Skip to main content
Erschienen in: Neural Processing Letters 1/2020

17.06.2020

GrasNet: A Simple Grassmannian Network for Image Set Classification

verfasst von: Rui Wang, Xiao-Jun Wu

Erschienen in: Neural Processing Letters | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Representing image sets on the Grassmann manifold has been widely used in visual classification tasks, and the existing Grassmannian learning methods have shown powerful ability in feature representation. In order to develop the ideology of conventional deep learning to the Grassmann manifold, we devise a simple Grassmann manifold feature learning network (GrasNet) in this paper, which provides a new way for image set classification. For the proposed GrasNet, we design a fully mapping layer to transform the input Grassmannian data into more appropriate representations. In view of the consistency of the data space, orthonormal maintaining layer is exploited to normalize the input matrices to form a valid Grassmann manifold. To perform Grassmannian computing on the resulting Grassmann manifold-valued features, we also introduce a projection mapping layer. For the sake of further reducing the dimensionality and redundancy of the learned geometric features, we devise a projection pooling layer. The log-map layer is finally adopted to embed the resulting data manifold into a tangent space via Riemannian matrix logarithm map, such that the Euclidean computations apply. To learn the multistage connection weights for the proposed GrasNet, we utilize the Principal Component Analysis (PCA) algorithm rather than the complex Riemannian matrix backpropagation optimizer, which makes it be built and trained extremely easy and efficient. We evaluate our model on three different visual classification tasks: face recognition, object categorization and cell identification, respectively. Extensive classification results verify its feasibility and effectiveness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Huang Z, Wang R, Shan S, Chen X (2015) Projection metric learning on Grassmann manifold with application to video based face recognition. In: CVPR, pp 140–149 Huang Z, Wang R, Shan S, Chen X (2015) Projection metric learning on Grassmann manifold with application to video based face recognition. In: CVPR, pp 140–149
2.
Zurück zum Zitat Hamm J, Lee DD (2008) Grassmann discriminant analysis: a unifying view on subspace-based learning. In: ICML, pp 376–383 Hamm J, Lee DD (2008) Grassmann discriminant analysis: a unifying view on subspace-based learning. In: ICML, pp 376–383
3.
Zurück zum Zitat Hamm J, Lee DD (2009) Extended Grassmann kernels for subspace-based learning. In: NIPS, pp 601–608 Hamm J, Lee DD (2009) Extended Grassmann kernels for subspace-based learning. In: NIPS, pp 601–608
4.
Zurück zum Zitat Harandi MT, Sanderson C, Shirazi S, Lovell BC (2011) Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching. In: CVPR, pp 2705–2712 Harandi MT, Sanderson C, Shirazi S, Lovell BC (2011) Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching. In: CVPR, pp 2705–2712
5.
Zurück zum Zitat Chen S, Sanderson C, Harandi MT, Lovell BC (2013) Improved image set classification via joint sparse approximated nearest subspaces. In: CVPR, pp 452–459 Chen S, Sanderson C, Harandi MT, Lovell BC (2013) Improved image set classification via joint sparse approximated nearest subspaces. In: CVPR, pp 452–459
6.
Zurück zum Zitat Edelman A, Arias TA, Smith ST (1998) The geometry of algorithms with orthogonality constraints. In: SIAM J Matrix Anal Appl, pp 303–353 Edelman A, Arias TA, Smith ST (1998) The geometry of algorithms with orthogonality constraints. In: SIAM J Matrix Anal Appl, pp 303–353
7.
Zurück zum Zitat Srivastava A, Klassen E (2004) Bayesian and geometric subspace tracking. Adv Appl Probab, pp 43–56 Srivastava A, Klassen E (2004) Bayesian and geometric subspace tracking. Adv Appl Probab, pp 43–56
