Skip to main content

2024 | OriginalPaper | Buchkapitel

Growth and Structure of Equicontinuous Foliated Spaces

verfasst von : Manuel F. Moreira Galicia

Erschienen in: Differential Geometric Structures and Applications

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Molino’s description of Riemannian foliations on compact manifolds extends to compact equicontinuous foliated spaces as developed by Àlvarez Lòpez and Manuel Moreira. This extension is particularly considered when leaves are densely packed, and the pseudogroup exhibits strong quasi-analytic behavior. Notably, this extension leads to the establishment of an association with a structural local group within such a foliated space. Application of this framework results in a partial generalization of Carrière and Breuillard-Gelander’s results, creating a connection between the structural local group and the growth of leaves. Additionally, we present an illustrative examples, as well as a scenario with zero topological codimension. In this context, instances of weak solenoids embodying this characteristic have been previously established by Dyer, Hurder, and Lukina.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
This is usually called étalé morphism. We simply call it morphism because no other type of morphism will be considered here.
 
2
Recall that a space is called Polish if it is separable and completely metrizable.
 
3
A local group is said to have no small subgroups when some neighborhood of the identity element contains no nontrivial subgroup.
 
4
The notation will be simplified by using, for instance, \(\{T_i,d_i\}\) instead of \(\{(T_i,d_i)\}\).
 
5
In fact, it induces a uniformity. We could even use any uniformity to define equicontinuity, but such generality will not be used here.
 
6
This adverb, used in [4], will be omitted for the sake of simplicity.
 
7
A shrinking of an open cover \(\{U_i\}\) of a space X is an open cover \(\{U'_i\}\) of X, with the same index set, such that \(\overline{U'_i}\subset U_i\) for all i. Similarly, if \(\{U_i\}\) is a cover of a subset \(A\subset X\) by open subsets of X, a shrinking of \(\{U_i\}\), as a cover of A by open subsets of X, is a cover \(\{U'_i\}\) of A by open subsets of X, with the same index set, so that \(\overline{U'_i}\subset U_i\) for all i.
 
8
Usually, growth types are defined by using non-decreasing functions \({\mathbb {Z}}^+\rightarrow [0,\infty )\), but non-decreasing functions \([0,\infty )\rightarrow [0,\infty )\) give rise to an equivalent concept.
 
9
Recall that a continuum is a non-empty compact connected metrizable space.
 
10
The logical problems of this definition can be avoided because any complete connected Riemannian manifold is equipotent to some subset of \({\mathbb R}\).
 
