Skip to main content

2013 | OriginalPaper | Buchkapitel

2. Greenhouse Gases and Climatic Change

verfasst von : Vincent Moron

Erschienen in: Global Change, Energy Issues and Regulation Policies

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Earth climate is determined by the equilibrium between the amount and distribution of incoming radiation absorbed from the sun and the outgoing longwave radiation emitted at the top of the atmosphere. Several atmospheric trace gases, including water vapor, carbon dioxide, methane, and nitrous oxide, absorb far more efficiently the longwave radiation than solar radiation. These so-called greenhouse gases increase the amount of energy available to the earth and keep it much warmer than it would be otherwise. Although water vapor (and clouds that contribute both to the greenhouse effect and cooling through the back reflection of the incoming solar radiation) does not stay in the atmosphere more than ~2 weeks, most of the other greenhouse gases stay far more than 10 years. Anthropogenic use of fossil fuels, cement production, and deforestation already increased the atmospheric concentration of greenhouse gases and human activities also created new synthetic and powerful ones such as chlorofluorocarbon. The corresponding positive radiative already contributed to the ~0.8 °C increase of the global surface temperature since 1850 and will act as the main climate driver for at least the next century. This chapter outlines the bases of the greenhouse effect and its impact on the earth climate from ~1850 to 2100.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
2
Recent estimates show that global fossil and cement emissions equal 9.5 +/− 0.5 GtC/year (that is +54 % from 1990) while global land-use change emissions equal 0.9 +/− 0.5 GtC/year in 2011 (Le Quéré et al. 2012).
 
3
This quantity equals the solar “constant” (1,366 W/m2 = solar energy intercepted by the earth disk) divided by 4, for geometry constraint, multiplied by 1 minus albedo (= 0.3), the albedo being the fraction of radiation reflected by the earth’s system, that is, 1366/4 × 0.7~239 W/m2. The earth’s surface absorbs 50 % of total solar radiation and the atmosphere absorbs 20 % of it.
 
4
The amount of emitted radiant energy is proportional to the emissivity and fourth power of the surface temperature of the emitter and its spectral peak is inversely proportional to its surface temperature. The emissivity is the ability of a material to emit energy by radiation. This ability is relative to an idealized physical body at the same temperature, called a black body, that absorbs all incident electromagnetic radiation and is also the best possible emitter of thermal radiation. The solar surface, roughly near 5,750 K, emits roughly 160,000 times more radiation than the earth surface per unit of surface, mostly in the ultraviolet (spectral power < 0.4 μm), “visible” (i.e., light a human eye could see, within 0.4 and 0.7 μm) and infrared bands (IR, spectral band > 0.7 μm), whereas earth surface and atmosphere (roughly between 180 and 340 K) emit IR only.
 
5
The emissivity of land, ocean surface and thicker clouds than cirrus is close to 1, that is, the one of a black body. The clear-sky atmosphere has an emissivity of 0.4–0.8, and cirrus clouds have a typical emissivity of 0.2.
 
6
See http://​www.​realclimate.​org/​index.​php/​archives/​2010/​07/​a-simple-recipe-for-ghe/​ for a simple explanation of how the greenhouse effect works. For a more comprehensive review, see, for example, Danny Harvey (2000).
 
7
One of the last estimates of the relative contribution of atmospheric long-wave absorbers to the current-day greenhouse effect is: 50 % for water vapor, 25 % for clouds, and 20 % for CO2. (Schmidt et al. 2010; available at http://​pubs.​giss.​nasa.​gov/​docs/​2010/​2010_​Schmidt_​etal_​1.​pdf).
 
8
At glacial–interglacial scale (i.e., between 10,000 and 100,000 years), CO2 variations tend to follow temperature variations in Antarctica by ~200–1,000 years at the glacial termination. At this scale, temperature variations are mostly driven by orbital changes (Milankovitch theory). The time lag between CO2 and temperature seems at least partly due to the adjustment of the ocean deep circulation that releases some CO2 into the atmosphere when the earth warms. This relationship does not invalidate the current one because the increased concentration of atmospheric CO2 released by human activities drives the current warming whereas glacial termination was initiated by orbital changes 20,000 years ago. Moreover, it is assumed that GHG variations at glacial–interglacial scale had exerted a positive feedback on temperature variations with other processes as the ice–albedo–temperature feedback, that is, the fact that deglaced areas decrease the mean earth albedo, increasing the amount of absorbed solar radiation (Lorius et al. 1990). Lastly, recent analyses (Shakun et al. 2012) demonstrate that global temperatures mostly lag CO2 variations in Antarctica during the last deglaciation.
 