8.
Zurück zum Zitat Zheng YJ, Yang J, Yang JY, Wu XJ (2006) A reformative kernel Fisher discriminant algorithm and its application to face recognition. In: Neurocomputing, pp 1806–1810 Zheng YJ, Yang J, Yang JY, Wu XJ (2006) A reformative kernel Fisher discriminant algorithm and its application to face recognition. In: Neurocomputing, pp 1806–1810
9.
Zurück zum Zitat Wu XJ, Kittler J, Yang JY, Messer K, Wang ST (2004) A new direct LDA (D-LDA) algorithm for feature extraction in face recognition. In: ICPR, pp 545–548 Wu XJ, Kittler J, Yang JY, Messer K, Wang ST (2004) A new direct LDA (D-LDA) algorithm for feature extraction in face recognition. In: ICPR, pp 545–548
11.
Zurück zum Zitat Turaga P, Veeraraghavan A, Srivastava A, Chellappa R (2011) Statistical computations on grassmann and stiefel manifolds for image and video-based recognition. In: IEEE-TPAMI, pp 2273–2286 Turaga P, Veeraraghavan A, Srivastava A, Chellappa R (2011) Statistical computations on grassmann and stiefel manifolds for image and video-based recognition. In: IEEE-TPAMI, pp 2273–2286
12.
Zurück zum Zitat Jain S, Madhav Govindu V (2013) Efficient higher-order clustering on the grassmann manifold. In: ICCV, pp 3511–3518 Jain S, Madhav Govindu V (2013) Efficient higher-order clustering on the grassmann manifold. In: ICCV, pp 3511–3518
13.
Zurück zum Zitat Jayasumana S, Hartley R, Salzmann M, Li H, Harandi M (2014) Optimizing over radial kernels on compact manifolds. In: CVPR, pp 3802–3809 Jayasumana S, Hartley R, Salzmann M, Li H, Harandi M (2014) Optimizing over radial kernels on compact manifolds. In: CVPR, pp 3802–3809
14.
Zurück zum Zitat Vishwanathan SVN, Smola AJ (2004) Binet–Cauchy kernels. In: NIPS, pp 1441–1448 Vishwanathan SVN, Smola AJ (2004) Binet–Cauchy kernels. In: NIPS, pp 1441–1448
15.
Zurück zum Zitat Harandi MT, Salzmann M, Jayasumana S, Hartley R, Li H (2014) Expanding the family of grassmannian kernels: an embedding perspective. In: ECCV, pp 408–423 Harandi MT, Salzmann M, Jayasumana S, Hartley R, Li H (2014) Expanding the family of grassmannian kernels: an embedding perspective. In: ECCV, pp 408–423
16.
Zurück zum Zitat Vemulapalli R, Pillai JK, Chellappa R (2013) Kernel learning for extrinsic classification of manifold features. In: CVPR, pp 1782–1789 Vemulapalli R, Pillai JK, Chellappa R (2013) Kernel learning for extrinsic classification of manifold features. In: CVPR, pp 1782–1789
17.
Zurück zum Zitat Lu J, Wang G, Moulin P (2013) Image set classification using holistic multiple order statistics features and localized multi-kernel metric learning. In: ICCV, pp 329–336 Lu J, Wang G, Moulin P (2013) Image set classification using holistic multiple order statistics features and localized multi-kernel metric learning. In: ICCV, pp 329–336
18.
Zurück zum Zitat Wang R, Wu X. J, Chen K. X, Kittler J (2018) Multiple manifolds metric learning with application to image set classification. In: ICPR, pp 627–632 Wang R, Wu X. J, Chen K. X, Kittler J (2018) Multiple manifolds metric learning with application to image set classification. In: ICPR, pp 627–632
19.
Zurück zum Zitat Cun LY, Jackel LD, Bottou L, Brunot A, Cortes C, Denker JS, Simard P (1995) Comparison of learning algorithms for handwritten digit recognition. In: ICANN, pp 53–60 Cun LY, Jackel LD, Bottou L, Brunot A, Cortes C, Denker JS, Simard P (1995) Comparison of learning algorithms for handwritten digit recognition. In: ICANN, pp 53–60
20.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: NIPS, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: NIPS, pp 1097–1105
21.
Zurück zum Zitat Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:​1409.​1556
22.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR, pp 770–778
24.
