Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 18/2019

28.08.2019

Growth of magnetic cobalt hexacyanoferrate nanoparticles onto bacterial cellulose nanofibers

verfasst von: Rafael Miguel Sábio, Robson Rosa da Silva, Vagner Sargentelli, Junkal Gutierrez, Agnieszka Tercjak, Sidney José Lima Ribeiro, Hernane da Silva Barud

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 18/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Natural polymers templates capable to maneuver the growth and spatial distribution of functional nanoparticles have been furthering the development of a new generation of sustainable and versatile materials. Pure cellulose nanofibrils, biosynthesized by bacteria, naturally deliver a 3D interconnected network of lightweight, foldable and sustainable matrices. Cellulose membrane is an exceptional biodegradable and biocompatible and high mechanical strength substrate with a native fibrous structure that can be easily applied as a structure-directing host to produce nanosized materials with optical, electrical or magnetic properties. In this work, we investigated the preparation of magnetic membranes by using bacterial cellulose nanofibers to control the growth of molecule-based magnetic nanoparticles such as Prussian Blue analogs. Magnetic Cobalt–Prussian Blue (CoHCEFe) nanoparticles were synthesized in situ by hydrothermal method through a diffusion-limited precipitation process onto a bacterial cellulose nanofiber network. Scanning electron microscopy and atomic force microscopy clearly unveiled a homogeneous distribution of immobilized COHCEFe crystalline nanoparticles whose size ranges from 94 to 70 nm as a function of nanoparticle content (up 28 wt%). Magnetic force microscopy showed that these nanometric COHCEFe crystalline nanoparticles well dispersed in BC fibers network respond to the magnetic field applied to the MFM-tip. This nano/nano association approach can provide functionally advanced materials for application in catalysis, adsorption of radionuclides, energy generation, data storage, biosensing, optical and magnetic devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.S. Miller, Organic- and molecule-based magnets. Mater. Today 17, 224 (2014)CrossRef J.S. Miller, Organic- and molecule-based magnets. Mater. Today 17, 224 (2014)CrossRef
2.
Zurück zum Zitat T. Vincent, C. Vincent, Y. Barré, Y. Guari, G. Le Saout, E. Guibal, Immobilization of metal hexacyanoferrates in chitin beads for cesium sorption: synthesis and characterization. J. Mater. Chem. A 2, 10007 (2014)CrossRef T. Vincent, C. Vincent, Y. Barré, Y. Guari, G. Le Saout, E. Guibal, Immobilization of metal hexacyanoferrates in chitin beads for cesium sorption: synthesis and characterization. J. Mater. Chem. A 2, 10007 (2014)CrossRef
3.
Zurück zum Zitat P.J. Kulesza, M.A. Malik, S. Zamponi, M. Berrettoni, R. Marassi, Electrolyte-cation-dependent coloring, electrochromism and thermochromism of cobalt(II) hexacyanoferrate(III, II) films. J. Electroanal. Chem. 397, 287 (1995)CrossRef P.J. Kulesza, M.A. Malik, S. Zamponi, M. Berrettoni, R. Marassi, Electrolyte-cation-dependent coloring, electrochromism and thermochromism of cobalt(II) hexacyanoferrate(III, II) films. J. Electroanal. Chem. 397, 287 (1995)CrossRef
4.
Zurück zum Zitat P.J. Kulesza, M.A. Malik, M. Berrettoni, M. Giorgetti, S. Zamponi, R. Schmidt, R. Marassi, Electrochemical charging, countercation accommodation, and spectrochemical identity of microcrystalline solid cobalt hexacyanoferrate. J. Phys. Chem. B 102, 1870 (1998)CrossRef P.J. Kulesza, M.A. Malik, M. Berrettoni, M. Giorgetti, S. Zamponi, R. Schmidt, R. Marassi, Electrochemical charging, countercation accommodation, and spectrochemical identity of microcrystalline solid cobalt hexacyanoferrate. J. Phys. Chem. B 102, 1870 (1998)CrossRef
5.
