, 1730 (2014)CrossRef K. Schwinghammer, M.B. Mesch, V. Duppel, C. Ziegler, J. Senker, B.V. Lotsch, Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am. Chem. Soc. 136, 1730 (2014)CrossRef
56.
Zurück zum Zitat V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340, 1226419 (2013)CrossRef V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340, 1226419 (2013)CrossRef
57.
Zurück zum Zitat J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Two-dimensional nanosheets produced by liquid exfoliation of layered materials science 331, 568 (2011) J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Two-dimensional nanosheets produced by liquid exfoliation of layered materials science 331, 568 (2011)
58.
Zurück zum Zitat S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P.M. Ajayan, Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 25, 2452–2456 (2013)CrossRef S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P.M. Ajayan, Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 25, 2452–2456 (2013)CrossRef
59.
Zurück zum Zitat D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228 (2010)CrossRef D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228 (2010)CrossRef
60.
Zurück zum Zitat J.H. Lee, M.J. Park, S.J. Yoo, J.H. Jang, H.J. Kim, S.W. Nam, C.W. Yoon, J.Y. Kim, A highly active and durable Co–N–C electrocatalyst synthesized using exfoliated graphitic carbon nitride nanosheet Nanoscale 7, 10334 (2015) J.H. Lee, M.J. Park, S.J. Yoo, J.H. Jang, H.J. Kim, S.W. Nam, C.W. Yoon, J.Y. Kim, A highly active and durable Co–N–C electrocatalyst synthesized using exfoliated graphitic carbon nitride nanosheet Nanoscale 7, 10334 (2015)
61.
Zurück zum Zitat J. Xu, L. Zhang, R. Shi, Y. Zhu, Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A. 1, 14766 (2013)CrossRef J. Xu, L. Zhang, R. Shi, Y. Zhu, Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A. 1, 14766 (2013)CrossRef
62.
Zurück zum Zitat F. Cheng, H. Wang, X. Dong, The amphoteric properties of g-C3N4 nanosheets and fabrication of their relevant heterostructure photocatalysts by an electrostatic re-assembly route. Chem. Commun. 51, 7176 (2015)CrossRef F. Cheng, H. Wang, X. Dong, The amphoteric properties of g-C3N4 nanosheets and fabrication of their relevant heterostructure photocatalysts by an electrostatic re-assembly route. Chem. Commun. 51, 7176 (2015)CrossRef
63.
Zurück zum Zitat S.P. Pattnaik, A. Behera, S. Martha, R. Acharya, K. Parida, Facile synthesis of exfoliated graphitic carbon nitride for photocatalytic Degradation of ciprofloxacin under solar irradiation. J. Mater. Sci. 54, 5726–5742 (2019)CrossRef S.P. Pattnaik, A. Behera, S. Martha, R. Acharya, K. Parida, Facile synthesis of exfoliated graphitic carbon nitride for photocatalytic Degradation of ciprofloxacin under solar irradiation. J. Mater. Sci. 54, 5726–5742 (2019)CrossRef
64.
Zurück zum Zitat S.P. Pattnaik, A. Behera, R. Acharya, K. Parida, Green exfoliation of graphitic carbon nitride towards decolourization of congo-red under solar irradiation. J. Environ. Chem. Eng. 7, 103456 (2019)CrossRef S.P. Pattnaik, A. Behera, R. Acharya, K. Parida, Green exfoliation of graphitic carbon nitride towards decolourization of congo-red under solar irradiation. J. Environ. Chem. Eng. 7, 103456 (2019)CrossRef
65.
Zurück zum Zitat Y. Fang, I.S. Merenkov, X. Li, J. Xu, S. Lin, M.L. Kosinova, X. Wang, Vertically aligned 2D carbon doped boron nitride nanofilms for photoelectrochemical water oxidation. J. Mat. Chem. 8, 13059–13064 (2020)CrossRef Y. Fang, I.S. Merenkov, X. Li, J. Xu, S. Lin, M.L. Kosinova, X. Wang, Vertically aligned 2D carbon doped boron nitride nanofilms for photoelectrochemical water oxidation. J. Mat. Chem. 8, 13059–13064 (2020)CrossRef
66.
Zurück zum Zitat L. Acharya, S.P. Pattnaik, A. Behera, R. Acharya, K. Parida, Exfoliated boron nitride (e-BN) tailored exfoliated graphitic carbon nitride (e-CN): an improved visible light mediated photocatalytic approach towards TCH degradation and H2 evolution. Inorg. Chem. 60, 5021–5033 (2021)CrossRef L. Acharya, S.P. Pattnaik, A. Behera, R. Acharya, K. Parida, Exfoliated boron nitride (e-BN) tailored exfoliated graphitic carbon nitride (e-CN): an improved visible light mediated photocatalytic approach towards TCH degradation and H2 evolution. Inorg. Chem. 60, 5021–5033 (2021)CrossRef
67.
Zurück zum Zitat B.P. Mishra, K. Parida, Orienting Z scheme charge transfer in graphitic carbon nitride-based systems for photocatalytic energy and environmental applications. J. Mat. Chem. A. 9, 10039–10080 (2021)CrossRef B.P. Mishra, K. Parida, Orienting Z scheme charge transfer in graphitic carbon nitride-based systems for photocatalytic energy and environmental applications. J. Mat. Chem. A. 9, 10039–10080 (2021)CrossRef
68.
Zurück zum Zitat S. Patnaik, D.P. Sahoo, K. Parida, Recent advances in anion doped g-C3N4 photocatalysts: a review. Carbon 172, 682–711 (2021)CrossRef S. Patnaik, D.P. Sahoo, K. Parida, Recent advances in anion doped g-C3N4 photocatalysts: a review. Carbon 172, 682–711 (2021)CrossRef
69.
Zurück zum Zitat M.S. Khan, F. Zhang, M. Osada, S.S. Mao, S. Shen, Graphitic carbon nitride-based low-dimensional heterostructures for photocatalytic applications. Solar RRL 4, 1900435 (2020)CrossRef M.S. Khan, F. Zhang, M. Osada, S.S. Mao, S. Shen, Graphitic carbon nitride-based low-dimensional heterostructures for photocatalytic applications. Solar RRL 4, 1900435 (2020)CrossRef
70.
Zurück zum Zitat X. Dong, F. Cheng, Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications. J. Mat. Chem. A. 3, 23642–23652 (2015)CrossRef X. Dong, F. Cheng, Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications. J. Mat. Chem. A. 3, 23642–23652 (2015)CrossRef
71.
Zurück zum Zitat L. Ke, P. Li, X. Wu, S. Jiang, M. Luo, Y. Liu, Z. Le, C. Sun, S. Song, Graphene-like sulfur-doped g-C3N4 for photocatalytic reduction elimination of UO22+ under visible Light. Appl. Catal. B: Environmental. 205, 319–326 (2017)CrossRef L. Ke, P. Li, X. Wu, S. Jiang, M. Luo, Y. Liu, Z. Le, C. Sun, S. Song, Graphene-like sulfur-doped g-C3N4 for photocatalytic reduction elimination of UO22+ under visible Light. Appl. Catal. B: Environmental. 205, 319–326 (2017)CrossRef
72.