Zurück zum Zitat Huang Z, Van Gool L (2017) A riemannian network for SPD matrix learning. In: AAAI, pp 2036–2042 Huang Z, Van Gool L (2017) A riemannian network for SPD matrix learning. In: AAAI, pp 2036–2042
25.
Zurück zum Zitat Wang R, Wu XJ, Kittler J (2018) A simple Riemannian manifold network for image set classification. arXiv preprint arXiv:1805.10628 Wang R, Wu XJ, Kittler J (2018) A simple Riemannian manifold network for image set classification. arXiv preprint arXiv:​1805.​10628
26.
Zurück zum Zitat Zhang D, Zhou Z-H (2005) (2D)\(^2\)PCA: two-directional two-dimensional PCA for efficient face representation and recognition. In: Neurocomputing, pp 224–231 Zhang D, Zhou Z-H (2005) (2D)\(^2\)PCA: two-directional two-dimensional PCA for efficient face representation and recognition. In: Neurocomputing, pp 224–231
27.
Zurück zum Zitat Ionescu C, Vantzos O, Sminchisescu C (2015) Training deep networks with structured layers by matrix backpropagation. arXiv preprint arXiv:1509.07838 Ionescu C, Vantzos O, Sminchisescu C (2015) Training deep networks with structured layers by matrix backpropagation. arXiv preprint arXiv:​1509.​07838
28.
Zurück zum Zitat Masci J, Boscaini D, Bronstein M, Vandergheynst P (2015) Geodesic convolutional neural networks on riemannian manifolds. In: ICCVW, pp 37–45 Masci J, Boscaini D, Bronstein M, Vandergheynst P (2015) Geodesic convolutional neural networks on riemannian manifolds. In: ICCVW, pp 37–45
29.
Zurück zum Zitat Cetingul HE, Vidal R (2009) Intrinsic mean shift for clustering on Stiefel and Grassmann manifolds. In: CVPR, pp 1896–1902 Cetingul HE, Vidal R (2009) Intrinsic mean shift for clustering on Stiefel and Grassmann manifolds. In: CVPR, pp 1896–1902
30.
Zurück zum Zitat Harandi M, Sanderson C, Shen C, Lovell B (2013) Dictionary learning and sparse coding on Grassmann manifolds: an extrinsic solution. In: ICCV, pp 3120–3127 Harandi M, Sanderson C, Shen C, Lovell B (2013) Dictionary learning and sparse coding on Grassmann manifolds: an extrinsic solution. In: ICCV, pp 3120–3127
31.
Zurück zum Zitat Jayasumana S, Hartley R, Salzmann M, Li H, Harandi M (2015) Kernel methods on Riemannian manifolds with Gaussian RBF kernels. In: IEEE-TPAMI, pp 2464–2477 Jayasumana S, Hartley R, Salzmann M, Li H, Harandi M (2015) Kernel methods on Riemannian manifolds with Gaussian RBF kernels. In: IEEE-TPAMI, pp 2464–2477
32.
Zurück zum Zitat Harandi M, Salzmann M, Hartley R (2018) Dimensionality reduction on SPD manifolds: the emergence of geometry-aware methods. In: IEEE-TPAMI, pp 48–62 Harandi M, Salzmann M, Hartley R (2018) Dimensionality reduction on SPD manifolds: the emergence of geometry-aware methods. In: IEEE-TPAMI, pp 48–62
33.
Zurück zum Zitat Huang Z, Wang R, Shan S, Li X, Chen X (2015) Log-euclidean metric learning on symmetric positive definite manifold with application to image set classification. In: ICML, pp 720–729 Huang Z, Wang R, Shan S, Li X, Chen X (2015) Log-euclidean metric learning on symmetric positive definite manifold with application to image set classification. In: ICML, pp 720–729
34.
Zurück zum Zitat Liang M, Hu X (2015) Recurrent convolutional neural network for object recognition. In: CVPR, pp 3367–3375 Liang M, Hu X (2015) Recurrent convolutional neural network for object recognition. In: CVPR, pp 3367–3375
35.
Zurück zum Zitat Sun H, Zhen X, Zheng Y, Yang G, Yin Y, Li S (2017) Learning deep match kernels for image-set classification. In: CVPR, pp 3307–3316 Sun H, Zhen X, Zheng Y, Yang G, Yin Y, Li S (2017) Learning deep match kernels for image-set classification. In: CVPR, pp 3307–3316
36.
Zurück zum Zitat Lu J, Wang G, Deng W, Moulin P, Zhou J (2015) Multi-manifold deep metric learning for image set classification. In: CVPR, pp 1137–1145 Lu J, Wang G, Deng W, Moulin P, Zhou J (2015) Multi-manifold deep metric learning for image set classification. In: CVPR, pp 1137–1145
37.