Zurück zum Zitat S. Vaucher, J. Fielden, M. Li, E. Dujardin, S. Mann, Molecule-based magnetic nanoparticles: synthesis of cobalt hexacyanoferrate, cobalt pentacyanonitrosylferrate, and chromium hexacyanochromate coordination polymers in water-in-oil microemulsions. Nano Lett. 2, 225 (2002)CrossRef S. Vaucher, J. Fielden, M. Li, E. Dujardin, S. Mann, Molecule-based magnetic nanoparticles: synthesis of cobalt hexacyanoferrate, cobalt pentacyanonitrosylferrate, and chromium hexacyanochromate coordination polymers in water-in-oil microemulsions. Nano Lett. 2, 225 (2002)CrossRef
6.
Zurück zum Zitat F. Zhao, Y. Wang, X. Xu, Y. Liu, R. Song, G. Lu, Y. Li, Cobalt hexacyanoferrate nanoparticles as a high-rate and ultra-stable supercapacitor electrode material. ACS Appl. Mater. Interfaces. 6, 11007 (2014)CrossRef F. Zhao, Y. Wang, X. Xu, Y. Liu, R. Song, G. Lu, Y. Li, Cobalt hexacyanoferrate nanoparticles as a high-rate and ultra-stable supercapacitor electrode material. ACS Appl. Mater. Interfaces. 6, 11007 (2014)CrossRef
7.
Zurück zum Zitat S.H.M.H. Tehrani, S.A. Seyedsadjadi, A. Ghaffarinejad, Application of electrodeposited cobalt hexacyanoferrate film to extract energy from water salinity gradients. RSC Adv. 5, 30032 (2015)CrossRef S.H.M.H. Tehrani, S.A. Seyedsadjadi, A. Ghaffarinejad, Application of electrodeposited cobalt hexacyanoferrate film to extract energy from water salinity gradients. RSC Adv. 5, 30032 (2015)CrossRef
8.
Zurück zum Zitat G. Fornasieri, A. Bleuzen, Controlled synthesis of photomagnetic nanoparticles of a prussian blue analogue in a silica xerogel. Angew. Chem. 47, 7750 (2008)CrossRef G. Fornasieri, A. Bleuzen, Controlled synthesis of photomagnetic nanoparticles of a prussian blue analogue in a silica xerogel. Angew. Chem. 47, 7750 (2008)CrossRef
9.
Zurück zum Zitat S. Bratskaya, A. Musyanovych, V. Zheleznov, A. Synytska, D. Marinin, F. Simon, V. Avramenko, Polymer-inorganic coatings containing nanosized sorbents selective to radionuclides. 1. latex/cobalt hexacyanoferrate(II) composites for cesium fixation. ACS Appl. Mater. Interfaces. 6, 16769 (2014)CrossRef S. Bratskaya, A. Musyanovych, V. Zheleznov, A. Synytska, D. Marinin, F. Simon, V. Avramenko, Polymer-inorganic coatings containing nanosized sorbents selective to radionuclides. 1. latex/cobalt hexacyanoferrate(II) composites for cesium fixation. ACS Appl. Mater. Interfaces. 6, 16769 (2014)CrossRef
10.
Zurück zum Zitat H. Huang, X. Yang, Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate. Biomacromol 5, 2340 (2004)CrossRef H. Huang, X. Yang, Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate. Biomacromol 5, 2340 (2004)CrossRef
11.
Zurück zum Zitat E. Cao, W. Duan, F. Wang, A. Wang, Y. Zheng, Natural cellulose fiber derived hollow-tubular-orientedpolydopamine: in-situ formation of Ag nanoparticles for reduction of 4-nitrophenol. Carbohydr. Polym. 158, 44 (2017)CrossRef E. Cao, W. Duan, F. Wang, A. Wang, Y. Zheng, Natural cellulose fiber derived hollow-tubular-orientedpolydopamine: in-situ formation of Ag nanoparticles for reduction of 4-nitrophenol. Carbohydr. Polym. 158, 44 (2017)CrossRef
12.
Zurück zum Zitat D. Dechojarassri, S. Asaina, S. Omote, K. Nishida, T. Furuike, H. Tamura, Adsorption and desorption behaviors of cesium on rayon fibers coated with chitosan immobilized with Prussian blue. Int. J. Biol. Macromol. 16, 32649 (2017) D. Dechojarassri, S. Asaina, S. Omote, K. Nishida, T. Furuike, H. Tamura, Adsorption and desorption behaviors of cesium on rayon fibers coated with chitosan immobilized with Prussian blue. Int. J. Biol. Macromol. 16, 32649 (2017)
13.