Zurück zum Zitat X. Liu, R. Ma, L. Zhuang, B. Hu, J. Chen, X. Liu, X. Wang, Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Crit. Rev. Environ. Sci. Technol. 51, 751–790 (2021)CrossRef X. Liu, R. Ma, L. Zhuang, B. Hu, J. Chen, X. Liu, X. Wang, Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Crit. Rev. Environ. Sci. Technol. 51, 751–790 (2021)CrossRef
73.
Zurück zum Zitat L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu, H. Wang, Doping of graphitic carbon nitride for photocatalysis: a reveiw. Appl. Catal. B: Environmental 217, 388–406 (2017)CrossRef L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu, H. Wang, Doping of graphitic carbon nitride for photocatalysis: a reveiw. Appl. Catal. B: Environmental 217, 388–406 (2017)CrossRef
74.
Zurück zum Zitat Y. Zhou, W. Lv, B. Zhu, F. Tong, J. Pan, J. Bai, Q. Zhou, H. Qin, Template-free one-step synthesis of g-C3N4 nanosheets with simultaneous porous network and S-doping for remarkable visible-light-driven hydrogen evolution. ACS Sustain. Chem. Eng. 7, 5801–5807 (2019)CrossRef Y. Zhou, W. Lv, B. Zhu, F. Tong, J. Pan, J. Bai, Q. Zhou, H. Qin, Template-free one-step synthesis of g-C3N4 nanosheets with simultaneous porous network and S-doping for remarkable visible-light-driven hydrogen evolution. ACS Sustain. Chem. Eng. 7, 5801–5807 (2019)CrossRef
75.
Zurück zum Zitat L. Acharya, G. Swain, B.P. Mishra, R. Acharya, K. Parida, Development of MgIn2S4 microflower-embedded exfoliated B-Doped g-C3N4 nanosheets: p–n heterojunction photocatalysts toward photocatalytic water reduction and H2O2 production under visible-light irradiation. ACS Appl. Energy Mater. 5, 2838–2852 (2022)CrossRef L. Acharya, G. Swain, B.P. Mishra, R. Acharya, K. Parida, Development of MgIn2S4 microflower-embedded exfoliated B-Doped g-C3N4 nanosheets: p–n heterojunction photocatalysts toward photocatalytic water reduction and H2O2 production under visible-light irradiation. ACS Appl. Energy Mater. 5, 2838–2852 (2022)CrossRef
76.
Zurück zum Zitat F. He, Z. Wang, Y. Li, S. Peng, B. Liu, The nonmetal modulation of composition and morphology of g-C3N4 -based photocatalysts. Appl. Catal. B: Environ. 269, 118828 (2020)CrossRef F. He, Z. Wang, Y. Li, S. Peng, B. Liu, The nonmetal modulation of composition and morphology of g-C3N4 -based photocatalysts. Appl. Catal. B: Environ. 269, 118828 (2020)CrossRef
77.
Zurück zum Zitat S. Tonda, S. Kumar, S. Kandula, V. Shanker, Fe-doped and-mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight. J. Mat. Chem. A. 2, 6772–6780 (2014)CrossRef S. Tonda, S. Kumar, S. Kandula, V. Shanker, Fe-doped and-mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight. J. Mat. Chem. A. 2, 6772–6780 (2014)CrossRef
78.
Zurück zum Zitat J. Gao, Y. Wang, S. Zhou, W. Lin, Y. Kong, A facile one-step synthesis of Fe-doped g-C3N4 nanosheets and their improved visible-light photocatalytic performance. ChemCatChem 9, 1708–1715 (2017)CrossRef J. Gao, Y. Wang, S. Zhou, W. Lin, Y. Kong, A facile one-step synthesis of Fe-doped g-C3N4 nanosheets and their improved visible-light photocatalytic performance. ChemCatChem 9, 1708–1715 (2017)CrossRef
79.
Zurück zum Zitat S. Hu, F. Li, Z. Fan, F. Wang, Y. Zhao, Z. Lv, Band gap-tunable potassium doped graphitic carbon nitride with enhanced mineralization ability. Dalton Trans. 44, 1084–1092 (2015)CrossRef S. Hu, F. Li, Z. Fan, F. Wang, Y. Zhao, Z. Lv, Band gap-tunable potassium doped graphitic carbon nitride with enhanced mineralization ability. Dalton Trans. 44, 1084–1092 (2015)CrossRef
80.
Zurück zum Zitat P. Chen, P. Xing, Z. Chen, H. Lin, Y. He, Rapid and energy-efficient preparation of boron doped g-C3N4 with excellent performance in photocatalytic H2-evolution. Int. J. Hydrog. Energy. 43, 19984–19989 (2018)CrossRef P. Chen, P. Xing, Z. Chen, H. Lin, Y. He, Rapid and energy-efficient preparation of boron doped g-C3N4 with excellent performance in photocatalytic H2-evolution. Int. J. Hydrog. Energy. 43, 19984–19989 (2018)CrossRef
81.
Zurück zum Zitat Y.R. Lin, G.V.C. Dizon, K. Yamada, C.Y. Liu, A. Venault, H.Y. Lin, M. Yoshida, C. Hu, Sulfur-doped g-C3N4 nanosheets for photocatalysis: Z-scheme water splitting and decreased biofouling. J. Colloid Interface Sci. 567, 202–212 (2020)CrossRef Y.R. Lin, G.V.C. Dizon, K. Yamada, C.Y. Liu, A. Venault, H.Y. Lin, M. Yoshida, C. Hu, Sulfur-doped g-C3N4 nanosheets for photocatalysis: Z-scheme water splitting and decreased biofouling. J. Colloid Interface Sci. 567, 202–212 (2020)CrossRef
82.
Zurück zum Zitat Y. Deng, L. Tang, G. Zeng, Z. Zhu, M. Yan, Y. Zhou, J. Wang, Y. Liu, J. Wang, Insight into highly efficient simultaneous photocatalytic removal of Cr (VI) and 2, 4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: performance and reaction mechanism. Appl. Catal. B: Environ. 203, 343–354 (2017)CrossRef Y. Deng, L. Tang, G. Zeng, Z. Zhu, M. Yan, Y. Zhou, J. Wang, Y. Liu, J. Wang, Insight into highly efficient simultaneous photocatalytic removal of Cr (VI) and 2, 4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: performance and reaction mechanism. Appl. Catal. B: Environ. 203, 343–354 (2017)CrossRef
83.
Zurück zum Zitat J. Gao, J. Wang, X. Qian, Y. Dong, H. Xu, R. Song, C. Yan, H. Zhu, Q. Zhong, G. Qian, J. Yao, One-pot synthesis of copper-doped graphitic carbon nitride nanosheet by heating Cu–melamine supramolecular network and its enhanced visible-light-driven photocatalysis. J. Solid State Chem. 228, 60–64 (2015)CrossRef J. Gao, J. Wang, X. Qian, Y. Dong, H. Xu, R. Song, C. Yan, H. Zhu, Q. Zhong, G. Qian, J. Yao, One-pot synthesis of copper-doped graphitic carbon nitride nanosheet by heating Cu–melamine supramolecular network and its enhanced visible-light-driven photocatalysis. J. Solid State Chem. 228, 60–64 (2015)CrossRef
84.
