Skip to main content
Erschienen in: Fire Technology 3/2021

20.09.2020

Guidance for Treatment of High-Temperature Creep in Fire Resistance Analysis of Concrete Structures

verfasst von: V. Kodur, S. M. Alogla, S. Venkatachari

Erschienen in: Fire Technology | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Concrete structures develop high levels of transient creep strain when exposed to fire, especially when temperatures in a member exceed 500°C. This high-temperature creep strain can dominate the deformation response under severe fire scenarios and needs to be properly accounted for in the fire resistance analysis. Most of the current approaches for fire resistance calculations, including advanced analysis methods, do not consider the transient creep strain to the full extent. This paper presents design recommendations for the treatment of creep in the fire resistance analysis of concrete structures. Three design alternatives are proposed for incorporating creep in fire resistance analysis depending on the conditions encountered during fire exposure. The first solution is ‘creep-not critical’ scenario where the temperature-induced creep strain can be neglected in a structural member subjected to low stress level and experiencing low sectional temperatures. In the second scenario (‘creep-implicit’), where temperature-induced creep strain is moderate, creep can be incorporated implicitly in the analysis. Finally, in situations where creep is significant (as in the case of high stress level and sectional temperatures), it needs to be incorporated explicitly in the fire resistance analysis (‘creep-explicit’ scenario). The practicality of the proposed solution in accounting for creep in the fire resistance analysis of concrete members at different levels is demonstrated using three case studies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kodur V, Naser M (2020) Structural fire engineering. McGraw Hill Professional, New York Kodur V, Naser M (2020) Structural fire engineering. McGraw Hill Professional, New York
2.
Zurück zum Zitat ACI 216.1-14 (2014) Code requirements for determining fire resistance of concrete and masonry construction assemblies. American Concrete Institute, Farmington Hills, MI ACI 216.1-14 (2014) Code requirements for determining fire resistance of concrete and masonry construction assemblies. American Concrete Institute, Farmington Hills, MI
3.
Zurück zum Zitat EN 1992-1-2 (2004) Eurocode 2-design of concrete structures, Part 1–2: general rules for structural fire design. Commission of European Communities, Brussels, Belgium EN 1992-1-2 (2004) Eurocode 2-design of concrete structures, Part 1–2: general rules for structural fire design. Commission of European Communities, Brussels, Belgium
4.
Zurück zum Zitat Lie TT (1992) Structural fire protection. American Society of Civil Engineers, Reston Lie TT (1992) Structural fire protection. American Society of Civil Engineers, Reston
8.
Zurück zum Zitat Gernay T, Franssen J-M (2011) A comparison between explicit and implicit modelling of transient creep strain in concrete uniaxial constitutive relationships. In: Proceedings of the fire and materials 2011 conference. Interscience Communications Ltd, London, UK, pp 405–416 Gernay T, Franssen J-M (2011) A comparison between explicit and implicit modelling of transient creep strain in concrete uniaxial constitutive relationships. In: Proceedings of the fire and materials 2011 conference. Interscience Communications Ltd, London, UK, pp 405–416
10.
Zurück zum Zitat Harmathy TZ (1993) Fire safety design and concrete. Longman Scientific & Technical, Harlow, Essex, England Harmathy TZ (1993) Fire safety design and concrete. Longman Scientific & Technical, Harlow, Essex, England
11.
Zurück zum Zitat Anderberg Y, Thelandersson S (1976) Stress and deformation characteristics of concrete at high temperatures. 2. Experimental investigation and material behaviour model. Lund Institute of Technology, Sweden Anderberg Y, Thelandersson S (1976) Stress and deformation characteristics of concrete at high temperatures. 2. Experimental investigation and material behaviour model. Lund Institute of Technology, Sweden
13.
Zurück zum Zitat Sadaoui A, Khennane A (2012) Effect of transient creep on behavior of reinforced concrete beams in a fire. Mater J 109:607–616 Sadaoui A, Khennane A (2012) Effect of transient creep on behavior of reinforced concrete beams in a fire. Mater J 109:607–616
17.
Zurück zum Zitat Lie TT, Celikkol B (1991) Method to calculate the fire resistance of circular reinforced concrete columns. Mater J 88:84–91 Lie TT, Celikkol B (1991) Method to calculate the fire resistance of circular reinforced concrete columns. Mater J 88:84–91
18.
Zurück zum Zitat Lie TT, Irwin RJ (1993) Method to calculate the fire resistance of reinforced concrete columns with rectangular cross section. Struct J 90:52–60 Lie TT, Irwin RJ (1993) Method to calculate the fire resistance of reinforced concrete columns with rectangular cross section. Struct J 90:52–60
20.
Zurück zum Zitat Collins MP, Mitchell D (1987) Prestressed concrete basics. Canadian Prestressed Concrete Institute, Ottawa Collins MP, Mitchell D (1987) Prestressed concrete basics. Canadian Prestressed Concrete Institute, Ottawa
22.
Zurück zum Zitat Wu B, Siu-Shu Lam E, Liu Q, Chung Y, Ho F (2010) Creep behavior of high-strength concrete with polypropylene fibers at elevated temperatures. Mater J 107:176–184 Wu B, Siu-Shu Lam E, Liu Q, Chung Y, Ho F (2010) Creep behavior of high-strength concrete with polypropylene fibers at elevated temperatures. Mater J 107:176–184
25.
Zurück zum Zitat Wang W, Kodur V (2019) Material properties of steel in fire conditions, 1st edn. Academic Press, Cambridge Wang W, Kodur V (2019) Material properties of steel in fire conditions, 1st edn. Academic Press, Cambridge
29.
Zurück zum Zitat ASTM E119-19 (2019) Standard methods of fire test of building construction and materials. American Society of Testing Materials, West Conshohocken, PA ASTM E119-19 (2019) Standard methods of fire test of building construction and materials. American Society of Testing Materials, West Conshohocken, PA
32.
Zurück zum Zitat ISO-834 (1999) Fire resistance tests-elements of building construction. International Organization for Standardization, Geneva, Switzerland ISO-834 (1999) Fire resistance tests-elements of building construction. International Organization for Standardization, Geneva, Switzerland
Metadaten
Titel
Guidance for Treatment of High-Temperature Creep in Fire Resistance Analysis of Concrete Structures
verfasst von
V. Kodur
S. M. Alogla
S. Venkatachari
Publikationsdatum
20.09.2020
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 3/2021
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-020-01039-0

Weitere Artikel der Ausgabe 3/2021

Fire Technology 3/2021 Zur Ausgabe