Zurück zum Zitat G.A. Kloster, D. Muraca, M.A. Mosiewicki, N.E. Marcovich, Magnetic composite films based on alginate and nanoiron oxide particles obtained by synthesis “in situ”. Eur. Polym. J. 94, 43 (2017)CrossRef G.A. Kloster, D. Muraca, M.A. Mosiewicki, N.E. Marcovich, Magnetic composite films based on alginate and nanoiron oxide particles obtained by synthesis “in situ”. Eur. Polym. J. 94, 43 (2017)CrossRef
14.
Zurück zum Zitat F. Ali, S.B. Khan, T. Kamal, Y. Anwar, K.A. Alamry, A.M. Asiri, Anti-bacterial chitosan/zinc phthalocyanine fibers supported metallic and bimetallic nanoparticles for the removal of organic pollutants. Carbohydr. Polym. 173, 676 (2017)CrossRef F. Ali, S.B. Khan, T. Kamal, Y. Anwar, K.A. Alamry, A.M. Asiri, Anti-bacterial chitosan/zinc phthalocyanine fibers supported metallic and bimetallic nanoparticles for the removal of organic pollutants. Carbohydr. Polym. 173, 676 (2017)CrossRef
15.
Zurück zum Zitat H.S. Barud, A. Tercjak, J. Gutierrez, W.R. Viali, E.S. Nunes, S.J.L. Ribeiro, M. Jafellici, M. Nalin, R.F.C. Marques, Biocellulose-based flexible magnetic paper. J. Appl. Phys. 117, 17B734/1 (2015)CrossRef H.S. Barud, A. Tercjak, J. Gutierrez, W.R. Viali, E.S. Nunes, S.J.L. Ribeiro, M. Jafellici, M. Nalin, R.F.C. Marques, Biocellulose-based flexible magnetic paper. J. Appl. Phys. 117, 17B734/1 (2015)CrossRef
16.
Zurück zum Zitat G.F. Picheth, C.L. Pirich, M.R. Sierakowski, M.A. Woehl, C.N. Sakakibara, C.F. De Souza, A.A. Martin, R. Da Silva, R.A. De Freitas, Bacterial cellulose in biomedical applications: a review. Int. J. Biol. Macromol. 104, 97 (2017)CrossRef G.F. Picheth, C.L. Pirich, M.R. Sierakowski, M.A. Woehl, C.N. Sakakibara, C.F. De Souza, A.A. Martin, R. Da Silva, R.A. De Freitas, Bacterial cellulose in biomedical applications: a review. Int. J. Biol. Macromol. 104, 97 (2017)CrossRef
17.
Zurück zum Zitat W. Czaja, A. Krystynowicz, S. Bielecki, R.M. Brown Jr., Microbial cellulose-the natural power to heal wounds. Biomaterials 27, 145 (2006)CrossRef W. Czaja, A. Krystynowicz, S. Bielecki, R.M. Brown Jr., Microbial cellulose-the natural power to heal wounds. Biomaterials 27, 145 (2006)CrossRef
18.
Zurück zum Zitat G.F. Perotti, H.S. Barud, Y. Messaddeq, S.J.L. Ribeiro, V.R.L. Constantino, Bacterial cellulose–laponite clay nanocomposites. Polymer 52, 157 (2011)CrossRef G.F. Perotti, H.S. Barud, Y. Messaddeq, S.J.L. Ribeiro, V.R.L. Constantino, Bacterial cellulose–laponite clay nanocomposites. Polymer 52, 157 (2011)CrossRef
19.
Zurück zum Zitat D. Klemm, B. Heublein, H.-P. Fink, A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. 44, 3358 (2005)CrossRef D. Klemm, B. Heublein, H.-P. Fink, A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. 44, 3358 (2005)CrossRef
20.
Zurück zum Zitat N. Mahfoudhi, S. Boufi, Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose 24, 1171 (2017)CrossRef N. Mahfoudhi, S. Boufi, Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose 24, 1171 (2017)CrossRef
21.
