Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 6/2015

01.06.2015

Growth of ZnO nanorods and nanosheets by electrodeposition and their applications in dye-sensitized solar cells

verfasst von: Yu-Long Xie, Jing Yuan, Ping Song, Shu-Qing Hu

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An electrochemical deposition process was used to synthesize zinc oxide (ZnO) nanorod and nanosheet structures on indium tin oxide substrate, which could tailored by a simple chemical route without templates and capping agents. The DSSCs based on three-dimensional (3D) ZnO nanosheet network structures showed more superior photoelectrochemical performance than that based on one-dimensional ZnO nanorods. The conversion efficiency of 1.59 % achieved by the DSSCs based on 3D ZnO nanosheet network structures. The improvement can be attributed to the enhanced dye loading, which is caused by the enlargement of internal surface area within the nanostructure photoelectrode. Furthermore, the polarity effects play a significant role on the photo-conversion efficiency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)CrossRef B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)CrossRef
2.
Zurück zum Zitat K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, H. Arakawa, A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6 %. Chem. Commun. 6, 569–570 (2001)CrossRef K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, H. Arakawa, A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6 %. Chem. Commun. 6, 569–570 (2001)CrossRef
3.
Zurück zum Zitat S. Ito, T. Kitamura, Y. Wada, S. Yanagida, Facile fabrication of mesoporous TiO2 electrodes for dye solar cells: chemical modification and repetitive coating. Sol. Energy Mater. Sol. Cells 76, 3–13 (2003)CrossRef S. Ito, T. Kitamura, Y. Wada, S. Yanagida, Facile fabrication of mesoporous TiO2 electrodes for dye solar cells: chemical modification and repetitive coating. Sol. Energy Mater. Sol. Cells 76, 3–13 (2003)CrossRef
4.
Zurück zum Zitat K.M. Lee, V. Suryanarayanan, K.C. Ho, A study on the electron transport properties of TiO2 electrodes in dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 91, 1416–1420 (2007)CrossRef K.M. Lee, V. Suryanarayanan, K.C. Ho, A study on the electron transport properties of TiO2 electrodes in dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 91, 1416–1420 (2007)CrossRef
5.
Zurück zum Zitat M.S. Akhtar, M.A. Khan, M.S. Jeon, O.-B. Yang, Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells. Electrochim. Acta 53, 7869–7874 (2008)CrossRef M.S. Akhtar, M.A. Khan, M.S. Jeon, O.-B. Yang, Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells. Electrochim. Acta 53, 7869–7874 (2008)CrossRef
6.
Zurück zum Zitat E.M. Kaidashev, M. Lorenz, H. Wenckstern, A. Rahm, H.C. Semmelhack, K.H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition. Appl. Phys. Lett. 82, 3901–3903 (2003)CrossRef E.M. Kaidashev, M. Lorenz, H. Wenckstern, A. Rahm, H.C. Semmelhack, K.H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition. Appl. Phys. Lett. 82, 3901–3903 (2003)CrossRef
7.
Zurück zum Zitat M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005)CrossRef M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005)CrossRef
8.
Zurück zum Zitat R. Katoh, A. Furube, A.V. Barzykin, H. Arakawa, M. Tachiya, Kinetics and mechanism of electron injection and charge recombination in dye-sensitized nanocrystalline semiconductors. Coord. Chem. Rev. 248, 1195–1213 (2004)CrossRef R. Katoh, A. Furube, A.V. Barzykin, H. Arakawa, M. Tachiya, Kinetics and mechanism of electron injection and charge recombination in dye-sensitized nanocrystalline semiconductors. Coord. Chem. Rev. 248, 1195–1213 (2004)CrossRef
9.
Zurück zum Zitat Q.F. Zhang, T.P. Chou, B. Russo, S.A. Jenekhe, G.Z. Cao, Polydisperse aggregates of ZnO nanocrystallites: a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells. Adv. Funct. Mater. 18, 1654–1660 (2008)CrossRef Q.F. Zhang, T.P. Chou, B. Russo, S.A. Jenekhe, G.Z. Cao, Polydisperse aggregates of ZnO nanocrystallites: a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells. Adv. Funct. Mater. 18, 1654–1660 (2008)CrossRef
10.
