Skip to main content

2021 | OriginalPaper | Buchkapitel

Guided Wave Monitoring of Industrial Pipework – Improved Sensitivity System and Field Experience

verfasst von : Thomas Vogt, Sebastian Heinlein, Josh Milewczyk, Stefano Mariani, Robin Jones, Peter Cawley

Erschienen in: European Workshop on Structural Health Monitoring

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Low frequency guided wave inspection using the torsional, T(0,1), mode is routinely used in the petrochemical and other industries for the detection of corrosion patches, the detection threshold being typically around 5% cross section loss, though better sensitivity is obtained on simple pipe configurations not suffering from general corrosion. It has been shown in a blind trial that switching to a permanently installed system operating in SHM mode can improve the sensitivity to about 1% cross section loss and this is very attractive in corrosion monitoring applications. Later work has shown that the detection limit could be reduced to below 1% cross section loss if the compensation for environmental changes, particularly temperature, could be improved. This paper presents a new temperature compensation method involving both overall signal stretching, analogous to the well-known baseline stretch technique, and a further, location-by-location adjustment; this gives significant further improvements in performance. A commercial permanently installed monitoring system giving both local thickness measurements at the transducer location and long-range monitoring for corrosion over 10 s of metres from the transducer position is described. The system enables frequent measurements to be taken, the results being delivered to the operator via a wireless link. The benefits of the frequent readings enabled by the automatic data collection and transmission are discussed. Initial results presented here indicate that this enables defects as small as 0.1% cross section loss to be detected.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cawley, P., Cegla, F., Stone, M.: Corrosion sements. J. Nondestruct. Eval. 32(2), 156–163 (2013)CrossRef Cawley, P., Cegla, F., Stone, M.: Corrosion sements. J. Nondestruct. Eval. 32(2), 156–163 (2013)CrossRef
2.
Zurück zum Zitat Cawley, P., Lowe, M., Alleyne, D., Pavlakovic, B., Wilcox, P.: Practical long range guided wave inspection-applications to pipes and rail. Mater. Eval. 61, 66–74 (2003) Cawley, P., Lowe, M., Alleyne, D., Pavlakovic, B., Wilcox, P.: Practical long range guided wave inspection-applications to pipes and rail. Mater. Eval. 61, 66–74 (2003)
3.
Zurück zum Zitat Alleyne, D.N., Cawley, P.: The excitation of Lamb waves in pipes using dry-coupled piezoelectric transducers. J. Nondestruct. Eval. 15(1), 11–20 (1996)CrossRef Alleyne, D.N., Cawley, P.: The excitation of Lamb waves in pipes using dry-coupled piezoelectric transducers. J. Nondestruct. Eval. 15(1), 11–20 (1996)CrossRef
4.
Zurück zum Zitat Gridin, D., Craster, R.V., Fong, J., Lowe, M.J.S., Beard, M.: The high-frequency asymptotic analysis of guided waves in a circular elastic annulus. Wave Motion 38(1), 67–90 (2003)MathSciNetCrossRef Gridin, D., Craster, R.V., Fong, J., Lowe, M.J.S., Beard, M.: The high-frequency asymptotic analysis of guided waves in a circular elastic annulus. Wave Motion 38(1), 67–90 (2003)MathSciNetCrossRef
5.
Zurück zum Zitat Alleyne, D.N., Lowe, M.J.S., Cawley, P.: The reflection of guided waves from circumferential notches in pipes. J. Appl. Mech. 65(3), 635 (1998)CrossRef Alleyne, D.N., Lowe, M.J.S., Cawley, P.: The reflection of guided waves from circumferential notches in pipes. J. Appl. Mech. 65(3), 635 (1998)CrossRef
7.
Zurück zum Zitat Nunez Ledesma, V.M., Perez Baruch, E., Demma, A., Lowe, M.J.S.: Guided wave testing of an immersed gas pipeline. Mater. Eval. 67, 102–115 (2009) Nunez Ledesma, V.M., Perez Baruch, E., Demma, A., Lowe, M.J.S.: Guided wave testing of an immersed gas pipeline. Mater. Eval. 67, 102–115 (2009)