Zurück zum Zitat Y. Zhou, L. Zhang, W. Huang, Q. Kong, X. Fan, M. Wang, J. Shi, N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced potocatalytic H2 evolution under visible light. Carbon 99, 111–117 (2016)CrossRef Y. Zhou, L. Zhang, W. Huang, Q. Kong, X. Fan, M. Wang, J. Shi, N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced potocatalytic H2 evolution under visible light. Carbon 99, 111–117 (2016)CrossRef
85.
Zurück zum Zitat Y. Wang, S. Zhao, W. Zhang, J. Fang, Y. Zhou, S. Yuan, One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation. Appl. Surf. Sci. 440, 258–265 (2018)CrossRef Y. Wang, S. Zhao, W. Zhang, J. Fang, Y. Zhou, S. Yuan, One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation. Appl. Surf. Sci. 440, 258–265 (2018)CrossRef
86.
Zurück zum Zitat L. Acharya, S. Nayak, S.P. Pattnaik, R. Acharya, K. Parida, Resurrection of boron nitride in p-n type-II boron nitride/B-doped-g-C3N4 nanocomposite during solid-state Z-scheme charge transfer path for the degradation of tetracycline hydrochloride. J. Colloid Interface Sci. 566, 211–223 (2020)CrossRef L. Acharya, S. Nayak, S.P. Pattnaik, R. Acharya, K. Parida, Resurrection of boron nitride in p-n type-II boron nitride/B-doped-g-C3N4 nanocomposite during solid-state Z-scheme charge transfer path for the degradation of tetracycline hydrochloride. J. Colloid Interface Sci. 566, 211–223 (2020)CrossRef
87.
Zurück zum Zitat J. Zhang, S. Hu, Y. Wang, A convenient method to prepare a novel alkali metal sodium doped carbon nitride photocatalyst with a tunable band structure. RSC adv. 4, 62912–62919 (2014)CrossRef J. Zhang, S. Hu, Y. Wang, A convenient method to prepare a novel alkali metal sodium doped carbon nitride photocatalyst with a tunable band structure. RSC adv. 4, 62912–62919 (2014)CrossRef
88.
Zurück zum Zitat G. Mamba, A.K. Mishra, Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B. 198, 347 (2016)CrossRef G. Mamba, A.K. Mishra, Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B. 198, 347 (2016)CrossRef
89.
Zurück zum Zitat N. Tian, H.W. Huang, X. Du, F. Dong, Y.H. Zhang, , Rational nanostructure design of graphitic carbon nitride for photocatalytic applications. J. Mater. Chem. A 7, 11584–11612 (2019) N. Tian, H.W. Huang, X. Du, F. Dong, Y.H. Zhang, , Rational nanostructure design of graphitic carbon nitride for photocatalytic applications. J. Mater. Chem. A 7, 11584–11612 (2019)
90.
Zurück zum Zitat Q.L. Xu, L.Y. Zhang, J.G. Yu, S. Wageh, A.A. Al-Ghamdi, M. Jaroniec, Direct Z-scheme photocatalysts: principles, synthesis, and applications. Mater. Today 21, 1042–1063 (2018)CrossRef Q.L. Xu, L.Y. Zhang, J.G. Yu, S. Wageh, A.A. Al-Ghamdi, M. Jaroniec, Direct Z-scheme photocatalysts: principles, synthesis, and applications. Mater. Today 21, 1042–1063 (2018)CrossRef
91.
Zurück zum Zitat P. Zhou, J.G. Yu, M. Jaroniec, All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 26, 4920–4935 (2014)CrossRef P. Zhou, J.G. Yu, M. Jaroniec, All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 26, 4920–4935 (2014)CrossRef
92.
Zurück zum Zitat H. Yang, A short review on heterojunction photocatalysts: Carrier transfer behavior and photocatalytic mechanisms. Mater. Res. Bull. 142, 111406 (2021)CrossRef H. Yang, A short review on heterojunction photocatalysts: Carrier transfer behavior and photocatalytic mechanisms. Mater. Res. Bull. 142, 111406 (2021)CrossRef
93.
Zurück zum Zitat M. Shim, M. McDaniel, N. Oh, Prospects for strained type-II nanorod heterostructures. J. Phys. Chem. Lett. 2, 2722–2727 (2011)CrossRef M. Shim, M. McDaniel, N. Oh, Prospects for strained type-II nanorod heterostructures. J. Phys. Chem. Lett. 2, 2722–2727 (2011)CrossRef
94.
Zurück zum Zitat H. McDaniel, P.E. Heil, C.L. Tsai, K.K. Kim, M. Shim, Integration of type II nanorod heterostructures into photovoltaics. ACS Nano 5, 7677–7683 (2011)CrossRef H. McDaniel, P.E. Heil, C.L. Tsai, K.K. Kim, M. Shim, Integration of type II nanorod heterostructures into photovoltaics. ACS Nano 5, 7677–7683 (2011)CrossRef
95.
Zurück zum Zitat H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43, 5234 (2014)CrossRef H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43, 5234 (2014)CrossRef
96.
Zurück zum Zitat Z. Zhao, Y. Sun, F. Dong, Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7, 15–37 (2015)CrossRef Z. Zhao, Y. Sun, F. Dong, Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7, 15–37 (2015)CrossRef
97.
Zurück zum Zitat X. Li, M. Edelmannová, P. Huo, K. Kočí, Fabrication of highly stable CdS/g-C3N4 composite for enhanced photocatalytic degradation of RhB and reduction of CO2. J Mater Sci 55, 3299–3313 (2020)CrossRef X. Li, M. Edelmannová, P. Huo, K. Kočí, Fabrication of highly stable CdS/g-C3N4 composite for enhanced photocatalytic degradation of RhB and reduction of CO2. J Mater Sci 55, 3299–3313 (2020)CrossRef
98.
Zurück zum Zitat D.R. Paul, S. Gautam, P. Panchal, S.P. Nehra, P. Choudhary, A. Sharma, ZnO-Modified g-C3N4: a potential photocatalyst for environmental application. ACS Omega 5, 3828–3838 (2020)CrossRef D.R. Paul, S. Gautam, P. Panchal, S.P. Nehra, P. Choudhary, A. Sharma, ZnO-Modified g-C3N4: a potential photocatalyst for environmental application. ACS Omega 5, 3828–3838 (2020)CrossRef
99.
Zurück zum Zitat I. Ali, J.-O. Kim, Optimization of photocatalytic performance of a gC3N4–TiO2 nanocomposite for phenol degradation in visible light. Mat. Chem. Phys. 261, 124246 (2021)CrossRef I. Ali, J.-O. Kim, Optimization of photocatalytic performance of a gC3N4–TiO2 nanocomposite for phenol degradation in visible light. Mat. Chem. Phys. 261, 124246 (2021)CrossRef
100.
