Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2020

18.09.2020

Green Process for Preparation of Nickel Hydroxide Films and Membranes

verfasst von: Audrey Vecoven, Dewan Russel Rahman, Allen W. Apblett

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nickel hydroxides have numerous applications including as battery electrodes, electrochromic devices, electrochemical sensors, and supercapacitors and in such processes as photocatalysis, electrocatalysis, and electrosynthesis. A simple solution growth process for production of beta-Ni(OH)2 has been developed. The process involves dissolution of nickel hydroxide powders in concentrated ammonia to form [Ni(NH3)6](OH)2. If ammonia is allowed to evaporate from the resulting solution, the dissolution process is reversed and crystalline films of beta-Ni(OH)2 are deposited that consist of closely packed micron-sized clumps of thin plates. Addition of sodium aluminate to the solution makes it possible to also prepare alpha nickel hydroxide as free standing membranes at air–water interface. The overall procedure can be described as a green process since it eliminates the environmental burden of by-product production because Ni(OH)2 is simply dissolved and transformed into the desired material without producing waste salts such as ammonium nitrate or ammonium chloride that would be produced by a conventional precipitation approach for Ni(OH)2 membrane or film preparation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. McBreen, Nickel Hydroxides, Handbook of Battery Materials, 2nd ed., J.O. Besenhard and C. Daniel, Ed., Verlag GmbH, Wiley-VCH, 2011, p 149–168 CrossRef J. McBreen, Nickel Hydroxides, Handbook of Battery Materials, 2nd ed., J.O. Besenhard and C. Daniel, Ed., Verlag GmbH, Wiley-VCH, 2011, p 149–168 CrossRef
2.
Zurück zum Zitat J.J. Smithrick and P.M. O’Donnell, Nickel-Hydrogen Batteries - An Overview, J. Propul. Power, 1996, 12(5), p 873–878CrossRef J.J. Smithrick and P.M. O’Donnell, Nickel-Hydrogen Batteries - An Overview, J. Propul. Power, 1996, 12(5), p 873–878CrossRef
3.
Zurück zum Zitat C. Chakkaravarthy, P. Periasamy, S. Jegannathan, and K.I. Vasu, The Nickel/Iron Battery, J. Power Sources, 1991, 35(1), p 21–35CrossRef C. Chakkaravarthy, P. Periasamy, S. Jegannathan, and K.I. Vasu, The Nickel/Iron Battery, J. Power Sources, 1991, 35(1), p 21–35CrossRef
4.
Zurück zum Zitat A.K. Shukla, M.K. Ravikumar, and T.S. Balasubramanian, Nickel/Iron Batteries, J. Power Sources, 1994, 51(1–2), p 29–36CrossRef A.K. Shukla, M.K. Ravikumar, and T.S. Balasubramanian, Nickel/Iron Batteries, J. Power Sources, 1994, 51(1–2), p 29–36CrossRef
5.
Zurück zum Zitat Y. Li, G. Pan, W. Xu, J. Yao, and L. Zhang, Effect of Al Substitution on the Microstructure and Lithium Storage Performance of Nickel Hydroxide, J. Power Sources, 2016, 307, p 114–121CrossRef Y. Li, G. Pan, W. Xu, J. Yao, and L. Zhang, Effect of Al Substitution on the Microstructure and Lithium Storage Performance of Nickel Hydroxide, J. Power Sources, 2016, 307, p 114–121CrossRef
6.
Zurück zum Zitat Y. Li, W. Xu, Y. Zheng, J. Yao, and J. Xiao, Hierarchical Flower-Like Nickel Hydroxide with Superior Lithium Storage Performance, J. Mater. Sci. Mater. Electron., 2017, 28(22), p 17156–17160CrossRef Y. Li, W. Xu, Y. Zheng, J. Yao, and J. Xiao, Hierarchical Flower-Like Nickel Hydroxide with Superior Lithium Storage Performance, J. Mater. Sci. Mater. Electron., 2017, 28(22), p 17156–17160CrossRef
7.