Zurück zum Zitat J.-H. Kim, B.S. Shim, H.S. Kim, Y.-J. Lee, S.-K. Min, D. Jang, Z. Abas, J. Kim, Review of nanocellulose for sustainable future materials. Int. J. Precis. Eng. Manuf. Green Technol 2, 197 (2015)CrossRef J.-H. Kim, B.S. Shim, H.S. Kim, Y.-J. Lee, S.-K. Min, D. Jang, Z. Abas, J. Kim, Review of nanocellulose for sustainable future materials. Int. J. Precis. Eng. Manuf. Green Technol 2, 197 (2015)CrossRef
22.
Zurück zum Zitat I.M.S. Araújo, R.R. Silva, G. Pacheco, W.R. Lustri, A. Tercjak, J. Gutierrez, J.R.S. Júnior, F.H.C. Azevedo, G.S. Figuêredo, M.L. Vega et al., Hydrothermal synthesis of bacterial cellulose–copper oxide nanocomposites and evaluation of their antimicrobial activity. Cabohydr. Polym. 179, 341 (2017)CrossRef I.M.S. Araújo, R.R. Silva, G. Pacheco, W.R. Lustri, A. Tercjak, J. Gutierrez, J.R.S. Júnior, F.H.C. Azevedo, G.S. Figuêredo, M.L. Vega et al., Hydrothermal synthesis of bacterial cellulose–copper oxide nanocomposites and evaluation of their antimicrobial activity. Cabohydr. Polym. 179, 341 (2017)CrossRef
23.
Zurück zum Zitat N. Dal’Acqua, A.B. De Mattos, I. Krindges, M.B. Pereira, H.S. Barud, S.J.L. Ribeiro, G.C.S. Duarte, C. Radtke, L.C. Almeida, M. Giovanela et al., Characterization and application of nanostructured films containing Au and TiO2 nanoparticles supported in bacterial cellulose. J. Phys. Chem. C 119, 340 (2014)CrossRef N. Dal’Acqua, A.B. De Mattos, I. Krindges, M.B. Pereira, H.S. Barud, S.J.L. Ribeiro, G.C.S. Duarte, C. Radtke, L.C. Almeida, M. Giovanela et al., Characterization and application of nanostructured films containing Au and TiO2 nanoparticles supported in bacterial cellulose. J. Phys. Chem. C 119, 340 (2014)CrossRef
24.
Zurück zum Zitat H.S. Barud, R.M.N. Assunção, M.A.U. Martines, J. Dexpert-Ghys, R.F.C. Marques, Y. Messaddeq, S.J.L. Ribeiro, Bacterial cellulose–silica organic–inorganic hybrids. J. Solgel Sci. Technol. 46, 363 (2008)CrossRef H.S. Barud, R.M.N. Assunção, M.A.U. Martines, J. Dexpert-Ghys, R.F.C. Marques, Y. Messaddeq, S.J.L. Ribeiro, Bacterial cellulose–silica organic–inorganic hybrids. J. Solgel Sci. Technol. 46, 363 (2008)CrossRef
25.
Zurück zum Zitat H.S. Barud, C. Barrios, T. Regiani, R.F.C. Marques, M. Verelst, J. Dexpert-Ghys, Y. Messaddeq, S.J.L. Ribeiro, Self-supported silver nanoparticles containing bacterial cellulose membranes. Mater. Sci. Eng. C 28, 515 (2008)CrossRef H.S. Barud, C. Barrios, T. Regiani, R.F.C. Marques, M. Verelst, J. Dexpert-Ghys, Y. Messaddeq, S.J.L. Ribeiro, Self-supported silver nanoparticles containing bacterial cellulose membranes. Mater. Sci. Eng. C 28, 515 (2008)CrossRef
26.
Zurück zum Zitat J. Gutierrez, S.C.M. Fernandes, I. Mondragon, A. Tercjak, Conductive photoswitchable vanadium oxide nanopaper based on bacterial cellulose. Chemsuschem 5, 2323 (2012)CrossRef J. Gutierrez, S.C.M. Fernandes, I. Mondragon, A. Tercjak, Conductive photoswitchable vanadium oxide nanopaper based on bacterial cellulose. Chemsuschem 5, 2323 (2012)CrossRef
27.