Zurück zum Zitat R. He, K. Cheng, Z. Wei, S. Zhang, D. Xu, Room-temperature in situ fabrication and enhanced photocatalytic activity of direct Z-scheme BiOI/g-C3N4 photocatalyst. Appl. Surf. Sci. 465, 964–972 (2019)CrossRef R. He, K. Cheng, Z. Wei, S. Zhang, D. Xu, Room-temperature in situ fabrication and enhanced photocatalytic activity of direct Z-scheme BiOI/g-C3N4 photocatalyst. Appl. Surf. Sci. 465, 964–972 (2019)CrossRef
101.
Zurück zum Zitat J. Li, Y. Liu, C. Chen, Fabrication of gC3N4/TiO2 composite photocatalyst with extended absorption wavelength range and enhanced photocatalytic performance. J. Photochem. Photobiol. A : Chem. 317, 151–160 (2016)CrossRef J. Li, Y. Liu, C. Chen, Fabrication of gC3N4/TiO2 composite photocatalyst with extended absorption wavelength range and enhanced photocatalytic performance. J. Photochem. Photobiol. A : Chem. 317, 151–160 (2016)CrossRef
102.
Zurück zum Zitat T. Sheng, Z. Wei, H. Miao, W. Yao, H. Li, Y. Zhu, Enhanced organic pollutant photodegradation via adsorption/photocatalysis synergy using a 3D gC3N4/TiO2 free separation photocatalyst. Chem. Eng. J. 370, 287–294 (2019)CrossRef T. Sheng, Z. Wei, H. Miao, W. Yao, H. Li, Y. Zhu, Enhanced organic pollutant photodegradation via adsorption/photocatalysis synergy using a 3D gC3N4/TiO2 free separation photocatalyst. Chem. Eng. J. 370, 287–294 (2019)CrossRef
103.
Zurück zum Zitat Y. Tian, B. Chang, J. Fu, B. Zhou, J. Liu, F. Xi, X. Dong, J., Graphitic carbon nitride/Cu2O heterojunctions: Preparation, characterization, and enhanced photocatalytic activity under visible light. Solid State Chem. 212, 1 (2014) Y. Tian, B. Chang, J. Fu, B. Zhou, J. Liu, F. Xi, X. Dong, J., Graphitic carbon nitride/Cu2O heterojunctions: Preparation, characterization, and enhanced photocatalytic activity under visible light. Solid State Chem. 212, 1 (2014)
104.
Zurück zum Zitat J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B: Environ. 243, 556–565 (2019)CrossRef J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B: Environ. 243, 556–565 (2019)CrossRef
105.
Zurück zum Zitat Y. Zhen, C. Yang, F. Fu, H. Shen, W. Xue, C. Gu, J. Feng, Y. Zhang, Y. Liang, Photocatalytic performance and mechanism insights of S-scheme g-C3N4/Bi2MoO6 heterostructure in phenol degradation and hydrogen evolution reaction under visible light. Phys. Chem. Chem. Phys. 22, 26278–26288 (2020)CrossRef Y. Zhen, C. Yang, F. Fu, H. Shen, W. Xue, C. Gu, J. Feng, Y. Zhang, Y. Liang, Photocatalytic performance and mechanism insights of S-scheme g-C3N4/Bi2MoO6 heterostructure in phenol degradation and hydrogen evolution reaction under visible light. Phys. Chem. Chem. Phys. 22, 26278–26288 (2020)CrossRef
106.
Zurück zum Zitat K.N. Van, H.T. Huu, V.N.N. Thi, T.L.L. Thi, D.H. Truong, Ts.T. Truong, N.N. Dao, V. Vo, D.L. Tran, Y. Vasseghian, Facile construction of S-scheme SnO2/g-C3N4 photocatalyst for improved photoactivity. Chemosphere 289, 133120 (2022) K.N. Van, H.T. Huu, V.N.N. Thi, T.L.L. Thi, D.H. Truong, Ts.T. Truong, N.N. Dao, V. Vo, D.L. Tran, Y. Vasseghian, Facile construction of S-scheme SnO2/g-C3N4 photocatalyst for improved photoactivity. Chemosphere 289, 133120 (2022)
107.
Zurück zum Zitat S. Mishra, R. Acharya, K. Parida, Spinel-ferrite-decorated graphene-based nanocomposites for enhanced photocatalytic detoxification of organic dyes in aqueous medium: a review. Water 15(1), 81 (2023)CrossRef S. Mishra, R. Acharya, K. Parida, Spinel-ferrite-decorated graphene-based nanocomposites for enhanced photocatalytic detoxification of organic dyes in aqueous medium: a review. Water 15(1), 81 (2023)CrossRef
108.
Zurück zum Zitat M. Faisala, M. Jalalaha, F.A. Harraza, A.M. El-Tonic, A. Khan, M.S. Al-Assiri, Au nanoparticles-doped g-C3N4 nanocomposites for enhanced photocatalytic performance under visible light illumination. Ceram. Int. 46, 22090–22101 (2020)CrossRef M. Faisala, M. Jalalaha, F.A. Harraza, A.M. El-Tonic, A. Khan, M.S. Al-Assiri, Au nanoparticles-doped g-C3N4 nanocomposites for enhanced photocatalytic performance under visible light illumination. Ceram. Int. 46, 22090–22101 (2020)CrossRef
109.
Zurück zum Zitat S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation of rhodamine B and methylorange over boron-doped g-C3N4 under visible light irradiation. Langmuir 26, 3894–3901 (2010)CrossRef S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation of rhodamine B and methylorange over boron-doped g-C3N4 under visible light irradiation. Langmuir 26, 3894–3901 (2010)CrossRef
110.
Zurück zum Zitat W. Gu, F. Lu, C. Wang, S. Kuga, L.-Z. Wu, Y. Huang, M. Wu, Face-to-Face interfacial assembly of ultrathin g-C3N4 and anatase TiO2 nanosheets for enhanced solar photocatalytic activity, ACS Appl. Mater. Interfaces. 9, 28674–28684 (2017)CrossRef W. Gu, F. Lu, C. Wang, S. Kuga, L.-Z. Wu, Y. Huang, M. Wu, Face-to-Face interfacial assembly of ultrathin g-C3N4 and anatase TiO2 nanosheets for enhanced solar photocatalytic activity, ACS Appl. Mater. Interfaces. 9, 28674–28684 (2017)CrossRef
111.
Zurück zum Zitat L. Wang, Y. Li, P. Han, Electrospinning preparation of g-C3N4/Nb2O5 nanofibers heterojunction for enhanced photocatalytic degradation of organic pollutants in water. Sci. Rep. 11, 22950 (2021)CrossRef L. Wang, Y. Li, P. Han, Electrospinning preparation of g-C3N4/Nb2O5 nanofibers heterojunction for enhanced photocatalytic degradation of organic pollutants in water. Sci. Rep. 11, 22950 (2021)CrossRef
112.
Zurück zum Zitat V. Kumaravel, J. Bartlett, S.C. Pillai, Photoelectrochemical conversion of carbon dioxide (CO2) into fuels and value-added products. ACS Energy Lett. 5, 486–519 (2020)CrossRef V. Kumaravel, J. Bartlett, S.C. Pillai, Photoelectrochemical conversion of carbon dioxide (CO2) into fuels and value-added products. ACS Energy Lett. 5, 486–519 (2020)CrossRef
113.