Zurück zum Zitat M.E.G. Lyons, A. Cakara, P. O’Brien, I. Godwin, and R.L. Doyle, Redox, pH Sensing and Electrolytic Water Splitting Properties of Electrochemically Generated Nickel Hydroxide Thin Films in Aqueous Alkaline Solution, Int. J. Electrochem. Sci, 2012, 7(11), p 768–811 M.E.G. Lyons, A. Cakara, P. O’Brien, I. Godwin, and R.L. Doyle, Redox, pH Sensing and Electrolytic Water Splitting Properties of Electrochemically Generated Nickel Hydroxide Thin Films in Aqueous Alkaline Solution, Int. J. Electrochem. Sci, 2012, 7(11), p 768–811
8.
Zurück zum Zitat J. Clausmeyer, J. Masa, E. Ventosa, D. Oehl, and W. Schuhmann, Nanoelectrodes Reveal the Electrochemistry of Single Nickelhydroxide Nanoparticles, Chem. Commun. (Cambridge, U. K.), 2016, 52(11), p 2408–2411CrossRef J. Clausmeyer, J. Masa, E. Ventosa, D. Oehl, and W. Schuhmann, Nanoelectrodes Reveal the Electrochemistry of Single Nickelhydroxide Nanoparticles, Chem. Commun. (Cambridge, U. K.), 2016, 52(11), p 2408–2411CrossRef
9.
Zurück zum Zitat C. Luan, G. Liu, Y. Liu, L. Yu, Y. Wang, Y. Xiao, H. Qiao, X. Dai, and X. Zhang, Structure Effects of 2D Materials on α-Nickel Hydroxide for Oxygen Evolution Reaction, ACS Nano, 2018, 12(4), p 3875–3885CrossRef C. Luan, G. Liu, Y. Liu, L. Yu, Y. Wang, Y. Xiao, H. Qiao, X. Dai, and X. Zhang, Structure Effects of 2D Materials on α-Nickel Hydroxide for Oxygen Evolution Reaction, ACS Nano, 2018, 12(4), p 3875–3885CrossRef
10.
Zurück zum Zitat M. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang, and Y. Yan, Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst, J. Am. Chem. Soc., 2014, 136(19), p 7077–7084CrossRef M. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang, and Y. Yan, Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst, J. Am. Chem. Soc., 2014, 136(19), p 7077–7084CrossRef
11.
Zurück zum Zitat A.C. Garcia and M.T.M. Koper, Effect of Saturating the Electrolyte with Oxygen on the Activity for the Oxygen Evolution Reaction, ACS Catal., 2018, 8(10), p 9359–9363CrossRef A.C. Garcia and M.T.M. Koper, Effect of Saturating the Electrolyte with Oxygen on the Activity for the Oxygen Evolution Reaction, ACS Catal., 2018, 8(10), p 9359–9363CrossRef
12.
Zurück zum Zitat Y. Miao, L. Ouyang, S. Zhou, L. Xu, Z. Yang, M. Xiao, and R. Ouyang, Electrocatalysis and Electroanalysis of Nickel, Its Oxides, Hydroxides and Oxyhydroxides Toward Small Molecules, Biosens. Bioelectron., 2014, 53, p 428–439CrossRef Y. Miao, L. Ouyang, S. Zhou, L. Xu, Z. Yang, M. Xiao, and R. Ouyang, Electrocatalysis and Electroanalysis of Nickel, Its Oxides, Hydroxides and Oxyhydroxides Toward Small Molecules, Biosens. Bioelectron., 2014, 53, p 428–439CrossRef
13.
Zurück zum Zitat H. Yang, G. Gao, F. Teng, W. Liu, S. Chen, and Z. Ge, Nickel Hydroxide Nanoflowers for Nonenzymatic Electrochemical Glucose Sensor, J. Electrochem. Soc., 2014, 161(10), p B216–B219CrossRef H. Yang, G. Gao, F. Teng, W. Liu, S. Chen, and Z. Ge, Nickel Hydroxide Nanoflowers for Nonenzymatic Electrochemical Glucose Sensor, J. Electrochem. Soc., 2014, 161(10), p B216–B219CrossRef
14.