Literatur
1.
Zurück zum Zitat Álvarez-López, J.A. and Moreira Galicia, M.: Topological Molino’s theory, Pacific. J. Math., 280:257–314, 2016MathSciNet Álvarez-López, J.A. and Moreira Galicia, M.: Topological Molino’s theory, Pacific. J. Math., 280:257–314, 2016MathSciNet
2.
Zurück zum Zitat Álvarez-López, J.A. and Barral Lijó, R.: Molino’s description and foliated homogeneity, Topology Appl. 260 (2019), 148–177MathSciNetCrossRef Álvarez-López, J.A. and Barral Lijó, R.: Molino’s description and foliated homogeneity, Topology Appl. 260 (2019), 148–177MathSciNetCrossRef
3.
Zurück zum Zitat Álvarez-López, J.A., Barral Lijó, R. and Candel, A.: A universal Riemannian foliated space, Topology Appl. 198 (2016), 47–85MathSciNetCrossRef Álvarez-López, J.A., Barral Lijó, R. and Candel, A.: A universal Riemannian foliated space, Topology Appl. 198 (2016), 47–85MathSciNetCrossRef
4.
5.
Zurück zum Zitat Álvarez-López, J.A. and Candel, A.: Topological description of Riemannian foliations with dense leaves, Pacific J. Math. 248 (2010), 257–276MathSciNetCrossRef Álvarez-López, J.A. and Candel, A.: Topological description of Riemannian foliations with dense leaves, Pacific J. Math. 248 (2010), 257–276MathSciNetCrossRef
6.
Zurück zum Zitat Álvarez-López, J.A. and Candel, A.: Generic coarse geometry of leaves, Vol. 2223, Springer, 2018 Álvarez-López, J.A. and Candel, A.: Generic coarse geometry of leaves, Vol. 2223, Springer, 2018
7.
Zurück zum Zitat Abd-Allah, A. and Brown, R.: A compact-open topology on partial maps with open domain, J. London Math. Soc. (2) 21 (1980), 480–486 Abd-Allah, A. and Brown, R.: A compact-open topology on partial maps with open domain, J. London Math. Soc. (2) 21 (1980), 480–486
8.
Zurück zum Zitat Alcalde-Cuesta, F., Lozano-Rojo, A. and Macho-Stadler, M.: Transversely Cantor laminations as inverse limits, Proc. Amer. Math. Soc. 139 (2011), 2615–2630MathSciNetCrossRef Alcalde-Cuesta, F., Lozano-Rojo, A. and Macho-Stadler, M.: Transversely Cantor laminations as inverse limits, Proc. Amer. Math. Soc. 139 (2011), 2615–2630MathSciNetCrossRef
9.
Zurück zum Zitat Auslander, J.: Minimal flows and their extensions, North-Holland Mathematics Studies, Vol. 153, North-Holland Publishing Co., Amsterdam, 1988 Auslander, J.: Minimal flows and their extensions, North-Holland Mathematics Studies, Vol. 153, North-Holland Publishing Co., Amsterdam, 1988
10.
Zurück zum Zitat Carrière, Y.: Feuilletages riemanniens à croissance polynômiale, Comment. Math. Helv., 63 : 1–20, 1988MathSciNetCrossRef Carrière, Y.: Feuilletages riemanniens à croissance polynômiale, Comment. Math. Helv., 63 : 1–20, 1988MathSciNetCrossRef
11.
Zurück zum Zitat Besicovich, A.: Almost periodic functions, Dover Publications, New York, 1954 Besicovich, A.: Almost periodic functions, Dover Publications, New York, 1954
12.
Zurück zum Zitat Block, J. and Weinberger, S.: Large scale homology theories and geometry, Geometric Topology (Athens, GA, 1993) (RI), AMS/IP Stud. Adv. Math., no. 2.1, Amer. Math. Soc., 1997, pp. 522–569 Block, J. and Weinberger, S.: Large scale homology theories and geometry, Geometric Topology (Athens, GA, 1993) (RI), AMS/IP Stud. Adv. Math., no. 2.1, Amer. Math. Soc., 1997, pp. 522–569
13.
14.
Zurück zum Zitat Candel, A. and Conlon, L.: Foliations, I, Graduate Studies in Mathematics, Amer. Math. Soc., Providence, RI, 2000 Candel, A. and Conlon, L.: Foliations, I, Graduate Studies in Mathematics, Amer. Math. Soc., Providence, RI, 2000
15.
Zurück zum Zitat Clark, A., Fokkink, R. and Lukina, O.: The Schreier continuum and ends, Houston J. Math., 40(2):569–599, 2014MathSciNet Clark, A., Fokkink, R. and Lukina, O.: The Schreier continuum and ends, Houston J. Math., 40(2):569–599, 2014MathSciNet
17.
18.
Zurück zum Zitat van den Dries, L. and Goldbring, I.: Globalizing locally compact local groups, J. Lie Theory 20 (2010), 519–524MathSciNet van den Dries, L. and Goldbring, I.: Globalizing locally compact local groups, J. Lie Theory 20 (2010), 519–524MathSciNet