Zurück zum Zitat I. Masood ul Hasan, L. Peng, J. Mao, R. He, Y. Wang, J. Fu, N. Xu, J. Qiao, Carbon‐based metalfree catalysts for electrochemical CO2 reduction: activity, selectivity, and stability. Carbon Energy 3, 24–49 I. Masood ul Hasan, L. Peng, J. Mao, R. He, Y. Wang, J. Fu, N. Xu, J. Qiao, Carbon‐based metalfree catalysts for electrochemical CO2 reduction: activity, selectivity, and stability. Carbon Energy 3, 24–49
114.
Zurück zum Zitat X. Chang, T. Wang, J. Gong, CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 9, 2177–2196 (2016)CrossRef X. Chang, T. Wang, J. Gong, CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 9, 2177–2196 (2016)CrossRef
115.
Zurück zum Zitat Y. Shioya, K. Ikeue, M. Ogawa, M. Anpo, synthesis of transparent Ti-containing mesoporous silica thin film materials and their unique photocatalytic activity for the reduction of CO2 with H2O. Appl Catal A-Gen. 254, 251–259 (2003)CrossRef Y. Shioya, K. Ikeue, M. Ogawa, M. Anpo, synthesis of transparent Ti-containing mesoporous silica thin film materials and their unique photocatalytic activity for the reduction of CO2 with H2O. Appl Catal A-Gen. 254, 251–259 (2003)CrossRef
116.
Zurück zum Zitat A. Hasani, M.A. Teklagne, H.H. Do, S.H. Hong, Q.V. Le, S.H. Ahn, S.Y. Kim, Graphene-based catalysts for electrochemical carbon dioxide reduction. Carbon Energy. 2, 158–175 (2020)CrossRef A. Hasani, M.A. Teklagne, H.H. Do, S.H. Hong, Q.V. Le, S.H. Ahn, S.Y. Kim, Graphene-based catalysts for electrochemical carbon dioxide reduction. Carbon Energy. 2, 158–175 (2020)CrossRef
117.
Zurück zum Zitat D. Chen, Y. Wang, D. Liu, H. Liu, C. Qian, H. He, J. Yang, Surface composition dominates the electrocatalytic reduction of CO2 on ultrafine CuPd nanoalloys. Carbon Energy. 2, 443–451 (2020)CrossRef D. Chen, Y. Wang, D. Liu, H. Liu, C. Qian, H. He, J. Yang, Surface composition dominates the electrocatalytic reduction of CO2 on ultrafine CuPd nanoalloys. Carbon Energy. 2, 443–451 (2020)CrossRef
118.
Zurück zum Zitat E.V. Kondratenko, G. Mul, J. Baltrusaitis, G.O. Larrazábal, J. Pérez-Ramírez, Status and perspectives of CO2 conversion into fuels and chemicals bycatalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 6, 3112–3135 (2013) E.V. Kondratenko, G. Mul, J. Baltrusaitis, G.O. Larrazábal, J. Pérez-Ramírez, Status and perspectives of CO2 conversion into fuels and chemicals bycatalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 6, 3112–3135 (2013)
119.
Zurück zum Zitat W. Dai, H. Xu, J. Yu, X. Hu, X. Luo, X. Tu, L. Yang, Photocatalytic reduction of CO2 into methanol and ethanol over conducting polymers modified Bi2WO6 microspheres under visible light. Appl. Surf. Sci. 356, 173–180 (2015)CrossRef W. Dai, H. Xu, J. Yu, X. Hu, X. Luo, X. Tu, L. Yang, Photocatalytic reduction of CO2 into methanol and ethanol over conducting polymers modified Bi2WO6 microspheres under visible light. Appl. Surf. Sci. 356, 173–180 (2015)CrossRef
120.
Zurück zum Zitat S.W. Jo, B.S. Kwak, K.M. Kim, J.Y. Do, N.-K. Park, S.O. Ryu, H.-J. Ryu, J.-I. Baek, M. Kang, Effectively CO2 photoreduction to CH4 by the synergistic effects of Ca and Ti on Ca-loaded TiSiMCM-41 mesoporous photocatalytic systems. Appl. Surf. Sci. 355, 891–901 (2015)CrossRef S.W. Jo, B.S. Kwak, K.M. Kim, J.Y. Do, N.-K. Park, S.O. Ryu, H.-J. Ryu, J.-I. Baek, M. Kang, Effectively CO2 photoreduction to CH4 by the synergistic effects of Ca and Ti on Ca-loaded TiSiMCM-41 mesoporous photocatalytic systems. Appl. Surf. Sci. 355, 891–901 (2015)CrossRef
121.
Zurück zum Zitat M. Halmann, Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 275, 115–116 (1978)CrossRef M. Halmann, Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 275, 115–116 (1978)CrossRef
122.
Zurück zum Zitat W. Jiang, X. Yin, F. Xin, Y. Bi, Y. Liu, X. Li, Preparation of CdIn2S4 microspheres and application for photocatalytic reduction of carbondioxide. Appl. Surf. Sci. 288, 138–142 (2014)CrossRef W. Jiang, X. Yin, F. Xin, Y. Bi, Y. Liu, X. Li, Preparation of CdIn2S4 microspheres and application for photocatalytic reduction of carbondioxide. Appl. Surf. Sci. 288, 138–142 (2014)CrossRef
123.
Zurück zum Zitat Y.-X. Pan, Z.-Q. Sun, H.-P. Cong, Y.-L. Men, S. Xin, J. Song, S.-H. Yu, Photocatalytic CO2 reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide. Nano Res. 9, 1689–1700 (2016)CrossRef Y.-X. Pan, Z.-Q. Sun, H.-P. Cong, Y.-L. Men, S. Xin, J. Song, S.-H. Yu, Photocatalytic CO2 reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide. Nano Res. 9, 1689–1700 (2016)CrossRef
124.
Zurück zum Zitat P. Li, H. Xu, L. Liu, T. Kako, N. Umezawa, H. Abe, J. Ye, Constructing cubic-orthorhombic surface-phase junctions of NaNbO3 towards significant enhancement of CO2 photoreduction. J. Mater. Chem. A. 2, 5606–5609 (2014)CrossRef P. Li, H. Xu, L. Liu, T. Kako, N. Umezawa, H. Abe, J. Ye, Constructing cubic-orthorhombic surface-phase junctions of NaNbO3 towards significant enhancement of CO2 photoreduction. J. Mater. Chem. A. 2, 5606–5609 (2014)CrossRef
125.
Zurück zum Zitat Y. Jia, H. Ma, W. Zhang, G. Zhu, W. Yang, N. Son, M. Kang, C. Liu, Z-scheme SnFe2O4-graphitic carbon nitride: reusable, magnetic catalysts for enhanced photocatalytic CO2 reduction. Chem. Eng. J. 383, 123172 (2020)CrossRef Y. Jia, H. Ma, W. Zhang, G. Zhu, W. Yang, N. Son, M. Kang, C. Liu, Z-scheme SnFe2O4-graphitic carbon nitride: reusable, magnetic catalysts for enhanced photocatalytic CO2 reduction. Chem. Eng. J. 383, 123172 (2020)CrossRef
126.