Zurück zum Zitat J. Gutierrez, S.C.M. Fernandes, I. Mondragon, A. Tercjak, Multifunctional hybrid nanopapers based on bacterial cellulose and sol–gel synthesized titanium/vanadium oxide nanoparticles. Cellulose 20, 1301 (2013)CrossRef J. Gutierrez, S.C.M. Fernandes, I. Mondragon, A. Tercjak, Multifunctional hybrid nanopapers based on bacterial cellulose and sol–gel synthesized titanium/vanadium oxide nanoparticles. Cellulose 20, 1301 (2013)CrossRef
28.
Zurück zum Zitat D.T.B. De DeSalvi, H.S. Barud, O. Treu-Filho, A. Pawlicka, R.I. Mattos, E. Raphael, S.J.L. Ribeiro, Preparation, thermal characterization, and DFT study of the bacterial cellulose triethanolamine system. J. Therm. Anal. Calorim. 118, 205 (2014)CrossRef D.T.B. De DeSalvi, H.S. Barud, O. Treu-Filho, A. Pawlicka, R.I. Mattos, E. Raphael, S.J.L. Ribeiro, Preparation, thermal characterization, and DFT study of the bacterial cellulose triethanolamine system. J. Therm. Anal. Calorim. 118, 205 (2014)CrossRef
29.
Zurück zum Zitat A. Tercjak, J. Gutierrez, H.S. Barud, R.R. Domeneguetti, S.J.L. Ribeiro, Nano- and macroscale structural and mechanical properties of in situ synthesized bacterial cellulose/PEO-b-PPO-b-PEO biocomposites. ACS Appl. Mater. Interfaces. 7, 4142 (2015)CrossRef A. Tercjak, J. Gutierrez, H.S. Barud, R.R. Domeneguetti, S.J.L. Ribeiro, Nano- and macroscale structural and mechanical properties of in situ synthesized bacterial cellulose/PEO-b-PPO-b-PEO biocomposites. ACS Appl. Mater. Interfaces. 7, 4142 (2015)CrossRef
30.
Zurück zum Zitat G. Pacheco, C.R. Nogueira, A.B. Meneguin, E. Trovatti, M.C.C. Silva, R.T.A. Machado, S.J.L. Ribeiro et al., Development and characterization of bacterial cellulose produced by cashew tree residues as alternative carbon source. Ind. Crops Prod. 107, 13 (2017)CrossRef G. Pacheco, C.R. Nogueira, A.B. Meneguin, E. Trovatti, M.C.C. Silva, R.T.A. Machado, S.J.L. Ribeiro et al., Development and characterization of bacterial cellulose produced by cashew tree residues as alternative carbon source. Ind. Crops Prod. 107, 13 (2017)CrossRef
31.
Zurück zum Zitat A.M. Collins, S. Mann, S.R. Hall, Formation of cobalt-Prussian Blue nanoparticles in a biopolymer matrix. Nanoscale 2, 2370 (2010)CrossRef A.M. Collins, S. Mann, S.R. Hall, Formation of cobalt-Prussian Blue nanoparticles in a biopolymer matrix. Nanoscale 2, 2370 (2010)CrossRef
32.
Zurück zum Zitat A.K. Vipin, B. Fugetsu, I. Sakata, A. Isogai, M. Endo, M. Li, M.S. Dresselhaus et al., Cellulose nanofiber backboned Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium. Sci. Rep. 6, 1 (2016)CrossRef A.K. Vipin, B. Fugetsu, I. Sakata, A. Isogai, M. Endo, M. Li, M.S. Dresselhaus et al., Cellulose nanofiber backboned Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium. Sci. Rep. 6, 1 (2016)CrossRef
33.
Zurück zum Zitat L. Hu, P. Zhang, Q.-W. Chen, J.-Y. Mei, N. Yan, Room-temperature synthesis of Prussian blue analogue Co3[Co(CN)6]2 porous nanostructures and their CO2 storage properties. RSC Adv. 1, 1574 (2011)CrossRef L. Hu, P. Zhang, Q.-W. Chen, J.-Y. Mei, N. Yan, Room-temperature synthesis of Prussian blue analogue Co3[Co(CN)6]2 porous nanostructures and their CO2 storage properties. RSC Adv. 1, 1574 (2011)CrossRef
34.