Zurück zum Zitat Golub, Gene H, Van L, Charles F (2012) Matrix computations. JHU Press Golub, Gene H, Van L, Charles F (2012) Matrix computations. JHU Press
38.
Zurück zum Zitat Marrinan T, Ross Beveridge J, Draper B, Kirby M, Peterson C (2014) Finding the subspace mean or median to fit your need. In: CVPR, pp 1082–1089 Marrinan T, Ross Beveridge J, Draper B, Kirby M, Peterson C (2014) Finding the subspace mean or median to fit your need. In: CVPR, pp 1082–1089
39.
Zurück zum Zitat Absil PA, Mahony R, Sepulchre R (2004) Riemannian geometry of Grassmann manifolds with a view on algorithmic computation. Acta Appl Math, p 199–220 Absil PA, Mahony R, Sepulchre R (2004) Riemannian geometry of Grassmann manifolds with a view on algorithmic computation. Acta Appl Math, p 199–220
40.
Zurück zum Zitat Arsigny V, Fillard P, Pennec X, Ayache N (2006) Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn Reson Med: Off J Int Soc Magn Reson Med, pp 411–421 Arsigny V, Fillard P, Pennec X, Ayache N (2006) Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn Reson Med: Off J Int Soc Magn Reson Med, pp 411–421
41.
Zurück zum Zitat Pennec X, Fillard P, Ayache N (2006) A Riemannian framework for tensor computing. In: IJCV, pp 41–66 Pennec X, Fillard P, Ayache N (2006) A Riemannian framework for tensor computing. In: IJCV, pp 41–66
42.
Zurück zum Zitat Cherian A, Sra S, Banerjee A, Papanikolopoulos N (2013) Jensen–Bregman logdet divergence with application to efficient similarity search for covariance matrices. In: IEEE-TPAMI, pp 2161–2174 Cherian A, Sra S, Banerjee A, Papanikolopoulos N (2013) Jensen–Bregman logdet divergence with application to efficient similarity search for covariance matrices. In: IEEE-TPAMI, pp 2161–2174
43.
Zurück zum Zitat Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach. In: Neural Comput, pp 2385–2440 Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach. In: Neural Comput, pp 2385–2440
44.
Zurück zum Zitat Wang R, Guo H, Davis LS, Dai Q (2017) Covariance discriminative learning: a natural and efficient approach to image set classification. In: CVPR, pp 2496–2503 Wang R, Guo H, Davis LS, Dai Q (2017) Covariance discriminative learning: a natural and efficient approach to image set classification. In: CVPR, pp 2496–2503
45.
Zurück zum Zitat Wang W, Wang R, Shan S, Chen X (2017) Discriminative covariance oriented representation learning for face recognition with image sets. In: CVPR, pp 5749–5758 Wang W, Wang R, Shan S, Chen X (2017) Discriminative covariance oriented representation learning for face recognition with image sets. In: CVPR, pp 5749–5758
46.
Zurück zum Zitat Kylberg G, Uppströ m M, Sintorn IM (2011) Virus texture analysis using local binary patterns and radial density profiles. In: Iberoamerican congress on pattern recognition, pp 573–580 Kylberg G, Uppströ m M, Sintorn IM (2011) Virus texture analysis using local binary patterns and radial density profiles. In: Iberoamerican congress on pattern recognition, pp 573–580
47.
Zurück zum Zitat Kim TK, Kittler J, Cipolla R (2007) Discriminative learning and recognition of image set classes using canonical correlations. In: IEEE-TPAMI, pp 1005–1018 Kim TK, Kittler J, Cipolla R (2007) Discriminative learning and recognition of image set classes using canonical correlations. In: IEEE-TPAMI, pp 1005–1018
48.
Zurück zum Zitat Cevikalp H, Triggs B (2010) Face recognition based on image sets. In: CVPR, pp 2567–2573 Cevikalp H, Triggs B (2010) Face recognition based on image sets. In: CVPR, pp 2567–2573
Metadaten
Titel
GrasNet: A Simple Grassmannian Network for Image Set Classification
verfasst von
Rui Wang
Xiao-Jun Wu
Publikationsdatum
17.06.2020
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 1/2020
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-020-10276-x

Weitere Artikel der Ausgabe 1/2020

Neural Processing Letters 1/2020 Zur Ausgabe

Neuer Inhalt