Zurück zum Zitat X. Li, J. Yu, M. Jaroniec, X. Chen, Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962–4179 (2019)CrossRef X. Li, J. Yu, M. Jaroniec, X. Chen, Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962–4179 (2019)CrossRef
127.
Zurück zum Zitat Q. Zhang, C.F. Lin, B.Y. Chen, T. Ouyang, C.T. Chang, Deciphering visible light photoreductive conversion of CO2 to formic acid and methanol using waste prepared material. Environ. Sci. Technol. 49, 2405–2417 (2015)CrossRef Q. Zhang, C.F. Lin, B.Y. Chen, T. Ouyang, C.T. Chang, Deciphering visible light photoreductive conversion of CO2 to formic acid and methanol using waste prepared material. Environ. Sci. Technol. 49, 2405–2417 (2015)CrossRef
128.
Zurück zum Zitat M. Li, L. Zhang, X. Fan, Y. Zhou, M. Wu, J. Shi, Highly selective CO2 photoreduction to CO over g-C3N4/Bi2WO6 composites under visible light. J Mater Chem A. 3, 5189–5196 (2015)CrossRef M. Li, L. Zhang, X. Fan, Y. Zhou, M. Wu, J. Shi, Highly selective CO2 photoreduction to CO over g-C3N4/Bi2WO6 composites under visible light. J Mater Chem A. 3, 5189–5196 (2015)CrossRef
129.
Zurück zum Zitat K. Sonowal, N. Nandal, P. Basyach, L. Kalita, S.L. Jain, L. Saikia, Photocatalytic reduction of CO2 to methanol using Zr (IV)-based MOF composite with g-C3N4 quantum dots under visible light irradiation. J. CO2 Utiliz 57, 101905 (2022) K. Sonowal, N. Nandal, P. Basyach, L. Kalita, S.L. Jain, L. Saikia, Photocatalytic reduction of CO2 to methanol using Zr (IV)-based MOF composite with g-C3N4 quantum dots under visible light irradiation. J. CO2 Utiliz 57, 101905 (2022)
130.
Zurück zum Zitat Y. Zou, X. Wang, A. Khan, P. Wang, Y. Liu, A. Alsaedi, T. Hayat, X. Wang, Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review environ. Sci. Technol. 50, 7290–7304 (2016)CrossRef Y. Zou, X. Wang, A. Khan, P. Wang, Y. Liu, A. Alsaedi, T. Hayat, X. Wang, Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review environ. Sci. Technol. 50, 7290–7304 (2016)CrossRef
131.
Zurück zum Zitat C. Chen, Z. Chai, X. Wang, Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 47, 2322–2356 (2018)CrossRef C. Chen, Z. Chai, X. Wang, Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 47, 2322–2356 (2018)CrossRef
132.
Zurück zum Zitat Z. Zhang, C. Liu, Z. Dong, Y. Dai, G. Xiong, Y. Liu, Y. Wang, Y. Wang, Y. Liu, synthesis of flower-like MoS2/g-C3N4 nanosheet heterojunctions with enhanced photocatalytic reduction activity of uranium(VI) Appl. Surf. Sci. 520, 146352 (2020)CrossRef Z. Zhang, C. Liu, Z. Dong, Y. Dai, G. Xiong, Y. Liu, Y. Wang, Y. Wang, Y. Liu, synthesis of flower-like MoS2/g-C3N4 nanosheet heterojunctions with enhanced photocatalytic reduction activity of uranium(VI) Appl. Surf. Sci. 520, 146352 (2020)CrossRef
133.
Zurück zum Zitat R. Acharya, P. Pani, Visible light susceptible doped TiO2 photocatalytic systems: an overview. Mater. Today: Proc. 67, 1276–1282 (2022) R. Acharya, P. Pani, Visible light susceptible doped TiO2 photocatalytic systems: an overview. Mater. Today: Proc. 67, 1276–1282 (2022)
134.
Zurück zum Zitat S.P. Tripathy, S. Subudhi, R. Acharya, R. Acharya, M. Das, K.M. Parida, Adsorptive removal of Cr (VI) onto UiO-66-NH2 and its determination by radioanalytical techniques. J. Radioanal. Nucl. Chem. 322, 983–992 (2019)CrossRef S.P. Tripathy, S. Subudhi, R. Acharya, R. Acharya, M. Das, K.M. Parida, Adsorptive removal of Cr (VI) onto UiO-66-NH2 and its determination by radioanalytical techniques. J. Radioanal. Nucl. Chem. 322, 983–992 (2019)CrossRef
135.
Zurück zum Zitat M. Wang, Y. Zeng, G. Dong, C. Wang, Br doping of g-C3N4 towards enhanced photocatalytic performance in Cr (VI) reduction, Chinese. J. Catal. 41, 1498–1510 (2020) M. Wang, Y. Zeng, G. Dong, C. Wang, Br doping of g-C3N4 towards enhanced photocatalytic performance in Cr (VI) reduction, Chinese. J. Catal. 41, 1498–1510 (2020)
136.
Zurück zum Zitat Y. Wang, S. Bao, Y. Liu, W. Yang, Y. Yu, M. Feng, K. Li, Efficient photocatalytic reduction of Cr(VI) in aqueous solution over CoS2/g-C3N4-rGO nanocomposites under visible light. Appl. Surf. Sci. 510, 145495 (2020)CrossRef Y. Wang, S. Bao, Y. Liu, W. Yang, Y. Yu, M. Feng, K. Li, Efficient photocatalytic reduction of Cr(VI) in aqueous solution over CoS2/g-C3N4-rGO nanocomposites under visible light. Appl. Surf. Sci. 510, 145495 (2020)CrossRef
137.
Zurück zum Zitat Y.H. Wang, M. Frutschi, E. Suvorova, V. Phrommavanh, M. Descostes, A.A.A. Osman, G. Geipel, L.R. Bernier-, Mobile uranium(IV)-bearing colloids in a mining-impacted wetland. Nat. Commun. 4, 2942–2950 (2013)CrossRef Y.H. Wang, M. Frutschi, E. Suvorova, V. Phrommavanh, M. Descostes, A.A.A. Osman, G. Geipel, L.R. Bernier-, Mobile uranium(IV)-bearing colloids in a mining-impacted wetland. Nat. Commun. 4, 2942–2950 (2013)CrossRef
138.
Zurück zum Zitat Z. Huang, Z. Li, Q. Wu, L. Zheng, L. Zhou, Z. Chai, X. Wang, W. Shi, Simultaneous elimination of cationic uranium(vi) and anionic rhenium(vii) by graphene oxide–poly(ethyleneimine) macrostructures: a batch, XPS, EXAFS, and DFT combined study, Environ. Sci. Nano. 5, 2077–2087 (2018) Z. Huang, Z. Li, Q. Wu, L. Zheng, L. Zhou, Z. Chai, X. Wang, W. Shi, Simultaneous elimination of cationic uranium(vi) and anionic rhenium(vii) by graphene oxide–poly(ethyleneimine) macrostructures: a batch, XPS, EXAFS, and DFT combined study, Environ. Sci. Nano. 5, 2077–2087 (2018)
139.