Zurück zum Zitat K. Xia, C. Yang, Y. Chen, L. Tian, Y. Su, J. Wang, and L. Li, In Situ Fabrication of Ni(OH)2 Flakes on Ni Foam Through Electrochemical Corrosion as High Sensitive and Stable Binder-Free Electrode for Glucose Sensing, Sens. Actuators B, 2017, 240, p 979–987CrossRef K. Xia, C. Yang, Y. Chen, L. Tian, Y. Su, J. Wang, and L. Li, In Situ Fabrication of Ni(OH)2 Flakes on Ni Foam Through Electrochemical Corrosion as High Sensitive and Stable Binder-Free Electrode for Glucose Sensing, Sens. Actuators B, 2017, 240, p 979–987CrossRef
15.
Zurück zum Zitat B. Fang, A. Gu, G. Wang, B. Li, C. Zhang, Y. Fang, and X. Zhang, Synthesis Hexagonal β-Ni(OH)2 Nanosheets for Use in Electrochemistry Sensors, Microchim. Acta, 2009, 167(1–2), p 47–52CrossRef B. Fang, A. Gu, G. Wang, B. Li, C. Zhang, Y. Fang, and X. Zhang, Synthesis Hexagonal β-Ni(OH)2 Nanosheets for Use in Electrochemistry Sensors, Microchim. Acta, 2009, 167(1–2), p 47–52CrossRef
16.
Zurück zum Zitat T.C. Canevari, F.H. Cincotto, R. Landers, and S.A.S. Machado, Synthesis and Characterization of α-Nickel(II) Hydroxide Particles on Organic-Inorganic Matrix and Its Application in a Sensitive Electrochemical Sensor for Vitamin D Determination, Electrochim. Acta, 2014, 147, p 688–695CrossRef T.C. Canevari, F.H. Cincotto, R. Landers, and S.A.S. Machado, Synthesis and Characterization of α-Nickel(II) Hydroxide Particles on Organic-Inorganic Matrix and Its Application in a Sensitive Electrochemical Sensor for Vitamin D Determination, Electrochim. Acta, 2014, 147, p 688–695CrossRef
17.
Zurück zum Zitat V. Kotok and V. Kovalenko, The Electrochemical Cathodic Template Synthesis of Nickel Hydroxide Thin Films for Electrochromic Devices: Role of Temperature, East.-Eur. J. Enterp. Technol., 2017, 86(2Pt.11), p 28–34 V. Kotok and V. Kovalenko, The Electrochemical Cathodic Template Synthesis of Nickel Hydroxide Thin Films for Electrochromic Devices: Role of Temperature, East.-Eur. J. Enterp. Technol., 2017, 86(2Pt.11), p 28–34
18.
Zurück zum Zitat A.I. Inamdar, A.C. Sonavane, S.M. Pawar, Y.S. Kim, J.H. Kim, P.S. Patil, W. Jung, H. Im, D.-Y. Kim, and H. Kim, Electrochromic and Electrochemical Properties of Amorphous Porous Nickel Hydroxide Thin Films, Appl. Surf. Sci., 2011, 257(22), p 9606–9611CrossRef A.I. Inamdar, A.C. Sonavane, S.M. Pawar, Y.S. Kim, J.H. Kim, P.S. Patil, W. Jung, H. Im, D.-Y. Kim, and H. Kim, Electrochromic and Electrochemical Properties of Amorphous Porous Nickel Hydroxide Thin Films, Appl. Surf. Sci., 2011, 257(22), p 9606–9611CrossRef
19.
Zurück zum Zitat L. Guo, Y. Ren, J. Liu, S.Y. Chiam, and W.K. Chim, Nanostructuring of Nickel Hydroxide via a Template Solution Approach for Efficient Electrochemical Devices, Small, 2014, 10(13), p 2611–2617CrossRef L. Guo, Y. Ren, J. Liu, S.Y. Chiam, and W.K. Chim, Nanostructuring of Nickel Hydroxide via a Template Solution Approach for Efficient Electrochemical Devices, Small, 2014, 10(13), p 2611–2617CrossRef
20.