Zurück zum Zitat X. Wu, M. Cao, C. Hu, X. He, Sonochemical synthesis of Prussian blue nanocubes from a single-source precursor. Cryst. Growth Des. 6, 26 (2006)CrossRef X. Wu, M. Cao, C. Hu, X. He, Sonochemical synthesis of Prussian blue nanocubes from a single-source precursor. Cryst. Growth Des. 6, 26 (2006)CrossRef
35.
Zurück zum Zitat T. Uemura, S. Kitagawa, Prussian blue nanoparticles protected by poly(vinylpyrrolidone). J. Am. Chem. Soc. 125, 7814 (2003)CrossRef T. Uemura, S. Kitagawa, Prussian blue nanoparticles protected by poly(vinylpyrrolidone). J. Am. Chem. Soc. 125, 7814 (2003)CrossRef
36.
Zurück zum Zitat A. Kumar, A.B. Kanagare, S. Banerjee, P. Kumar, M. Kumar, Jagannath, V. Sudarsan, Synthesis of cobalt hexacyanoferrate nanoparticles and its hydrogen storage properties. Int. J. Hydrogen Energy 43, 7998 (2018)CrossRef A. Kumar, A.B. Kanagare, S. Banerjee, P. Kumar, M. Kumar, Jagannath, V. Sudarsan, Synthesis of cobalt hexacyanoferrate nanoparticles and its hydrogen storage properties. Int. J. Hydrogen Energy 43, 7998 (2018)CrossRef
37.
Zurück zum Zitat A. Tercjak, J. Gutierrez, H.S. Barud, S.J.L. Ribeiro, Switchable photoluminescence liquid crystal coated bacterialcellulose films with conductive response. Carbohydr. Polym. 143, 188 (2016)CrossRef A. Tercjak, J. Gutierrez, H.S. Barud, S.J.L. Ribeiro, Switchable photoluminescence liquid crystal coated bacterialcellulose films with conductive response. Carbohydr. Polym. 143, 188 (2016)CrossRef
38.
Zurück zum Zitat M. Berrettoni, M. Giorgetti, S. Zamponi, P. Conti, D. Ranganathan, A. Zanotto, M.L. Saladino, E. Caponetti, Synthesis and characterization of nanostructured cobalt hexacyanoferrate. J. Phys. Chem. C 114, 6401 (2010)CrossRef M. Berrettoni, M. Giorgetti, S. Zamponi, P. Conti, D. Ranganathan, A. Zanotto, M.L. Saladino, E. Caponetti, Synthesis and characterization of nanostructured cobalt hexacyanoferrate. J. Phys. Chem. C 114, 6401 (2010)CrossRef
39.
Zurück zum Zitat H. Li, Q. Gao, L. Chen, W. Hao, Photocurrent determination ascorbic acid using an n-silicon electrode modified by platinum and cobalt hexacyanoferrate films. Sens. Actuators B Chem. 173, 540 (2012)CrossRef H. Li, Q. Gao, L. Chen, W. Hao, Photocurrent determination ascorbic acid using an n-silicon electrode modified by platinum and cobalt hexacyanoferrate films. Sens. Actuators B Chem. 173, 540 (2012)CrossRef
40.
Zurück zum Zitat J. Kim, H. Tanaka, K. Kato, M. Takata, Y. Moritomo, Extended d-electron state of Fe(CN)6 unit in Prussian blue analogue. Appl. Phys. Express 4, 025801-1-3 (2011) J. Kim, H. Tanaka, K. Kato, M. Takata, Y. Moritomo, Extended d-electron state of Fe(CN)6 unit in Prussian blue analogue. Appl. Phys. Express 4, 025801-1-3 (2011)
41.
Zurück zum Zitat M. Takachi, T. Matsuda, Y. Moritomo, Cobalt hexacyanoferrate as cathode material for Na+ secondary battery. Appl. Phys. Express 6, 025802-1-3 (2013)CrossRef M. Takachi, T. Matsuda, Y. Moritomo, Cobalt hexacyanoferrate as cathode material for Na+ secondary battery. Appl. Phys. Express 6, 025802-1-3 (2013)CrossRef
42.
Zurück zum Zitat S. Pintado, S. Goberna-Ferrón, E.C. Escudero-Adán, J.R. Galán-Mascarós, Fast and persistent electrocatalytic water oxidation by Co − Fe Prussian blue coordination polymers. J. Am. Chem. Soc. 135, 13270 (2013)CrossRef S. Pintado, S. Goberna-Ferrón, E.C. Escudero-Adán, J.R. Galán-Mascarós, Fast and persistent electrocatalytic water oxidation by Co − Fe Prussian blue coordination polymers. J. Am. Chem. Soc. 135, 13270 (2013)CrossRef
43.