Zurück zum Zitat S. Lee, U. Kang, G. Piao, S. Kim, D.S. Han, H. Park, Homogeneous photoconversion of seawater uranium using copper and iron mixed-oxide semiconductor electrodes. Appl. Catal. B. 207, 35–41 (2017) S. Lee, U. Kang, G. Piao, S. Kim, D.S. Han, H. Park, Homogeneous photoconversion of seawater uranium using copper and iron mixed-oxide semiconductor electrodes. Appl. Catal. B. 207, 35–41 (2017)
140.
Zurück zum Zitat G. Wang, J. Zhen, L. Zhou, F. Wu, N. Deng, Adsorption and photocatalytic reduction of U (VI) in aqueous TiO2 suspensions enhanced with sodium formate. J. Radioanal. Nucl. Chem. 304, 579–585 (2015)CrossRef G. Wang, J. Zhen, L. Zhou, F. Wu, N. Deng, Adsorption and photocatalytic reduction of U (VI) in aqueous TiO2 suspensions enhanced with sodium formate. J. Radioanal. Nucl. Chem. 304, 579–585 (2015)CrossRef
141.
Zurück zum Zitat S. Tripathi, R. Bose, A. Roy, S. Nair, S. Ravishankar, Synthesis of hollow nanotubes of Zn2SiO4 or SiO2: mechanistic understanding and uranium adsorption behaviour. ACS Appl. Mater. Interfaces. 7, 26430–26436. S. Tripathi, R. Bose, A. Roy, S. Nair, S. Ravishankar, Synthesis of hollow nanotubes of Zn2SiO4 or SiO2: mechanistic understanding and uranium adsorption behaviour. ACS Appl. Mater. Interfaces. 7, 26430–26436.
142.
Zurück zum Zitat C. Lu, R. Chen, X. Wu, M. Fan, Y. Liu, Z. Le, S. Jiang, S. Song, Boron doped g-C3N4 with enhanced photocatalytic UO22+ reduction performance. Appl. Surf. Sci. 360, 1016–1022 (2016)CrossRef C. Lu, R. Chen, X. Wu, M. Fan, Y. Liu, Z. Le, S. Jiang, S. Song, Boron doped g-C3N4 with enhanced photocatalytic UO22+ reduction performance. Appl. Surf. Sci. 360, 1016–1022 (2016)CrossRef
143.
Zurück zum Zitat C. Lu, P. Zhang, S. Jiang, X. Wu, S. Song, M. Zhu, Z. Lou, Z. Li, F. Liu, Y. Liu, Y. Wang, Z. Le, Photocatalytic reduction elimination of UO22+ pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst. Appl. Catal. B. 200, 378–385 (2017) C. Lu, P. Zhang, S. Jiang, X. Wu, S. Song, M. Zhu, Z. Lou, Z. Li, F. Liu, Y. Liu, Y. Wang, Z. Le, Photocatalytic reduction elimination of UO22+ pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst. Appl. Catal. B. 200, 378–385 (2017)
144.
Zurück zum Zitat X. Jiang, Q. Xing, X. Luo, F. Li, J. Zou, S. Liu, X. Lia, X. Wang, Simultaneous photoreduction of Uranium(VI) and photooxidation of Arsenic(III) in aqueous solution over g-C3N4/TiO2 heterostructured catalysts under simulated sunlight irradiation. Appl. Catal. B. 228, 29–38 (2018) X. Jiang, Q. Xing, X. Luo, F. Li, J. Zou, S. Liu, X. Lia, X. Wang, Simultaneous photoreduction of Uranium(VI) and photooxidation of Arsenic(III) in aqueous solution over g-C3N4/TiO2 heterostructured catalysts under simulated sunlight irradiation. Appl. Catal. B. 228, 29–38 (2018)
145.
Zurück zum Zitat Y. Wang, X.M. Liu, Q.I. Chen, T.C. Zhang, L. Ouyang, S.J. Yuan, Simultaneous photocatalytic oxidation and adsorption for efficient As(III) removal by magnetic BiOI/γ-Fe2O3 core-shell nanoparticles. Mater. Today Chem. 24, 100823 (2022)CrossRef Y. Wang, X.M. Liu, Q.I. Chen, T.C. Zhang, L. Ouyang, S.J. Yuan, Simultaneous photocatalytic oxidation and adsorption for efficient As(III) removal by magnetic BiOI/γ-Fe2O3 core-shell nanoparticles. Mater. Today Chem. 24, 100823 (2022)CrossRef
146.
Zurück zum Zitat M.N. Maga˜na, A.E. Gonz´alez, L.M. Ix, S.C. Díaz, R. G´omez, Improved photocatalytic oxidation of arsenic (III) with WO3/TiO2 nanomaterials synthesized by the sol-gel method. J. Environ. Manag. 282, 111602 (2021) M.N. Maga˜na, A.E. Gonz´alez, L.M. Ix, S.C. Díaz, R. G´omez, Improved photocatalytic oxidation of arsenic (III) with WO3/TiO2 nanomaterials synthesized by the sol-gel method. J. Environ. Manag. 282, 111602 (2021)
147.
Zurück zum Zitat H. Eslami, M.H. Ehrampoush, A. Esmaeili, A.A. Ebrahimi, M.H. Salmani, M.T. Ghaneian, H. Falahzadeh, Efficient photocatalytic oxidation of arsenite from contaminated water by Fe2O3-Mn2O3 nanocomposite under UVA radiation and process optimization with experimental design. Chemosphere 207, 303–312 (2018)CrossRef H. Eslami, M.H. Ehrampoush, A. Esmaeili, A.A. Ebrahimi, M.H. Salmani, M.T. Ghaneian, H. Falahzadeh, Efficient photocatalytic oxidation of arsenite from contaminated water by Fe2O3-Mn2O3 nanocomposite under UVA radiation and process optimization with experimental design. Chemosphere 207, 303–312 (2018)CrossRef
148.
Zurück zum Zitat W. Ali, N. Mushtaq, T. Javed, H. Zhang, K. Ali, A. Rasool, A. Farooqi, Vertical mixing with return irrigation water the cause of arsenic enrichment in groundwater of district Larkana Sindh, Pakistan. Environ. Pollut. 245, 77–88 (2019)CrossRef W. Ali, N. Mushtaq, T. Javed, H. Zhang, K. Ali, A. Rasool, A. Farooqi, Vertical mixing with return irrigation water the cause of arsenic enrichment in groundwater of district Larkana Sindh, Pakistan. Environ. Pollut. 245, 77–88 (2019)CrossRef
149.
Zurück zum Zitat A.S. Maghsoudi, S. Hassani, K. Mirnia, M. Abdollahi, Recent advances in nanotechnology-based biosensors development for detection of arsenic, lead, mercury, and cadmium. Int. J. Nanomed. 16, 803–832 (2021)CrossRef A.S. Maghsoudi, S. Hassani, K. Mirnia, M. Abdollahi, Recent advances in nanotechnology-based biosensors development for detection of arsenic, lead, mercury, and cadmium. Int. J. Nanomed. 16, 803–832 (2021)CrossRef
150.