19.
Zurück zum Zitat van den Dries, L. and Goldbring, I.: Erratum to: Globalizing locally compact local groups, J. Lie Theory 22 (2012), 489–490 van den Dries, L. and Goldbring, I.: Erratum to: Globalizing locally compact local groups, J. Lie Theory 22 (2012), 489–490
20.
Zurück zum Zitat Dyer, J., Hurder, S. and Lukina, O.: The discriminant invariant of Cantor group actions, Topology Appl. 208 (2016), 64–92MathSciNetCrossRef Dyer, J., Hurder, S. and Lukina, O.: The discriminant invariant of Cantor group actions, Topology Appl. 208 (2016), 64–92MathSciNetCrossRef
21.
Zurück zum Zitat Dyer, J., Hurder, S. and Lukina, O.: Molino theory for matchbox manifolds, Pacific J. Math. 289 (2017), no. 1, 91–151MathSciNetCrossRef Dyer, J., Hurder, S. and Lukina, O.: Molino theory for matchbox manifolds, Pacific J. Math. 289 (2017), no. 1, 91–151MathSciNetCrossRef
22.
Zurück zum Zitat Fedida, E.: Sur les feuilletages de Lie, C.R. Ac. Sc. Paris 272 (1971), 999–1002 Fedida, E.: Sur les feuilletages de Lie, C.R. Ac. Sc. Paris 272 (1971), 999–1002
23.
Zurück zum Zitat Fedida, E.: Feuilletages de Lie, feuilletages du plan, Lect. Notes Math., vol. 352, Springer-Verlag, 1973, pp. 183–195 Fedida, E.: Feuilletages de Lie, feuilletages du plan, Lect. Notes Math., vol. 352, Springer-Verlag, 1973, pp. 183–195
24.
Zurück zum Zitat Ghys, É.: Groupes d’holonomie des feuilletages de Lie, Nederl. Akad. Wetensch. Indag. Math. 47 (1985), 173–182MathSciNetCrossRef Ghys, É.: Groupes d’holonomie des feuilletages de Lie, Nederl. Akad. Wetensch. Indag. Math. 47 (1985), 173–182MathSciNetCrossRef
25.
Zurück zum Zitat Ghys, É.: Laminations par surfaces de Riemann, Panoramas & Syntheses 8 (2000), 49–95MathSciNet Ghys, É.: Laminations par surfaces de Riemann, Panoramas & Syntheses 8 (2000), 49–95MathSciNet
26.
Zurück zum Zitat Ghys, É.: Laminations par surfaces de Riemann, In: Dynamique et Géométrie Complexes, Panoramas & Synthèses, 8:49–95, 1999 Ghys, É.: Laminations par surfaces de Riemann, In: Dynamique et Géométrie Complexes, Panoramas & Synthèses, 8:49–95, 1999
28.
Zurück zum Zitat Gottschalk, W.H.: Almost periodicity, equi-continuity and total boundedness, Bull. Amer. Math. Soc. 52 (1946), 633–636MathSciNetCrossRef Gottschalk, W.H.: Almost periodicity, equi-continuity and total boundedness, Bull. Amer. Math. Soc. 52 (1946), 633–636MathSciNetCrossRef
29.
Zurück zum Zitat Gromov, M.: Asymptotic invariants of infinite groups, Geometric Group Theory (G.A. Niblo and M.A. Roller, eds.), vol. 2, Cambridge University Press, 1993 Gromov, M.: Asymptotic invariants of infinite groups, Geometric Group Theory (G.A. Niblo and M.A. Roller, eds.), vol. 2, Cambridge University Press, 1993
30.
Zurück zum Zitat Haefliger, A.: Pseudogroups of local isometries, In: Differential Geometry, Santiago de Compostela, 1984 (L.A. Cordero, ed.), Pitman, 1985, pp. 174–197 Haefliger, A.: Pseudogroups of local isometries, In: Differential Geometry, Santiago de Compostela, 1984 (L.A. Cordero, ed.), Pitman, 1985, pp. 174–197
31.
Zurück zum Zitat Haefliger, A.: Leaf closures in Riemannian foliations, A Fête on Topology (New York), Academic Press, 1988, pp. 3–32 Haefliger, A.: Leaf closures in Riemannian foliations, A Fête on Topology (New York), Academic Press, 1988, pp. 3–32
32.
Zurück zum Zitat Haefliger, A.: Foliations and compactly generated pseudogroups, In: Foliations: Geometry and Dynamics, Warsaw 2000, World Sci. Publi. 2002, pp. 275–296 Haefliger, A.: Foliations and compactly generated pseudogroups, In: Foliations: Geometry and Dynamics, Warsaw 2000, World Sci. Publi. 2002, pp. 275–296
33.
Zurück zum Zitat Hector, G. and Hirsch, U.: Introduction to the geometry of foliations, part A, Aspects of Mathematics, vol. E1, Friedr. Vieweg and Sohn, Braunschweig, 1981CrossRef Hector, G. and Hirsch, U.: Introduction to the geometry of foliations, part A, Aspects of Mathematics, vol. E1, Friedr. Vieweg and Sohn, Braunschweig, 1981CrossRef
