Skip to main content
Erschienen in: International Journal of Machine Learning and Cybernetics 6/2020

22.11.2019 | Original Article

GRPCA21 for recovering a corrupted low-rank matrix

Erschienen in: International Journal of Machine Learning and Cybernetics | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Robust principal component analysis (RPCA) based methods via decomposition into low-rank plus sparse matrices offer a wide range of applications for image processing, video processing and 3D computer vision. Most of the time the observed imagery data is often arbitrarily corrupted by anything such as large sparse noise, small dense noise and other unknown fraction, which we call mixed noise in this paper. However, low rank matrix recovery by RPCA is born for the existence of large sparse noise, so its performance and applicability are limited in the presence of mixed noise. In this paper, a generalized robust principal component analysis with norm \(l_{2,1}\) model is proposed to solve the problem of low-rank matrix recovery under mixed large sparse noise and small dense noise. The corrupted matrix is written as a combination that minimizes the nuclear norm, the 1-norm and the norm \(l_{2,1}\), which has high efficiency, flexibility and robustness for low rank matrix recovery from mixed noise. Then a novel and efficient algorithm called random permutation alternative direction of multiplier method is applied to solve the model. Experiments with simulations and real datasets demonstrate efficiency and robustness of this model and algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Alpaydin E (2004) Introduction to Machine Learning (Adaptive Computation and Machine Learning) [M]. Introduction to machine learning. MIT, Oxford, p 28 Alpaydin E (2004) Introduction to Machine Learning (Adaptive Computation and Machine Learning) [M]. Introduction to machine learning. MIT, Oxford, p 28
2.
Zurück zum Zitat Chong P, Kang Z, Yang M et al (2016) RAP: scalable RPCA for low-rank matrix recovery[C]. In: Proceedings of the 2016 ACM conference on information and knowledge management, pp. 2113–2118 Chong P, Kang Z, Yang M et al (2016) RAP: scalable RPCA for low-rank matrix recovery[C]. In: Proceedings of the 2016 ACM conference on information and knowledge management, pp. 2113–2118
4.
Zurück zum Zitat Cands EJ, Recht B (2009) Exact matrix completion via convex optimization[J]. Found Comput Math 9(6):717–772MathSciNetCrossRef Cands EJ, Recht B (2009) Exact matrix completion via convex optimization[J]. Found Comput Math 9(6):717–772MathSciNetCrossRef
5.
Zurück zum Zitat Wright J, Ganesh A, Rao S et al (2009) Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization[C]. In: Advances in neural information processing systems, pp 2080–2088 Wright J, Ganesh A, Rao S et al (2009) Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization[C]. In: Advances in neural information processing systems, pp 2080–2088
6.
Zurück zum Zitat Lin Z, Chen M, Ma Y (2010) The Augmented Lagrange Multiplier method for exact recovery of corrupted low-rank matrices [J]. Eprint Arxiv, p 9 Lin Z, Chen M, Ma Y (2010) The Augmented Lagrange Multiplier method for exact recovery of corrupted low-rank matrices [J]. Eprint Arxiv, p 9
7.
Zurück zum Zitat Recht B, Fazel M, Parrilo P (2010) Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization [J]. SIAM Rev 52(3):471–501MathSciNetCrossRef Recht B, Fazel M, Parrilo P (2010) Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization [J]. SIAM Rev 52(3):471–501MathSciNetCrossRef
8.