9
Since 1750 the total radiative forcing related to the increase of atmospheric GHG concentrations due to human activities equals +2.9 W/m2. The net anthropogenic effect including cooling effect mostly due to sulfur emissions equals +1.6 W/m2. The direct cooling effect of anthropogenic sulfur associated with the aerosol veil, that increase albedo at a regional scale is complicated by its indirect effect through the modification of the optical properties of clouds. The cooling effect is less certain than the one associated with GHG increase (IPCC 2007).
 
10
There is a debate about the sense of a “global” (in the sense of planetary) mean of surface temperature. Everybody could experience very large temperature variations on small time and spatial scales, for example, simply moving from shade to sunlight in a summer day. It seems then unreasonable to compute a spatial mean from a few samples. But, the range of temperature variations strongly decreases when time means (instantaneous record to annual mean) are considered, especially when raw temperatures are scaled to the local mean annual cycle (theoretically estimated with at least 30 years of data). It is because the drivers of temperature variations at this timescale are from regional (e.g., atmospheric Rossby waves, which are giant meanders in the atmosphere. There are typically 4–6 such Rossby waves around the globe between subtropical and subpolar latitudes, that are the main factor determining the spatial scale of monthly or seasonal temperature anomalies at the extratropical latitudes) to zonal/near-global (as El Niño Southern Oscillation phenomenon) or even planetary scales (e.g., variations of the solar constant or GHG concentrations, large volcanic eruptions, etc.). The anomalies of temperatures relative to the annual cycle at monthly and moreover annual timescales have thus a far larger spatial coherence and less amplitude than localized records. In that way, it is possible, and physically plausible, because of the link between temperature variations and the change in radiative balance, to compute the spatial mean of surface temperature at continental or even planetary scales.
 
12
Note that the thermal difference between glacial and interglacial periods during the quaternary equals 6–10 °C in Antarctica and Greenland.
 
13
This hypothesis also excludes engineering solutions able either to remove massive amounts of carbon from the atmosphere or to increase the earth’s albedo.
 
15
This ability should decrease with time—and perhaps saturate—inasmuch as the ocean acidifies itself as it absorbs more and more carbon. The recent estimates show that sinks of Carbon averaged since 1959 equal respectively: atmosphere (44 % of total Carbon anthropogenic emissions), land (28 %), ocean (28 %) (Le Quéré et al. 2012).
 