Zurück zum Zitat W. Lee, S.K. Min, V. Dhas, S.B. Ogale, S.-H. Han, Chemical bath deposition of CdS quantum dots on vertically aligned ZnO nanorods for quantum dots-sensitized solar cells. Electrochem. Commun. 11, 103–106 (2009)CrossRef W. Lee, S.K. Min, V. Dhas, S.B. Ogale, S.-H. Han, Chemical bath deposition of CdS quantum dots on vertically aligned ZnO nanorods for quantum dots-sensitized solar cells. Electrochem. Commun. 11, 103–106 (2009)CrossRef
11.
Zurück zum Zitat J.L. Gomez, O. Tigli, Zinc oxide nanostructures: from growth to application. J. Mater. Sci. 48, 612–624 (2013)CrossRef J.L. Gomez, O. Tigli, Zinc oxide nanostructures: from growth to application. J. Mater. Sci. 48, 612–624 (2013)CrossRef
12.
Zurück zum Zitat Y.J. Lee, D.S. Ruby, D.W. Peters, B.B. McKenzie, J.W.P. Hsu, ZnO nanostructures as efficient antireflection layers in solar cells. Nano Letters 8, 1501–1505 (2008)CrossRef Y.J. Lee, D.S. Ruby, D.W. Peters, B.B. McKenzie, J.W.P. Hsu, ZnO nanostructures as efficient antireflection layers in solar cells. Nano Letters 8, 1501–1505 (2008)CrossRef
13.
Zurück zum Zitat T.W. Hamann, A.B.F. Martinson, J.W. Elam, M.J. Pellin, J.T. Hupp, Aerogel templated ZnO dye-sensitized solar cells. Adv. Mater. 20, 1560–1564 (2008)CrossRef T.W. Hamann, A.B.F. Martinson, J.W. Elam, M.J. Pellin, J.T. Hupp, Aerogel templated ZnO dye-sensitized solar cells. Adv. Mater. 20, 1560–1564 (2008)CrossRef
14.
Zurück zum Zitat K. Wang, J.J. Chen, W.L. Zhou, Y. Zhang, Y.F. Yan, J. Pern, A. Mascarenhas, Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications. Adv. Mater. 20, 3248–3253 (2008)CrossRef K. Wang, J.J. Chen, W.L. Zhou, Y. Zhang, Y.F. Yan, J. Pern, A. Mascarenhas, Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications. Adv. Mater. 20, 3248–3253 (2008)CrossRef
15.
Zurück zum Zitat Y. Gao, M. Nagai, T.-C. Chang, J.-J. Shyue, Solution-derived ZnO nanowire array film as photoelectrode in dye-sensitized solar cells. Cryst. Growth Des. 7, 2467–2471 (2007)CrossRef Y. Gao, M. Nagai, T.-C. Chang, J.-J. Shyue, Solution-derived ZnO nanowire array film as photoelectrode in dye-sensitized solar cells. Cryst. Growth Des. 7, 2467–2471 (2007)CrossRef
16.
Zurück zum Zitat M. Guo, P. Diao, X. Wang, S.M.J. Cai, The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films. Solid State Chem. 178, 3210–3215 (2005)CrossRef M. Guo, P. Diao, X. Wang, S.M.J. Cai, The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films. Solid State Chem. 178, 3210–3215 (2005)CrossRef
17.
Zurück zum Zitat M. Guo, P. Diao, S.M. Cai, Photoelectrochemical properties of highly oriented ZnO nanotube array films on ITO substrates. Chin. Chem. Lett. 15, 1113–1116 (2004) M. Guo, P. Diao, S.M. Cai, Photoelectrochemical properties of highly oriented ZnO nanotube array films on ITO substrates. Chin. Chem. Lett. 15, 1113–1116 (2004)
18.
Zurück zum Zitat C.Y. Jiang, X.W. Sun, G.Q. Lo, D.L. Kwong, J.X. Wang, Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Appl. Phys. Lett. 90, 263501 (2007)CrossRef C.Y. Jiang, X.W. Sun, G.Q. Lo, D.L. Kwong, J.X. Wang, Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Appl. Phys. Lett. 90, 263501 (2007)CrossRef
19.