Zurück zum Zitat Y. Liu, R. Wang, and X. Yan, Synergistic Effect between Ultra-Small Nickel Hydroxide Nanoparticles and Reduced Graphene Oxide sheets for the Application in High-Performance Asymmetric Supercapacitor, Sci. Rep., 2015, 5(1), p 11095CrossRef Y. Liu, R. Wang, and X. Yan, Synergistic Effect between Ultra-Small Nickel Hydroxide Nanoparticles and Reduced Graphene Oxide sheets for the Application in High-Performance Asymmetric Supercapacitor, Sci. Rep., 2015, 5(1), p 11095CrossRef
21.
Zurück zum Zitat Q.S. Song, S.L.I. Chan, Nanostructured Nickel Oxides as Electrode Materials for Supercapacitors, 2009, American Scientific Publishers, pp 97–127 (2009) Q.S. Song, S.L.I. Chan, Nanostructured Nickel Oxides as Electrode Materials for Supercapacitors, 2009, American Scientific Publishers, pp 97–127 (2009)
22.
Zurück zum Zitat Y. Tang, Y. Liu, S. Yu, Y. Zhao, S. Mu, and F. Gao, Hydrothermal Synthesis of a Flower-Like Nano-nickel Hydroxide for High Performance Supercapacitors, Electrochim. Acta, 2014, 123, p 158–166CrossRef Y. Tang, Y. Liu, S. Yu, Y. Zhao, S. Mu, and F. Gao, Hydrothermal Synthesis of a Flower-Like Nano-nickel Hydroxide for High Performance Supercapacitors, Electrochim. Acta, 2014, 123, p 158–166CrossRef
23.
Zurück zum Zitat H.X. Wang, W. Zhang, H. Chen, and W.T. Zheng, Towards Unlocking High-Performance of Supercapacitors: From Layered Transition-Metal Hydroxide Electrode to Redox Electrolyte, Sci. China: Technol. Sci., 2015, 58(11), p 1779–1798CrossRef H.X. Wang, W. Zhang, H. Chen, and W.T. Zheng, Towards Unlocking High-Performance of Supercapacitors: From Layered Transition-Metal Hydroxide Electrode to Redox Electrolyte, Sci. China: Technol. Sci., 2015, 58(11), p 1779–1798CrossRef
24.
Zurück zum Zitat P. Oliva, J. Leonardi, J.F. Laurent, C. Delmas, J.J. Braconnier, M. Figlarz, F. Fievet, and A.D. Guibert, Review of the Structure and the Electrochemistry of Nickel Hydroxides and Oxy-hydroxides, J. Power Sources, 1982, 8(2), p 229–255CrossRef P. Oliva, J. Leonardi, J.F. Laurent, C. Delmas, J.J. Braconnier, M. Figlarz, F. Fievet, and A.D. Guibert, Review of the Structure and the Electrochemistry of Nickel Hydroxides and Oxy-hydroxides, J. Power Sources, 1982, 8(2), p 229–255CrossRef
25.
Zurück zum Zitat D.S. Hall, D.J. Lockwood, C. Bock, and B.R. MacDougall, Nickel Hydroxides and Related Materials: A Review of Their Structures, Synthesis and Properties, Proc. Math. Phys. Eng. Sci., 2015, 471(2174), p 20140792 ((in eng)) D.S. Hall, D.J. Lockwood, C. Bock, and B.R. MacDougall, Nickel Hydroxides and Related Materials: A Review of Their Structures, Synthesis and Properties, Proc. Math. Phys. Eng. Sci., 2015, 471(2174), p 20140792 ((in eng))
26.
Zurück zum Zitat T.N. Ramesh, P.V. Kamath, and C. Shivakumara, Classification of Stacking Faults and Their Stepwise Elimination During the Disorder –> Order Transformation of Nickel Hydroxide, Acta Crystallogr. Sect. B, 2006, 62(4), p 530–536CrossRef T.N. Ramesh, P.V. Kamath, and C. Shivakumara, Classification of Stacking Faults and Their Stepwise Elimination During the Disorder –> Order Transformation of Nickel Hydroxide, Acta Crystallogr. Sect. B, 2006, 62(4), p 530–536CrossRef
27.