Literatur
Zurück zum Zitat Arrhenius SA (1896) On the influence of carbonic acid in the air upon the temperature of the ground. Philos Mag J Sci Ser 5, 41:237–276 Arrhenius SA (1896) On the influence of carbonic acid in the air upon the temperature of the ground. Philos Mag J Sci Ser 5, 41:237–276
Zurück zum Zitat Broecker WS (1975) Climatic change: are we on the brink of a pronounced global warming. Science 189:460–463CrossRef Broecker WS (1975) Climatic change: are we on the brink of a pronounced global warming. Science 189:460–463CrossRef
Zurück zum Zitat Brohan JJ, Kennedy I, Harris SFB, Tett S, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106. doi:10.1029/2005JD006548 CrossRef Brohan JJ, Kennedy I, Harris SFB, Tett S, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106. doi:10.​1029/​2005JD006548 CrossRef
Zurück zum Zitat Cazenave A, Llovel W (2010) Contemporary sea level rise. Annu Rev Mar Sci 2:145–173CrossRef Cazenave A, Llovel W (2010) Contemporary sea level rise. Annu Rev Mar Sci 2:145–173CrossRef
Zurück zum Zitat Danny Harvey LD (2000) Global warming, the hard science. Prentice Hall, New York, 336 pp Danny Harvey LD (2000) Global warming, the hard science. Prentice Hall, New York, 336 pp
Zurück zum Zitat Fourier J (1827) Mémoires sur les températures du globe terrestre et des espaces planétaires (Memoir on the temperature of the earth and planetary spaces). Mémoires de l’Académie Royale des Sciences de l’Institut de France, tome VII: 570–604 Fourier J (1827) Mémoires sur les températures du globe terrestre et des espaces planétaires (Memoir on the temperature of the earth and planetary spaces). Mémoires de l’Académie Royale des Sciences de l’Institut de France, tome VII: 570604
Zurück zum Zitat Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence of a tropical atmospheric bridge. J Climate 12:917–932CrossRef Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence of a tropical atmospheric bridge. J Climate 12:917–932CrossRef
Zurück zum Zitat Le Quéré C, Andres RJ, Boden T, Conway T, Houghton RA, House JL, Marland G, Peters GR, van der Werf G, Ahlström A, Andrew RM, Bopp L, Canadell JG, Ciais P, Doney SG, Enright C, Friedlingstein P, Huntingford C, Jain AK, Jourdain C, Kato E, Keeling RF, Klein GK, Levis S, Levy P, Lomas M, Poulter B, Raupach MR, Schwinger J, Stich S, Stocker BD, Viovy N, Zaehle S, Zeng N (2012) The global carbon budget 1959–2011. Earth Syst Sci Data Dis 5:1107–1157. doi:10.5194/essdd-5-1107-2012 CrossRef Le Quéré C, Andres RJ, Boden T, Conway T, Houghton RA, House JL, Marland G, Peters GR, van der Werf G, Ahlström A, Andrew RM, Bopp L, Canadell JG, Ciais P, Doney SG, Enright C, Friedlingstein P, Huntingford C, Jain AK, Jourdain C, Kato E, Keeling RF, Klein GK, Levis S, Levy P, Lomas M, Poulter B, Raupach MR, Schwinger J, Stich S, Stocker BD, Viovy N, Zaehle S, Zeng N (2012) The global carbon budget 1959–2011. Earth Syst Sci Data Dis 5:1107–1157. doi:10.​5194/​essdd-5-1107-2012 CrossRef
Zurück zum Zitat Lorius C, Jouzel J, Raynaud D, Hansen JA, Le Treut H (1990) The ice core: climate sensivity and future greenhouse warming. Science 347:139–145 Lorius C, Jouzel J, Raynaud D, Hansen JA, Le Treut H (1990) The ice core: climate sensivity and future greenhouse warming. Science 347:139–145
Zurück zum Zitat Plaut G, Vautard R, Ghil M (1995) Interannual and interdecadal variability in 335 years of Central England temperatures. Science 268:710–713CrossRef Plaut G, Vautard R, Ghil M (1995) Interannual and interdecadal variability in 335 years of Central England temperatures. Science 268:710–713CrossRef
Zurück zum Zitat Rahmstorf S, Cazenave A, Church JA, Hansen JA, Keeling RF, Parker DE, Somerville RCJ (2007) Recent climate observations compared to projections. Science 316:709CrossRef Rahmstorf S, Cazenave A, Church JA, Hansen JA, Keeling RF, Parker DE, Somerville RCJ (2007) Recent climate observations compared to projections. Science 316:709CrossRef
Zurück zum Zitat Shakun JD, Clark PU, He F, Marcott SA, Mix AC, Liu Z, Otto-Bliesner B, Schmitter A, Bard E (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484:49–54. doi:10.1038/nature10915 CrossRef Shakun JD, Clark PU, He F, Marcott SA, Mix AC, Liu Z, Otto-Bliesner B, Schmitter A, Bard E (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484:49–54. doi:10.​1038/​nature10915 CrossRef
Zurück zum Zitat Trenberth KE (ed) (1993) Climate system modeling. Cambridge University Press, New York, Xxix + 788 pp Trenberth KE (ed) (1993) Climate system modeling. Cambridge University Press, New York, Xxix + 788 pp
Zurück zum Zitat Trenberth KE, Fasullo JK, Kiehl JT (2009) Earth’s global energy budget. Bull Am Soc 90:311–323CrossRef Trenberth KE, Fasullo JK, Kiehl JT (2009) Earth’s global energy budget. Bull Am Soc 90:311–323CrossRef
Metadaten
Titel
Greenhouse Gases and Climatic Change
verfasst von
Vincent Moron
Copyright-Jahr
2013
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-6661-7_2