Zurück zum Zitat H. Chen, W. Li, Q. Hou, H. Liu, L. Zhu, Growth of three-dimensional ZnO nanorods by electrochemical method for quantum dots-sensitized solar cells. Electrochim. Acta 56, 8358–8364 (2011)CrossRef H. Chen, W. Li, Q. Hou, H. Liu, L. Zhu, Growth of three-dimensional ZnO nanorods by electrochemical method for quantum dots-sensitized solar cells. Electrochim. Acta 56, 8358–8364 (2011)CrossRef
20.
Zurück zum Zitat J. Ferber, J. Luther, Computer simulations of light scattering and absorption in dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 54, 265–275 (1998)CrossRef J. Ferber, J. Luther, Computer simulations of light scattering and absorption in dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 54, 265–275 (1998)CrossRef
21.
Zurück zum Zitat A. Usami, Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrichemical cell. Chem. Phys. Lett. 277, 105–108 (1997)CrossRef A. Usami, Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrichemical cell. Chem. Phys. Lett. 277, 105–108 (1997)CrossRef
22.
Zurück zum Zitat G. Rothenberger, P. Comte, M. Grätzel, A contribution to the optical design of dye-sensitized nanocrystalline solar cells. Sol. Energy Mater. Sol. Cells 58, 321–336 (1999)CrossRef G. Rothenberger, P. Comte, M. Grätzel, A contribution to the optical design of dye-sensitized nanocrystalline solar cells. Sol. Energy Mater. Sol. Cells 58, 321–336 (1999)CrossRef
23.
Zurück zum Zitat Y.-Z. Zheng, X. Tao, L.-X. Wang, H. Xu, Q. Hou, W.-L. Zhou, J.-F. Chen, Novel ZnO-based film with double light-scattering layers as photoelectrodes for enhanced efficiency in dye-sensitized solar cells. Chem. Mater. 22, 928–934 (2010)CrossRef Y.-Z. Zheng, X. Tao, L.-X. Wang, H. Xu, Q. Hou, W.-L. Zhou, J.-F. Chen, Novel ZnO-based film with double light-scattering layers as photoelectrodes for enhanced efficiency in dye-sensitized solar cells. Chem. Mater. 22, 928–934 (2010)CrossRef
24.
Zurück zum Zitat B. Liu, H.C. Zeng, Fabrication of ZnO “dandelions” via a modified Kirkendall process. J. Am. Chem. Soc. 126, 16744–16746 (2004)CrossRef B. Liu, H.C. Zeng, Fabrication of ZnO “dandelions” via a modified Kirkendall process. J. Am. Chem. Soc. 126, 16744–16746 (2004)CrossRef
25.
Zurück zum Zitat M. Mo, J.C. Yu, L. Zhang, S.-K.A. Li, Self-assembly of ZnO nanorods and nanosheets into hollow microhemispheres and microspheres. Adv. Mater. 17, 756–760 (2005)CrossRef M. Mo, J.C. Yu, L. Zhang, S.-K.A. Li, Self-assembly of ZnO nanorods and nanosheets into hollow microhemispheres and microspheres. Adv. Mater. 17, 756–760 (2005)CrossRef
26.
Zurück zum Zitat Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001)CrossRef Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001)CrossRef
27.
Zurück zum Zitat M.H. Huang, Y.Y. Wu, H.N. Feick, N. Tran, E. Weber, P.D. Yang, Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113–116 (2001)CrossRef M.H. Huang, Y.Y. Wu, H.N. Feick, N. Tran, E. Weber, P.D. Yang, Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113–116 (2001)CrossRef
28.
Zurück zum Zitat M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001)CrossRef M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001)CrossRef
29.
Zurück zum Zitat L. Vayssieres, K. Keis, S.-E. Lindquist, A. Hagfeldt, Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. J. Phys. Chem. B 105, 3350–3352 (2001)CrossRef L. Vayssieres, K. Keis, S.-E. Lindquist, A. Hagfeldt, Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. J. Phys. Chem. B 105, 3350–3352 (2001)CrossRef
30.