Zurück zum Zitat Hu Y, Zhang D, Li X et al (2013) Fast and Accurate Matrix Completion via Truncated Nuclear Norm Regularization [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence 35(9):2117–2130CrossRef Hu Y, Zhang D, Li X et al (2013) Fast and Accurate Matrix Completion via Truncated Nuclear Norm Regularization [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence 35(9):2117–2130CrossRef
9.
Zurück zum Zitat Lin Z, Xu C, Zha H (2018) Robust matrix factorization by majorization minimization [J]. IEEE Trans Pattern Anal Mach Intell 40(1):208–220CrossRef Lin Z, Xu C, Zha H (2018) Robust matrix factorization by majorization minimization [J]. IEEE Trans Pattern Anal Mach Intell 40(1):208–220CrossRef
10.
Zurück zum Zitat Qian W, Cao F (2019) Adaptive algorithms for low-rank and sparse matrix recovery with truncated nuclear norm [J]. Int J Mach Learn Cybern 10(6):1341–1355CrossRef Qian W, Cao F (2019) Adaptive algorithms for low-rank and sparse matrix recovery with truncated nuclear norm [J]. Int J Mach Learn Cybern 10(6):1341–1355CrossRef
11.
Zurück zum Zitat Xue Z, Dong J, Zhao Y et al (2019) Low-rank and sparse matrix decomposition via the truncated nuclear norm and a sparse regularizer [J]. Vis Comput 35(11):1549–1566CrossRef Xue Z, Dong J, Zhao Y et al (2019) Low-rank and sparse matrix decomposition via the truncated nuclear norm and a sparse regularizer [J]. Vis Comput 35(11):1549–1566CrossRef
12.
Zurück zum Zitat Li J, Zhao LN, Hou XK (2017) Matrix recovery by randomly permuted alternating direction method of multipliers[J]. J Beijing Univ Chem Technol 44(3):123–128 Li J, Zhao LN, Hou XK (2017) Matrix recovery by randomly permuted alternating direction method of multipliers[J]. J Beijing Univ Chem Technol 44(3):123–128
14.
Zurück zum Zitat Lin Z, Ganesh A, Wright J et al (2009) Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix [J]. CAMSAP 56(3):707–722 Lin Z, Ganesh A, Wright J et al (2009) Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix [J]. CAMSAP 56(3):707–722
15.
Zurück zum Zitat Glowinski R (2014) On alternating direction methods of multipliers: a historical perspective [M]. Modeling, simulation and optimization for science and technology. Springer, Netherlands, pp 59–82MATH Glowinski R (2014) On alternating direction methods of multipliers: a historical perspective [M]. Modeling, simulation and optimization for science and technology. Springer, Netherlands, pp 59–82MATH
16.
Zurück zum Zitat Zhao JX, Feng Q, Zhao LN (2019) Alternating direction and Taylor expansion minimization algorithms for unconstrained nuclear norm optimization[J]. Num Algorithms 82:371–396MathSciNetCrossRef Zhao JX, Feng Q, Zhao LN (2019) Alternating direction and Taylor expansion minimization algorithms for unconstrained nuclear norm optimization[J]. Num Algorithms 82:371–396MathSciNetCrossRef
17.
Zurück zum Zitat Li J, Zhao L, Zhang M et al (2017) Low rank matrix recovery from sparse noise by 2,1 loss function[C]. In: IEEE International conference on signal & image processing Li J, Zhao L, Zhang M et al (2017) Low rank matrix recovery from sparse noise by 2,1 loss function[C]. In: IEEE International conference on signal & image processing
18.
Zurück zum Zitat Li Z, Liu J, Tang J et al (2015) Robust structured subspace learning for data representation[J]. IEEE Trans Pattern Anal Mach Intell 37(10):2085–2098CrossRef Li Z, Liu J, Tang J et al (2015) Robust structured subspace learning for data representation[J]. IEEE Trans Pattern Anal Mach Intell 37(10):2085–2098CrossRef
20.
Zurück zum Zitat Li Y, Liu G, Liu Q et al (2018) Moving object detection via segmentation and saliency constrained RPCA [J]. Neurocomputing 323:352–362CrossRef Li Y, Liu G, Liu Q et al (2018) Moving object detection via segmentation and saliency constrained RPCA [J]. Neurocomputing 323:352–362CrossRef
21.