8.
Zurück zum Zitat Cawley, P., Cegla, F., Galvagni, A.: Guided waves for NDT and permanently-installed monitoring. Insight - Non-Destr. Test. Cond. Monit. 54(11), 594–601 (2012)CrossRef Cawley, P., Cegla, F., Galvagni, A.: Guided waves for NDT and permanently-installed monitoring. Insight - Non-Destr. Test. Cond. Monit. 54(11), 594–601 (2012)CrossRef
9.
Zurück zum Zitat Croxford, A.J., Wilcox, P.D., Drinkwater, B.W., Konstantinidis, G.: Strategies for guided-wave structural health monitoring. Proc. R. Soc. A Math. Phys. Eng. Sci. 463(2087), 2961–2981 (2001) Croxford, A.J., Wilcox, P.D., Drinkwater, B.W., Konstantinidis, G.: Strategies for guided-wave structural health monitoring. Proc. R. Soc. A Math. Phys. Eng. Sci. 463(2087), 2961–2981 (2001)
10.
Zurück zum Zitat Lu, Y., Michaels, J.E.: A methodology for structural health monitoring with diffuse ultrasonic waves in the presence of temperature variations. Ultrasonics 43(9), 717–731 (2005)CrossRef Lu, Y., Michaels, J.E.: A methodology for structural health monitoring with diffuse ultrasonic waves in the presence of temperature variations. Ultrasonics 43(9), 717–731 (2005)CrossRef
11.
Zurück zum Zitat Croxford, A.J., Moll, J., Wilcox, P.D., Michaels, J.E.: Efficient temperature compensation strategies for guided wave structural health monitoring. Ultrasonics 50(4–5), 517–528 (2010)CrossRef Croxford, A.J., Moll, J., Wilcox, P.D., Michaels, J.E.: Efficient temperature compensation strategies for guided wave structural health monitoring. Ultrasonics 50(4–5), 517–528 (2010)CrossRef
12.
Zurück zum Zitat Harley, J.B., Moura, J.M.F.: Scale transform signal processing for optimal ultrasonic temperature compensation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(10), 2226–2236 (2012)CrossRef Harley, J.B., Moura, J.M.F.: Scale transform signal processing for optimal ultrasonic temperature compensation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(10), 2226–2236 (2012)CrossRef
13.
Zurück zum Zitat Mariani, S., Heinlein, S., Cawley, P.: Location specific temperature compensation of guided wave signals in structural health monitoring. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67, 146–157 (2020)CrossRef Mariani, S., Heinlein, S., Cawley, P.: Location specific temperature compensation of guided wave signals in structural health monitoring. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67, 146–157 (2020)CrossRef
15.
Zurück zum Zitat Heinlein, S., Cawley, P., Vogt, T., Burch, S.: Blind trial validation of a guided wave structural health monitoring system for pipework. Mater. Eval. 76, 1118–1126 (2018) Heinlein, S., Cawley, P., Vogt, T., Burch, S.: Blind trial validation of a guided wave structural health monitoring system for pipework. Mater. Eval. 76, 1118–1126 (2018)
16.
Zurück zum Zitat Willsky, A.S., Jones, H.L.: A generalized likelihood ratio approach to the detection and estimation of jumps in linear systems. IEEE Trans. Autom. Control 21, 108–112 (1976)MathSciNetCrossRef Willsky, A.S., Jones, H.L.: A generalized likelihood ratio approach to the detection and estimation of jumps in linear systems. IEEE Trans. Autom. Control 21, 108–112 (1976)MathSciNetCrossRef
17.
Zurück zum Zitat Liu, C., Dobson, J., Cawley, P.: Efficient generation of receiver operating characteristics for the evaluation of damage detection in practical structural health monitoring applications. Proc R. Soc. A 473, 20160736 (2017)CrossRef Liu, C., Dobson, J., Cawley, P.: Efficient generation of receiver operating characteristics for the evaluation of damage detection in practical structural health monitoring applications. Proc R. Soc. A 473, 20160736 (2017)CrossRef
Metadaten
Titel
Guided Wave Monitoring of Industrial Pipework – Improved Sensitivity System and Field Experience
verfasst von
Thomas Vogt
Sebastian Heinlein
Josh Milewczyk
Stefano Mariani
Robin Jones
Peter Cawley
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-64594-6_79