Zurück zum Zitat L. Vayssieres, K. Keis, A. Hagfeldt, S.E. Lindquist, Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater. 13, 4395–4398 (2001)CrossRef L. Vayssieres, K. Keis, A. Hagfeldt, S.E. Lindquist, Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater. 13, 4395–4398 (2001)CrossRef
31.
Zurück zum Zitat L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15, 464–466 (2003)CrossRef L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15, 464–466 (2003)CrossRef
32.
Zurück zum Zitat J.B. Baxter, E.S. Aydil, Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires. Sol. Energy Mater. Sol. Cells 90, 607–622 (2006)CrossRef J.B. Baxter, E.S. Aydil, Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires. Sol. Energy Mater. Sol. Cells 90, 607–622 (2006)CrossRef
33.
Zurück zum Zitat D.I. Suh, S.Y. Lee, T.H. Kim, J.M. Chun, E.K. Suh, O.B. Yang, S.K. Lee, The fabrication and characterization of dye-sensitized solar cells with a branched structure of ZnO nanowires. Chem. Phys. Lett. 442, 348–353 (2007)CrossRef D.I. Suh, S.Y. Lee, T.H. Kim, J.M. Chun, E.K. Suh, O.B. Yang, S.K. Lee, The fabrication and characterization of dye-sensitized solar cells with a branched structure of ZnO nanowires. Chem. Phys. Lett. 442, 348–353 (2007)CrossRef
34.
Zurück zum Zitat Y.B. Li, M.J. Zheng, L. Ma, M. Zhong, W.Z. Shen, Fabrication of hierarchical ZnO architectures and their superhydrophobic surfaces with strong adhesive force. Inorg. Chem. 47, 3140–3143 (2008)CrossRef Y.B. Li, M.J. Zheng, L. Ma, M. Zhong, W.Z. Shen, Fabrication of hierarchical ZnO architectures and their superhydrophobic surfaces with strong adhesive force. Inorg. Chem. 47, 3140–3143 (2008)CrossRef
35.
Zurück zum Zitat J.Y. Lao, J.G. Wen, Z.F. Ren, Hierarchical ZnO nanostructures. Nano Lett. 2, 1287–1291 (2002)CrossRef J.Y. Lao, J.G. Wen, Z.F. Ren, Hierarchical ZnO nanostructures. Nano Lett. 2, 1287–1291 (2002)CrossRef
36.
Zurück zum Zitat P.X. Gao, Z.L. Wang, Self-assembled nanowire–nanoribbon junction arrays of ZnO. J. Phys. Chem. B 106, 12653–12658 (2002)CrossRef P.X. Gao, Z.L. Wang, Self-assembled nanowire–nanoribbon junction arrays of ZnO. J. Phys. Chem. B 106, 12653–12658 (2002)CrossRef
37.
Zurück zum Zitat J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, ZnO nanobridges and nanonails. Nano Lett. 3, 235–238 (2003)CrossRef J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, ZnO nanobridges and nanonails. Nano Lett. 3, 235–238 (2003)CrossRef
38.
Zurück zum Zitat C.Y. Jiang, X.W. Sun, G.Q. Lo, D.L. Kwong, J.X. Wang, Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Appl. Phys. Lett. 90, 263501 (2007)CrossRef C.Y. Jiang, X.W. Sun, G.Q. Lo, D.L. Kwong, J.X. Wang, Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Appl. Phys. Lett. 90, 263501 (2007)CrossRef
39.
Zurück zum Zitat H.M. Cheng, W.H. Chiu, C.H. Lee, S.Y. Tsai, W.F. Hsieh, Formation of branched ZnO nanowires from solvothermal method and dye-sensitized solar cells applications. J. Phys. Chem. C 112, 16359–16364 (2008)CrossRef H.M. Cheng, W.H. Chiu, C.H. Lee, S.Y. Tsai, W.F. Hsieh, Formation of branched ZnO nanowires from solvothermal method and dye-sensitized solar cells applications. J. Phys. Chem. C 112, 16359–16364 (2008)CrossRef
40.
