Skip to main content
Erschienen in: Journal of Materials Science 11/2017

07.02.2017 | Original Paper

Green’s function investigation of quantum transport and current patterns in 2D electronic system under spatially modulated magnetic fields

verfasst von: Y. L. Liu, X. W. Zhang

Erschienen in: Journal of Materials Science | Ausgabe 11/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Using the recursive non-equilibrium Keldysh Green’s function formalism, the conductance and current patterns in two-dimensional electronic system (2DES) under spatially modulated magnetic fields are studied. The quantized conductance platforms are found for both B = 0.0 T and a homogeneous magnetic field B = 2.0 T. The results are in agreement with their corresponding band structures. However, the applied magnetic field is often inhomogeneous. By depositing a ferromagnetic strip at the top of 2DES, the stray magnetic field can be produced around the strip. Such magnetic field is adopted widely in many previous studies. Our computed result shows that the conductance is suppressed dramatically and some conductance peaks are found at the low-Fermi energy region. These peaks originate from resonant transmission via quasilocalized states. LDOS and differential conductance patterns also suggest the corresponding states are really localized in a small region. We also investigate the conductance for the cases of different magnetic field magnitudes. It is found, with applied magnetic field increasing, the conductance suppression is more and more significant and the threshold Fermi energy for current flow is shifted to high-energy region.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Buchholz D, Drouvelis PS, Schmelcher P (2006) Single electron quantum dot in a spatially periodic magnetic field. Phys Rev B 73:235346CrossRef Buchholz D, Drouvelis PS, Schmelcher P (2006) Single electron quantum dot in a spatially periodic magnetic field. Phys Rev B 73:235346CrossRef
2.
Zurück zum Zitat Ibrahim IS, Peeters FM (1995) Two-dimensional electrons in lateral magnetic superlattices. Phys Rev B 52:17321–17334CrossRef Ibrahim IS, Peeters FM (1995) Two-dimensional electrons in lateral magnetic superlattices. Phys Rev B 52:17321–17334CrossRef
3.
Zurück zum Zitat Krakovsky A (1996) Electronic band structure in a periodic magnetic field. Phys Rev B 53:8469–8472CrossRef Krakovsky A (1996) Electronic band structure in a periodic magnetic field. Phys Rev B 53:8469–8472CrossRef
4.
Zurück zum Zitat Reijniers J, Peeters FM (2000) Snake orbits and related magnetic edge states. J Phys Condens Matter 12:9771–9786CrossRef Reijniers J, Peeters FM (2000) Snake orbits and related magnetic edge states. J Phys Condens Matter 12:9771–9786CrossRef
5.
Zurück zum Zitat Reijniers J, Matulis A, Chang K, Peeters FM, Vasilopoulos P (2002) Confined magnetic guiding orbit states. Europhys Lett 59:749–753CrossRef Reijniers J, Matulis A, Chang K, Peeters FM, Vasilopoulos P (2002) Confined magnetic guiding orbit states. Europhys Lett 59:749–753CrossRef
6.
Zurück zum Zitat Müller JE (1992) Effect of a nonuniform magnetic field on a two-dimensional electron gas in the ballistic regime. Phys Rev Lett 68:385–388CrossRef Müller JE (1992) Effect of a nonuniform magnetic field on a two-dimensional electron gas in the ballistic regime. Phys Rev Lett 68:385–388CrossRef
7.
Zurück zum Zitat Evers F, Mirlin AD, Polyakov DG, Wölfle P (1999) Semiclassical theory of transport in a random magnetic field. Phys Rev B 60:8951–8969CrossRef Evers F, Mirlin AD, Polyakov DG, Wölfle P (1999) Semiclassical theory of transport in a random magnetic field. Phys Rev B 60:8951–8969CrossRef
8.
Zurück zum Zitat Hatke AT, Zudov MA, Reno JL, Pfeiffer LN, West KW (2012) Giant negative magnetoresistance in high-mobility two-dimensional electron systems. Phys Rev B 85:081304RCrossRef Hatke AT, Zudov MA, Reno JL, Pfeiffer LN, West KW (2012) Giant negative magnetoresistance in high-mobility two-dimensional electron systems. Phys Rev B 85:081304RCrossRef
9.
Zurück zum Zitat Nogaret A, Overend N, Gallagher BL, Main PC, Henini M (1998) Giant magnetoresistance and hysteretic effects in hybrid semiconductor/ferromagnet devices. Phys E 2:421–425CrossRef Nogaret A, Overend N, Gallagher BL, Main PC, Henini M (1998) Giant magnetoresistance and hysteretic effects in hybrid semiconductor/ferromagnet devices. Phys E 2:421–425CrossRef
10.
Zurück zum Zitat Lu MW, Zhang LD (2003) Large magnetoresistance tunnelling through a magnetically modulated nanostructure. J Phys Condens Matter 15:1267–1275CrossRef Lu MW, Zhang LD (2003) Large magnetoresistance tunnelling through a magnetically modulated nanostructure. J Phys Condens Matter 15:1267–1275CrossRef
11.