34.
Zurück zum Zitat Hector, G. and Hirsch, U.: Introduction to the geometry of foliations, part B, Aspects of Mathematics, vol. E3, Friedr. Vieweg and Sohn, Braunschweig, 1983CrossRef Hector, G. and Hirsch, U.: Introduction to the geometry of foliations, part B, Aspects of Mathematics, vol. E3, Friedr. Vieweg and Sohn, Braunschweig, 1983CrossRef
35.
36.
Zurück zum Zitat Kechris, A.: Classical descriptive set theory, Springer-Verlag, Berlin, 1991. Kechris, A.: Classical descriptive set theory, Springer-Verlag, Berlin, 1991.
37.
38.
39.
40.
Zurück zum Zitat McCord, C.: Inverse limit sequences with covering maps, Trans. A.M.S, 114:197–209, 1965 McCord, C.: Inverse limit sequences with covering maps, Trans. A.M.S, 114:197–209, 1965
42.
Zurück zum Zitat Meigniez, G.: A compactly generated pseudogroup which is not realizable, J. Math. Soc. Japan 62 (2010), 1205–1218MathSciNetCrossRef Meigniez, G.: A compactly generated pseudogroup which is not realizable, J. Math. Soc. Japan 62 (2010), 1205–1218MathSciNetCrossRef
43.
Zurück zum Zitat Molino, P.: Geométrie globale des feuilletags riemanniens, Ned. Akad. von Wet., Indag. Math. 85 (1982), 45–76 Molino, P.: Geométrie globale des feuilletags riemanniens, Ned. Akad. von Wet., Indag. Math. 85 (1982), 45–76
44.
Zurück zum Zitat Molino, P.: Riemannian foliations, Progress in Mathematics, no. 73, Birkhäuser Boston, Inc., Boston, MA, 1988 Molino, P.: Riemannian foliations, Progress in Mathematics, no. 73, Birkhäuser Boston, Inc., Boston, MA, 1988
45.
Zurück zum Zitat Montgomery, D. and Zippin, L.:Topological transformation groups, Interscience Publishers, New York-London, 1955 Montgomery, D. and Zippin, L.:Topological transformation groups, Interscience Publishers, New York-London, 1955
46.
Zurück zum Zitat Moore, C.C. and Schochet, C.: Global analysis on foliated spaces, Mathematical Sciences Research Institute Publications, vol. 9, Springer-Verlag, New York, 1988, With appendices by S. Hurder, Moore, Schochet and Robert J. Zimmer. Moore, C.C. and Schochet, C.: Global analysis on foliated spaces, Mathematical Sciences Research Institute Publications, vol. 9, Springer-Verlag, New York, 1988, With appendices by S. Hurder, Moore, Schochet and Robert J. Zimmer.
47.
Zurück zum Zitat Nemytsky, V.V.: Topological problems in the theory of dynamical systems, Stability and Dynamical Systems, Transl. Series 1, Vol. 6, AMS, (1961), 414–497 Nemytsky, V.V.: Topological problems in the theory of dynamical systems, Stability and Dynamical Systems, Transl. Series 1, Vol. 6, AMS, (1961), 414–497
48.
49.
Zurück zum Zitat Palais, R.: On the existence of slices for actions of non-compact Lie groups, Ann. of Math. 73 (1961), 295–323MathSciNetCrossRef Palais, R.: On the existence of slices for actions of non-compact Lie groups, Ann. of Math. 73 (1961), 295–323MathSciNetCrossRef
50.
Zurück zum Zitat Petersen, P.: Riemannian geometry, Graduate Texts in Mathematics, vol. 171, 3rd edition, Springer-Verlag, New York, Berlin, Heidelberg, 2016 Petersen, P.: Riemannian geometry, Graduate Texts in Mathematics, vol. 171, 3rd edition, Springer-Verlag, New York, Berlin, Heidelberg, 2016
51.
Zurück zum Zitat Plaut, C.: Associativity and the local version of Hilbert’s fifth problem, Notes, University of Tennessee, 1993 Plaut, C.: Associativity and the local version of Hilbert’s fifth problem, Notes, University of Tennessee, 1993
54.
Zurück zum Zitat Salem, E.: Une généralisation du théoréme de Myers-Steenrod aux pseudogrupes d’isométries locales, Ann. Inst. Fourier (Grenoble) 38 (1988), 185–200MathSciNetCrossRef Salem, E.: Une généralisation du théoréme de Myers-Steenrod aux pseudogrupes d’isométries locales, Ann. Inst. Fourier (Grenoble) 38 (1988), 185–200MathSciNetCrossRef
Metadaten
Titel
Growth and Structure of Equicontinuous Foliated Spaces
verfasst von
Manuel F. Moreira Galicia
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-50586-7_7