Zurück zum Zitat T.R. Zhang, W.J. Dong, M. Keeter-Brewer, S. Konar, R.N. Njabon, Z.R. Tian, Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites. J. Am. Chem. Soc. 128, 10960–10968 (2006)CrossRef T.R. Zhang, W.J. Dong, M. Keeter-Brewer, S. Konar, R.N. Njabon, Z.R. Tian, Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites. J. Am. Chem. Soc. 128, 10960–10968 (2006)CrossRef
41.
Zurück zum Zitat L.F. Xu, Q.W. Chen, D.S. Xu, Hierarchical ZnO nanostructures obtained by electrodeposition. J. Phys. Chem. C 111, 11560–11565 (2007)CrossRef L.F. Xu, Q.W. Chen, D.S. Xu, Hierarchical ZnO nanostructures obtained by electrodeposition. J. Phys. Chem. C 111, 11560–11565 (2007)CrossRef
42.
Zurück zum Zitat J. Qiu, M. Guo, X. Wang, Electrodeposition of hierarchical ZnO nanorod–nanosheet structures and their applications in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 3, 2358–2367 (2011)CrossRef J. Qiu, M. Guo, X. Wang, Electrodeposition of hierarchical ZnO nanorod–nanosheet structures and their applications in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 3, 2358–2367 (2011)CrossRef
43.
Zurück zum Zitat S. Peulon, D. Lincot, Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions. J. Electrochem. Soc. 145, 864–874 (1998)CrossRef S. Peulon, D. Lincot, Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions. J. Electrochem. Soc. 145, 864–874 (1998)CrossRef
44.
Zurück zum Zitat M. Izaki, T. Omi, Transparent zinc oxide films prepared by electrochemical reaction. Appl. Phys. Lett. 68, 2439–2440 (1996)CrossRef M. Izaki, T. Omi, Transparent zinc oxide films prepared by electrochemical reaction. Appl. Phys. Lett. 68, 2439–2440 (1996)CrossRef
45.
Zurück zum Zitat T. Pauporte, D. Lincot, Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition I. Deposition in perchlorate medium. J. Electrochem. Soc. 148, C310–C314 (2001)CrossRef T. Pauporte, D. Lincot, Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition I. Deposition in perchlorate medium. J. Electrochem. Soc. 148, C310–C314 (2001)CrossRef
46.
Zurück zum Zitat D. Pradhan, K.T. Leung, Controlled growth of two-dimensional and one-dimensional ZnO nanostructures on indium tin oxide coated glass by direct electrodeposition. Langmuir 24, 9707–9716 (2008)CrossRef D. Pradhan, K.T. Leung, Controlled growth of two-dimensional and one-dimensional ZnO nanostructures on indium tin oxide coated glass by direct electrodeposition. Langmuir 24, 9707–9716 (2008)CrossRef
47.
Zurück zum Zitat R. Tena-Zaera, J. Elias, G. Wang, C. Levy-Clement, Role of chloride ions on electrochemical deposition of ZnO nanowire arrays from O2 reduction. J. Phys. Chem. C 111, 16706–16711 (2007)CrossRef R. Tena-Zaera, J. Elias, G. Wang, C. Levy-Clement, Role of chloride ions on electrochemical deposition of ZnO nanowire arrays from O2 reduction. J. Phys. Chem. C 111, 16706–16711 (2007)CrossRef
48.
Zurück zum Zitat J. Elias, R. Tena-Zaera, C. Levy-Clement, Effect of the chemical nature of the anions on the electrodeposition of ZnO nanowire arrays. J. Phys. Chem. C 112, 5736–5741 (2008)CrossRef J. Elias, R. Tena-Zaera, C. Levy-Clement, Effect of the chemical nature of the anions on the electrodeposition of ZnO nanowire arrays. J. Phys. Chem. C 112, 5736–5741 (2008)CrossRef
49.
Zurück zum Zitat D. Pradhan, M. Kumar, Y. Ando, K.T. Leung, Fabrication of ZnO nanospikes and nanopillars on ITO glass by templateless seed-layer-free electrodeposition and their field-emission properties. ACS Appl. Mater. Interfaces 1, 789–796 (2009)CrossRef D. Pradhan, M. Kumar, Y. Ando, K.T. Leung, Fabrication of ZnO nanospikes and nanopillars on ITO glass by templateless seed-layer-free electrodeposition and their field-emission properties. ACS Appl. Mater. Interfaces 1, 789–796 (2009)CrossRef
50.