Zurück zum Zitat J.A. Marins, B.G. Soares, H.S. Barud, S.J.L. Ribeiro, Flexible magnetic membranes based on bacterial cellulose and its evaluation as electromagnetic interference shielding material. Mater. Sci. Eng., C 33, 3994 (2013)CrossRef J.A. Marins, B.G. Soares, H.S. Barud, S.J.L. Ribeiro, Flexible magnetic membranes based on bacterial cellulose and its evaluation as electromagnetic interference shielding material. Mater. Sci. Eng., C 33, 3994 (2013)CrossRef
44.
Zurück zum Zitat A. Bleuzen, C. Lomenech, V. Escax, F. Villain, F. Varret, C. Cartier dit Moulin, M. Verdaguer, Photoinduced ferrimagnetic systems in prussian blue analogues C x I Co4[Fe(CN)6]y (CI) alkali cation). 1. conditions to observe the phenomenon. J. Am. Chem. Soc. 122, 6648 (2000)CrossRef A. Bleuzen, C. Lomenech, V. Escax, F. Villain, F. Varret, C. Cartier dit Moulin, M. Verdaguer, Photoinduced ferrimagnetic systems in prussian blue analogues C x I Co4[Fe(CN)6]y (CI) alkali cation). 1. conditions to observe the phenomenon. J. Am. Chem. Soc. 122, 6648 (2000)CrossRef
45.
Zurück zum Zitat N. Moazezi, M.A. Moosavian, Removal of rubidium ions by polyaniline nanocomposites modified with cobalt-Prussian blue analogues. J. Environ. Chem. Eng. 4, 2440 (2016)CrossRef N. Moazezi, M.A. Moosavian, Removal of rubidium ions by polyaniline nanocomposites modified with cobalt-Prussian blue analogues. J. Environ. Chem. Eng. 4, 2440 (2016)CrossRef
46.
Zurück zum Zitat W. Hu, S. Chen, B. Zhou, H. Wang, Facile synthesis of ZnO nanoparticles based on bacterial cellulose. Mater. Sci. Eng., B 170, 88 (2010)CrossRef W. Hu, S. Chen, B. Zhou, H. Wang, Facile synthesis of ZnO nanoparticles based on bacterial cellulose. Mater. Sci. Eng., B 170, 88 (2010)CrossRef
47.
Zurück zum Zitat M.R. Mahmoud, A.F. Seliman, Evaluation of silica/ferrocyanide composite as a dual-function material for simultaneous removal of 137Cs+ and 99TcO4− from aqueous solutions. Appl. Radiat. Isot. 91, 141 (2014)CrossRef M.R. Mahmoud, A.F. Seliman, Evaluation of silica/ferrocyanide composite as a dual-function material for simultaneous removal of 137Cs+ and 99TcO4− from aqueous solutions. Appl. Radiat. Isot. 91, 141 (2014)CrossRef
48.
Zurück zum Zitat A.K. Vipin, S. Ling, B. Fugetsu, Sodium cobalt hexacyanoferrate encapsulated in alginate vesicle with CNT for both cesium and strontium removal. Carbohydr. Polym. 111, 477 (2014)CrossRef A.K. Vipin, S. Ling, B. Fugetsu, Sodium cobalt hexacyanoferrate encapsulated in alginate vesicle with CNT for both cesium and strontium removal. Carbohydr. Polym. 111, 477 (2014)CrossRef
Metadaten
Titel
Growth of magnetic cobalt hexacyanoferrate nanoparticles onto bacterial cellulose nanofibers
verfasst von
Rafael Miguel Sábio
Robson Rosa da Silva
Vagner Sargentelli
Junkal Gutierrez
Agnieszka Tercjak
Sidney José Lima Ribeiro
Hernane da Silva Barud
Publikationsdatum
28.08.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 18/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02066-6

Weitere Artikel der Ausgabe 18/2019

Journal of Materials Science: Materials in Electronics 18/2019 Zur Ausgabe

Neuer Inhalt