Zurück zum Zitat Han G, Wang J, Cai X (2017) Background subtraction based on modified online robust principal component analysis [J]. Int J Mach Learn Cybern 8(6):1839–1852CrossRef Han G, Wang J, Cai X (2017) Background subtraction based on modified online robust principal component analysis [J]. Int J Mach Learn Cybern 8(6):1839–1852CrossRef
22.
Zurück zum Zitat Bouwmans T et al (2018) On the applications of robust PCA in image and video processing. Proc IEEE 106(8):1427–1457CrossRef Bouwmans T et al (2018) On the applications of robust PCA in image and video processing. Proc IEEE 106(8):1427–1457CrossRef
23.
Zurück zum Zitat Gu S, Xie Q, Meng D et al (2017) Weighted nuclear norm minimization and its applications to low level vision [J]. Int J Comput Vis 121(2):183–208CrossRef Gu S, Xie Q, Meng D et al (2017) Weighted nuclear norm minimization and its applications to low level vision [J]. Int J Comput Vis 121(2):183–208CrossRef
24.
Zurück zum Zitat Cands EJ, Tao T (2010) The power of convex relaxation: near-optimal matrix completion [J]. IEEE Trans Inf Theory 56(5):2053–2080MathSciNetCrossRef Cands EJ, Tao T (2010) The power of convex relaxation: near-optimal matrix completion [J]. IEEE Trans Inf Theory 56(5):2053–2080MathSciNetCrossRef
25.
Zurück zum Zitat Deng Y et al (2018) Nuclear norm-based matrix regression preserving embedding for face recognition [J]. Neurocomputing 311:279–290CrossRef Deng Y et al (2018) Nuclear norm-based matrix regression preserving embedding for face recognition [J]. Neurocomputing 311:279–290CrossRef
26.
Zurück zum Zitat Tan X, Chen S, Zhou ZH et al (2006) Face recognition from a single image per person: a survey [J]. Pattern Recog 39(9):1725–1745CrossRef Tan X, Chen S, Zhou ZH et al (2006) Face recognition from a single image per person: a survey [J]. Pattern Recog 39(9):1725–1745CrossRef
27.
Zurück zum Zitat Dolhansky Brian, Ferrer Cristian Canton (2018) Eye in-painting with exemplar Generative Adversarial Networks [C]. CVPR Dolhansky Brian, Ferrer Cristian Canton (2018) Eye in-painting with exemplar Generative Adversarial Networks [C]. CVPR
28.
Zurück zum Zitat Etemad K, Chellappa R (1997) Discriminant analysis for recognition of human face images [J]. J. Opt. Soc. Am. A 14(8):1724–1733CrossRef Etemad K, Chellappa R (1997) Discriminant analysis for recognition of human face images [J]. J. Opt. Soc. Am. A 14(8):1724–1733CrossRef
29.
Zurück zum Zitat Guo G, Li SZ, Chan K (March 2000) Face recognition by support vector machines[C]. Proc. of the IEEE Int. Conf. on Automatic Face and Gesture Recognition, 196-201 Guo G, Li SZ, Chan K (March 2000) Face recognition by support vector machines[C]. Proc. of the IEEE Int. Conf. on Automatic Face and Gesture Recognition, 196-201
30.
Zurück zum Zitat Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding [J]. Science 290(5500):2323–2326CrossRef Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding [J]. Science 290(5500):2323–2326CrossRef
31.
Zurück zum Zitat Wright J, Yang AY, Ganesh A et al (2009) Robust face recognition via sparse representation [J]. IEEE Trans. Pattern Anal. Mach. Intell. 31(2):210–227CrossRef Wright J, Yang AY, Ganesh A et al (2009) Robust face recognition via sparse representation [J]. IEEE Trans. Pattern Anal. Mach. Intell. 31(2):210–227CrossRef
Metadaten
Titel
GRPCA21 for recovering a corrupted low-rank matrix
Publikationsdatum
22.11.2019
Erschienen in
International Journal of Machine Learning and Cybernetics / Ausgabe 6/2020
Print ISSN: 1868-8071
Elektronische ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-019-01039-9

Weitere Artikel der Ausgabe 6/2020

International Journal of Machine Learning and Cybernetics 6/2020 Zur Ausgabe

Neuer Inhalt