Zurück zum Zitat T. Pauporte, G. Bataille, L. Joulaud, F.J. Vermersch, Well-aligned ZnO nanowire arrays prepared by seed-layer-free electrodeposition and their Cassie–Wenzel transition after hydrophobization. J. Phys. Chem. C 114, 194–202 (2010)CrossRef T. Pauporte, G. Bataille, L. Joulaud, F.J. Vermersch, Well-aligned ZnO nanowire arrays prepared by seed-layer-free electrodeposition and their Cassie–Wenzel transition after hydrophobization. J. Phys. Chem. C 114, 194–202 (2010)CrossRef
51.
Zurück zum Zitat H. El Belghiti, T. Pauporte, D. Lincot, Mechanistic study of ZnO nanorod array electrodeposition. Phys. Status Solidi A 205, 2360–2364 (2008)CrossRef H. El Belghiti, T. Pauporte, D. Lincot, Mechanistic study of ZnO nanorod array electrodeposition. Phys. Status Solidi A 205, 2360–2364 (2008)CrossRef
52.
Zurück zum Zitat D. Pradhan, K.T. Leung, Vertical growth of two-dimensional zinc oxide nanostructures on ITO-coated glass: effects of deposition temperature and deposition time. J. Phys. Chem. C 112, 1357–1364 (2008)CrossRef D. Pradhan, K.T. Leung, Vertical growth of two-dimensional zinc oxide nanostructures on ITO-coated glass: effects of deposition temperature and deposition time. J. Phys. Chem. C 112, 1357–1364 (2008)CrossRef
53.
Zurück zum Zitat Y.-K. Hsu, Y.-G. Lin, Y.-C. Chen, Polarity-dependent photoelectrochemical activity in ZnO nanostructures for solar water splitting. Electrochem. Commun. 13, 1383–1386 (2011)CrossRef Y.-K. Hsu, Y.-G. Lin, Y.-C. Chen, Polarity-dependent photoelectrochemical activity in ZnO nanostructures for solar water splitting. Electrochem. Commun. 13, 1383–1386 (2011)CrossRef
54.
Zurück zum Zitat A. Mclaren, T. Valdes-Solis, G. Li, S.C. Tsang, Shape and size effects of ZnO nanocrystals on photocatalytic activity. J. Am. Chem. Soc. 131, 12540–12541 (2009)CrossRef A. Mclaren, T. Valdes-Solis, G. Li, S.C. Tsang, Shape and size effects of ZnO nanocrystals on photocatalytic activity. J. Am. Chem. Soc. 131, 12540–12541 (2009)CrossRef
55.
Zurück zum Zitat G. Bruno, M.M. Giangregorio, G. Malandrino, P. Capezzuto, I.L. Fragala, M. Losurdo, Is there a ZnO face stable to atomic hydrogen? Adv. Mater. 21, 1700–1706 (2009)CrossRef G. Bruno, M.M. Giangregorio, G. Malandrino, P. Capezzuto, I.L. Fragala, M. Losurdo, Is there a ZnO face stable to atomic hydrogen? Adv. Mater. 21, 1700–1706 (2009)CrossRef
56.
Zurück zum Zitat H. Fu, T. Xu, S. Zhu, Y. Zhu, Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C. Environ. Sci. Technol. 42, 8064–8069 (2008)CrossRef H. Fu, T. Xu, S. Zhu, Y. Zhu, Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C. Environ. Sci. Technol. 42, 8064–8069 (2008)CrossRef
Metadaten
Titel
Growth of ZnO nanorods and nanosheets by electrodeposition and their applications in dye-sensitized solar cells
verfasst von
Yu-Long Xie
Jing Yuan
Ping Song
Shu-Qing Hu
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 6/2015
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-015-2913-7

Weitere Artikel der Ausgabe 6/2015

Journal of Materials Science: Materials in Electronics 6/2015 Zur Ausgabe

Neuer Inhalt