Zurück zum Zitat S.-Y. Yu, Y. Liu, H.-T. Ren, Z.-Y. Liu, X. Han, Importance of the ligand-to-metal charge transfer (LMCT) pathway in the photocatalytic oxidation of arsenite by TiO2. Phys. Chem. Chem. Phys. 24, 13661–13670 (2022)CrossRef S.-Y. Yu, Y. Liu, H.-T. Ren, Z.-Y. Liu, X. Han, Importance of the ligand-to-metal charge transfer (LMCT) pathway in the photocatalytic oxidation of arsenite by TiO2. Phys. Chem. Chem. Phys. 24, 13661–13670 (2022)CrossRef
151.
Zurück zum Zitat M. Xiao, R. Li, J. Yin, J. Yang, X. Hu, H. Xiao, W. Wang, T. Yang, Enhanced photocatalytic oxidation of As(III) by TiO2 modified with Fe3O4 through Ti-O-Fe interface bonds. Colloids Surf., A 651, 129678 (2022)CrossRef M. Xiao, R. Li, J. Yin, J. Yang, X. Hu, H. Xiao, W. Wang, T. Yang, Enhanced photocatalytic oxidation of As(III) by TiO2 modified with Fe3O4 through Ti-O-Fe interface bonds. Colloids Surf., A 651, 129678 (2022)CrossRef
152.
Zurück zum Zitat L. Ouyang, Y. Zhang, Y. Wang, X. Wang, S. Yuan, Insights into the adsorption and photocatalytic oxidation behaviors of boron-doped TiO2/gC3N4 nanocomposites toward As(III) in aqueous solution. Ind. Eng. Chem. Res. 60, 7003–7013 (2021)CrossRef L. Ouyang, Y. Zhang, Y. Wang, X. Wang, S. Yuan, Insights into the adsorption and photocatalytic oxidation behaviors of boron-doped TiO2/gC3N4 nanocomposites toward As(III) in aqueous solution. Ind. Eng. Chem. Res. 60, 7003–7013 (2021)CrossRef
153.
Zurück zum Zitat C. Wang, Y. Dai, X. Fu, X. Lu, J. Zhang, A novel layer-layer crossed structure of bentonite/g-C3N4 for enhanced photocatalytic oxidation of arsenic (III) in a wide pH range. Surf. Interf. 26, 101365 (2021)CrossRef C. Wang, Y. Dai, X. Fu, X. Lu, J. Zhang, A novel layer-layer crossed structure of bentonite/g-C3N4 for enhanced photocatalytic oxidation of arsenic (III) in a wide pH range. Surf. Interf. 26, 101365 (2021)CrossRef
154.
Zurück zum Zitat X. Wang, S.O. Pehkonen, A.K. Ray, Photocatalytic reduction of Hg(II) on two commercial TiO2 catalysts. Electrochim. Acta 49, 1435–1444 (2004)CrossRef X. Wang, S.O. Pehkonen, A.K. Ray, Photocatalytic reduction of Hg(II) on two commercial TiO2 catalysts. Electrochim. Acta 49, 1435–1444 (2004)CrossRef
155.
Zurück zum Zitat K. Sundseth, J. Pacyna, E. Pacyna, N. Pirrone, R. Thorne, Global sources and pathways of mercury in the context of human health. Int. J. Environ. Res. Publ. Health 14, 105–119 (2017)CrossRef K. Sundseth, J. Pacyna, E. Pacyna, N. Pirrone, R. Thorne, Global sources and pathways of mercury in the context of human health. Int. J. Environ. Res. Publ. Health 14, 105–119 (2017)CrossRef
156.
Zurück zum Zitat Y. Fu, J. Jiang, Z. Chen, S. Ying, J. Wang, J. Hu, Rapid and selective removal of Hg (II) ions and high catalytic performance of the spent adsorbent based on functionalized mesoporous silica/poly (m-aminothiophenol) nanocomposite. J. Mol. Liq. 286, 110746 (2019)CrossRef Y. Fu, J. Jiang, Z. Chen, S. Ying, J. Wang, J. Hu, Rapid and selective removal of Hg (II) ions and high catalytic performance of the spent adsorbent based on functionalized mesoporous silica/poly (m-aminothiophenol) nanocomposite. J. Mol. Liq. 286, 110746 (2019)CrossRef
157.
Zurück zum Zitat Y. Li, M. Xia, F. An, N. Ma, X. Jiang, S. Zhu, D. Wang, J. Ma, Superior removal of Hg (II) ions from wastewater using hierarchically porous, functionalized carbon. J. Hazard. Mater. 371, 33–41 (2019)CrossRef Y. Li, M. Xia, F. An, N. Ma, X. Jiang, S. Zhu, D. Wang, J. Ma, Superior removal of Hg (II) ions from wastewater using hierarchically porous, functionalized carbon. J. Hazard. Mater. 371, 33–41 (2019)CrossRef
158.
Zurück zum Zitat G.G. Lenzi, C.V.B. Fávero, L.M.S. Colpini, H. Bernabe, M.L. Baesso, S. Specchia, O.A.A. Santos, Photocatalytic reduction of Hg(II) on TiO2 and Ag/TiO2 prepared by the sol–gel and impregnation methods. Desalination 270, 241–247 (2011)CrossRef G.G. Lenzi, C.V.B. Fávero, L.M.S. Colpini, H. Bernabe, M.L. Baesso, S. Specchia, O.A.A. Santos, Photocatalytic reduction of Hg(II) on TiO2 and Ag/TiO2 prepared by the sol–gel and impregnation methods. Desalination 270, 241–247 (2011)CrossRef
159.
Zurück zum Zitat H. Alshaikh, A. Shawky, L.S. Roselin, Promoted visible-light photocatalytic reduction of Hg2+ over CuAl2O4-decorated g-C3N4 nanoheterojunctions synthesized by solution process. J. Env. Chem. Eng. 9, 106778 (2021)CrossRef H. Alshaikh, A. Shawky, L.S. Roselin, Promoted visible-light photocatalytic reduction of Hg2+ over CuAl2O4-decorated g-C3N4 nanoheterojunctions synthesized by solution process. J. Env. Chem. Eng. 9, 106778 (2021)CrossRef
160.
Zurück zum Zitat R.M. Mohamed, A.A. Ismail, Mesoporous BiVO4/2D-g-C3N4 heterostructures for superior visible light-driven photocatalytic reduction of Hg (II) ions. Ceram. Intern. 47, 26063–26073 (2021)CrossRef R.M. Mohamed, A.A. Ismail, Mesoporous BiVO4/2D-g-C3N4 heterostructures for superior visible light-driven photocatalytic reduction of Hg (II) ions. Ceram. Intern. 47, 26063–26073 (2021)CrossRef
Metadaten
Titel
Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Environmental Applications
verfasst von
Rashmi Acharya
Subhasish Mishra
Lopamudra Acharya
Kulamani Parida
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-28756-5_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.