Skip to main content
Erschienen in: Cellulose 4/2022

24.01.2022 | Original Research

Green nanoarchitectonics for next generation electronics devices: patterning of conductive nanowires on regenerated cellulose substrates

verfasst von: Guneui Park, Kangyun Lee, Goomin Kwon, Dabum Kim, Youngho Jeon, Jungmok You

Erschienen in: Cellulose | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Regenerated cellulose (RC)-based materials, a major biomass resource, have been widely used in various applications, owing to their degradability, sustainability, and green nature. Here, we constructed silver nanowire (AgNW)-based conductive microelectrodes on various RC substrates. The AgNW patterns on glass substrates fabricated by polyethylene glycol photolithography were transferred onto the RC hydrogel surface by the coagulation and regeneration of the cellulose solution. The dried AgNW-patterned RC films exhibited a high optical transmittance of 79% at 550 nm, an excellent tensile strength of 210 MPa, and excellent sheet resistance of 1.03 Ω/sq. Moreover, they exhibited good adhesion stability and excellent bending durability, compared to AgNW-coated/patterned polyethylene terephthalate films. After 5000 bending and 30 peeling test cycles, no significant increase in the sheet resistance was observed in the AgNW-patterned RC films. The AgNW-patterned RC films were converted into the AgNW-patterned RC hydrogel films by a spontaneous swelling process in an aqueous solution. This conductive hydrogel film can be used as important components, such as the membrane and coating in bioelectronics interfaced with biological systems. We anticipate that this approach combined with conductive AgNW patterns and ecofriendly RC substrates can render these microelectrodes suitable candidates in the development of next-generation green electronics and high-performance bioelectronics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bari B, Lee J, Jang T, Won P, Ko SH, Alamgir K, Arshad M, Guo LJ (2016) Simple hydrothermal synthesis of very-long and thin silver nanowires and their application in high quality transparent electrodes. J Mater Chem A 4:11365–11371. https://doi.org/10.1039/C6TA03308CCrossRef Bari B, Lee J, Jang T, Won P, Ko SH, Alamgir K, Arshad M, Guo LJ (2016) Simple hydrothermal synthesis of very-long and thin silver nanowires and their application in high quality transparent electrodes. J Mater Chem A 4:11365–11371. https://​doi.​org/​10.​1039/​C6TA03308CCrossRef
Zurück zum Zitat Kwiczak-Yiğitbaşı J, Laçin Ö, Demir M, Ahan RE, Şeker UÖŞ, Baytekin B (2019) A sustainable preparation of catalytically active and antibacterial cellulose metal nanocomposites via ball milling of cellulose. Green Chem 22:455–464. https://doi.org/10.1039/C9GC02781ECrossRef Kwiczak-Yiğitbaşı J, Laçin Ö, Demir M, Ahan RE, Şeker UÖŞ, Baytekin B (2019) A sustainable preparation of catalytically active and antibacterial cellulose metal nanocomposites via ball milling of cellulose. Green Chem 22:455–464. https://​doi.​org/​10.​1039/​C9GC02781ECrossRef
Zurück zum Zitat Miao J, Liu H, Li Y, Zhang X (2018) Biodegradable transparent substrate based on edible starch−chitosan embedded with nature-inspired three-dimensionally Interconnected conductive nanocomposites for wearable green electronics. ACS Appl Mater Interf 10:23037–23047. https://doi.org/10.1021/acsami.8b04291CrossRef Miao J, Liu H, Li Y, Zhang X (2018) Biodegradable transparent substrate based on edible starch−chitosan embedded with nature-inspired three-dimensionally Interconnected conductive nanocomposites for wearable green electronics. ACS Appl Mater Interf 10:23037–23047. https://​doi.​org/​10.​1021/​acsami.​8b04291CrossRef
Zurück zum Zitat Pramila S, Fulekar MH, Bhawana P (2012) E-waste-A challenge for tomorrow. Res J Recent Sci 1:86–93 Pramila S, Fulekar MH, Bhawana P (2012) E-waste-A challenge for tomorrow. Res J Recent Sci 1:86–93
Zurück zum Zitat Yu H, Fang D, Dirican M, Wang R, Tian Y, Chen L, Hao L, Wang J, Tang F, Asiri AM, Zhang X, Tao J (2019) Binding conductive ink initiatively and strongly: transparent and thermally stable cellulose nanopaper as a promising substrate for flexible electronics. ACS Appl Mater Interf 11:20281–20290. https://doi.org/10.1021/acsami.9b04596CrossRef Yu H, Fang D, Dirican M, Wang R, Tian Y, Chen L, Hao L, Wang J, Tang F, Asiri AM, Zhang X, Tao J (2019) Binding conductive ink initiatively and strongly: transparent and thermally stable cellulose nanopaper as a promising substrate for flexible electronics. ACS Appl Mater Interf 11:20281–20290. https://​doi.​org/​10.​1021/​acsami.​9b04596CrossRef
Metadaten
Titel
Green nanoarchitectonics for next generation electronics devices: patterning of conductive nanowires on regenerated cellulose substrates
verfasst von
Guneui Park
Kangyun Lee
Goomin Kwon
Dabum Kim
Youngho Jeon
Jungmok You
Publikationsdatum
24.01.2022
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 4/2022
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-022-04435-7

Weitere Artikel der Ausgabe 4/2022

Cellulose 4/2022 Zur Ausgabe