Zurück zum Zitat H. Bode, K. Dehmelt, and J. Witte, Zur kenntnis der nickelhydroxidelektrode—I. Über das nickel (II)-hydroxidhydrat, Electrochim. Acta, 1966, 11(8), p 1079-IN1071CrossRef H. Bode, K. Dehmelt, and J. Witte, Zur kenntnis der nickelhydroxidelektrode—I. Über das nickel (II)-hydroxidhydrat, Electrochim. Acta, 1966, 11(8), p 1079-IN1071CrossRef
28.
Zurück zum Zitat C. Delmas, C. Faure, L. Gautier, L. Guerlou-Demourgues, and A. Rougier, The Nickel Hydroxide Electrode from the Solid-State Chemistry Point of View, Philos. Trans. R. Soc. Lond. Ser. A, 1996, 354(1712), p 1545–1554CrossRef C. Delmas, C. Faure, L. Gautier, L. Guerlou-Demourgues, and A. Rougier, The Nickel Hydroxide Electrode from the Solid-State Chemistry Point of View, Philos. Trans. R. Soc. Lond. Ser. A, 1996, 354(1712), p 1545–1554CrossRef
29.
Zurück zum Zitat P.V. Kamath, M. Dixit, L. Indira, A.K. Shukla, V.G. Kumar, and N. Munichandraiah, Stabilized α-Ni(OH) 2 as Electrode Material for Alkaline Secondary Cells, J. Electrochem. Soc., 1994, 141(11), p 2956–2959CrossRef P.V. Kamath, M. Dixit, L. Indira, A.K. Shukla, V.G. Kumar, and N. Munichandraiah, Stabilized α-Ni(OH) 2 as Electrode Material for Alkaline Secondary Cells, J. Electrochem. Soc., 1994, 141(11), p 2956–2959CrossRef
30.
Zurück zum Zitat M. Miyake and M. Maeda, Dissolution of Nickel Hydroxide in Ammoniacal Aqueous Solutions, Metall. Mater. Trans. B, 2006, 37B(2), p 181–188CrossRef M. Miyake and M. Maeda, Dissolution of Nickel Hydroxide in Ammoniacal Aqueous Solutions, Metall. Mater. Trans. B, 2006, 37B(2), p 181–188CrossRef
31.
Zurück zum Zitat J.A. Dean, Cumulative Formation Constants for Metal Complexed with Inorganic Ligand, Lange’s Handbook of Chemistry, 14th ed., McGraw Hill, New York, 1992, p 8.7 J.A. Dean, Cumulative Formation Constants for Metal Complexed with Inorganic Ligand, Lange’s Handbook of Chemistry, 14th ed., McGraw Hill, New York, 1992, p 8.7
32.
Zurück zum Zitat J.A. Dean, Solubility Products, Lange’s Handbook of Chemistry, 14th ed., McGraw-Hill, New York, 1992, p 8.84 J.A. Dean, Solubility Products, Lange’s Handbook of Chemistry, 14th ed., McGraw-Hill, New York, 1992, p 8.84
33.
Zurück zum Zitat F. Flevet and M. Flglarz, Preparation and Study by Electron Microscopy of the Development of Texture with Temperature of a Porous Exhydroxide Nickel Oxide, J. Catal., 1975, 39(3), p 350–356CrossRef F. Flevet and M. Flglarz, Preparation and Study by Electron Microscopy of the Development of Texture with Temperature of a Porous Exhydroxide Nickel Oxide, J. Catal., 1975, 39(3), p 350–356CrossRef
34.
Zurück zum Zitat F.P. Kober, Analysis of the Charge-Discharge Characteristics of Nickel-Oxide Electrodes by Infrared Spectroscopy, J. Electrochem. Soc., 1965, 112(11), p 1064CrossRef F.P. Kober, Analysis of the Charge-Discharge Characteristics of Nickel-Oxide Electrodes by Infrared Spectroscopy, J. Electrochem. Soc., 1965, 112(11), p 1064CrossRef
Metadaten
Titel
Green Process for Preparation of Nickel Hydroxide Films and Membranes
verfasst von
Audrey Vecoven
Dewan Russel Rahman
Allen W. Apblett
Publikationsdatum
18.09.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05100-5

Weitere Artikel der Ausgabe 9/2020

Journal of Materials Engineering and Performance 9/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.