Zurück zum Zitat Lu MW, Cao XL, Huang XH, Jiang YQ, Yang SP (2016) Controllable giant magnetoresistance effect by the δ-doping in a magnetically confined semiconductor heterostructure. Appl Surf Sci 360:989–993CrossRef Lu MW, Cao XL, Huang XH, Jiang YQ, Yang SP (2016) Controllable giant magnetoresistance effect by the δ-doping in a magnetically confined semiconductor heterostructure. Appl Surf Sci 360:989–993CrossRef
12.
Zurück zum Zitat Kong YH, Chen SY, Zhang GL, Fu X (2013) A tunable 3-terminal GMR device based on a hybrid magnetic-electric-barrier nanostructure. J Nanomater 2013:2CrossRef Kong YH, Chen SY, Zhang GL, Fu X (2013) A tunable 3-terminal GMR device based on a hybrid magnetic-electric-barrier nanostructure. J Nanomater 2013:2CrossRef
13.
Zurück zum Zitat Liu GX, Zhang GL, Ma WY, Shen LH (2016) Spin filtering in a hybrid ferromagnet, Schottky metal and semiconductor nanostructure. Solid State Commun 231–232:6–9CrossRef Liu GX, Zhang GL, Ma WY, Shen LH (2016) Spin filtering in a hybrid ferromagnet, Schottky metal and semiconductor nanostructure. Solid State Commun 231–232:6–9CrossRef
14.
Zurück zum Zitat Shen LH, Ma WY, Liu GX, Yuan L (2016) Spatial spin splitter based on a hybrid ferromagnet, Schottky metal and semiconductor nanostructure. J Magn Magn Mater 401:231–235CrossRef Shen LH, Ma WY, Liu GX, Yuan L (2016) Spatial spin splitter based on a hybrid ferromagnet, Schottky metal and semiconductor nanostructure. J Magn Magn Mater 401:231–235CrossRef
15.
Zurück zum Zitat Metalidis G, Bruno P (2005) Green’s function technique for studying electron flow in two-dimensional mesoscopic samples. Phys Rev B 72:235304CrossRef Metalidis G, Bruno P (2005) Green’s function technique for studying electron flow in two-dimensional mesoscopic samples. Phys Rev B 72:235304CrossRef
16.
Zurück zum Zitat Cresti A, Farchioni R, Grosso G, Parravicini GP (2003) Keldysh-Green function formalism for current profiles in mesoscopic systems. Phys Rev B 68:075306CrossRef Cresti A, Farchioni R, Grosso G, Parravicini GP (2003) Keldysh-Green function formalism for current profiles in mesoscopic systems. Phys Rev B 68:075306CrossRef
17.
Zurück zum Zitat Cresti A, Grosso G, Parravicini GP (2006) Theoretical imaging of current profiles in two-dimensional devices. Eur Phys J B 53:537–549CrossRef Cresti A, Grosso G, Parravicini GP (2006) Theoretical imaging of current profiles in two-dimensional devices. Eur Phys J B 53:537–549CrossRef
18.
Zurück zum Zitat Xu HY, Heinzel T, Evaldsson M, Ihnatsenka S, Zozoulenko IV (2007) Resonant reflection at magnetic barriers in quantum wires. Phys Rev B 75:205301CrossRef Xu HY, Heinzel T, Evaldsson M, Ihnatsenka S, Zozoulenko IV (2007) Resonant reflection at magnetic barriers in quantum wires. Phys Rev B 75:205301CrossRef
19.
Zurück zum Zitat Xu HY, Heinzel T, Zozoulenko IV (2011) Electronic properties of quantum dots formed by magnetic double barriers in quantum wires. Phys Rev B 84:035319CrossRef Xu HY, Heinzel T, Zozoulenko IV (2011) Electronic properties of quantum dots formed by magnetic double barriers in quantum wires. Phys Rev B 84:035319CrossRef
20.
Zurück zum Zitat Lewenkopf CH, Mucciolo ER (2013) The recursive Green’s function method for graphene. J Comput Electron 12:203–231CrossRef Lewenkopf CH, Mucciolo ER (2013) The recursive Green’s function method for graphene. J Comput Electron 12:203–231CrossRef
21.
Zurück zum Zitat Zhang XW, Mou SY, Dai B (2013) Transport properties of two-dimensional electrons through multiple magnetic barriers. J Appl Phys 114:023706CrossRef Zhang XW, Mou SY, Dai B (2013) Transport properties of two-dimensional electrons through multiple magnetic barriers. J Appl Phys 114:023706CrossRef
22.
Zurück zum Zitat Datta S (1995) Electronic transport in Mesoscopic systems. Cambridge University Press, CambridgeCrossRef Datta S (1995) Electronic transport in Mesoscopic systems. Cambridge University Press, CambridgeCrossRef
23.
Zurück zum Zitat Li TC, Lu SP (2008) Quantum conductance of graphene nanoribbons with edge defects. Phys Rev B 77:085408CrossRef Li TC, Lu SP (2008) Quantum conductance of graphene nanoribbons with edge defects. Phys Rev B 77:085408CrossRef
24.
Zurück zum Zitat Nogaret A (2010) Electron dynamics in inhomogeneous magnetic fields. J Phys: Condens Matter 22:253201 Nogaret A (2010) Electron dynamics in inhomogeneous magnetic fields. J Phys: Condens Matter 22:253201
Metadaten
Titel
Green’s function investigation of quantum transport and current patterns in 2D electronic system under spatially modulated magnetic fields
verfasst von
Y. L. Liu
X. W. Zhang
Publikationsdatum
07.02.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 11/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0876-1

Weitere Artikel der Ausgabe 11/2017

Journal of Materials Science 11/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.