Skip to main content
Erschienen in: Glass and Ceramics 9-10/2019

28.01.2019

Hard-Sphere Close-Packing Models: Possible Applications for Developing Promising Ceramic and Refractory Materials (Review)

verfasst von: A. V. Smirnov, S. G. Ponomarev, V. P. Tarasovskii, V. V. Rybal’chenko, A. A. Vasin, V. V. Belov

Erschienen in: Glass and Ceramics | Ausgabe 9-10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The current status of theoretical research on close-packed systems of hard spheres is reviewed. The basic models of regular and random close-packings of hard spheres are described. Examples are presented of the application of modeling of the close packing of hard spheres for solving applied problems in the development of promising materials made from ceramics, including refractories.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Parisi and F. Zamponi, “Mean-field theory of hard sphere glasses and jamming,” Rev. Mod. Phys., 82(1), 789 – 845 (2011).CrossRef G. Parisi and F. Zamponi, “Mean-field theory of hard sphere glasses and jamming,” Rev. Mod. Phys., 82(1), 789 – 845 (2011).CrossRef
2.
Zurück zum Zitat A. R. Kansal, T. M. Truskett, and S. Torquato, “Nonequilibrium hard-disk packings with controlled orientational order,” J. Chem. Phys., 113(12), 4844 – 4851 (2000).CrossRef A. R. Kansal, T. M. Truskett, and S. Torquato, “Nonequilibrium hard-disk packings with controlled orientational order,” J. Chem. Phys., 113(12), 4844 – 4851 (2000).CrossRef
4.
Zurück zum Zitat T. P. Bondareva, “Computer simulation of the structure of random packing of systems of spherical particles,” Nauch. Vedom. Belgorod. Gos. Univ., Ser. Ékonomika, Informatika, 25(1-1), 78 – 85 (2013). T. P. Bondareva, “Computer simulation of the structure of random packing of systems of spherical particles,” Nauch. Vedom. Belgorod. Gos. Univ., Ser. Ékonomika, Informatika, 25(1-1), 78 – 85 (2013).
7.
Zurück zum Zitat A. L. Mackay, “A dense noncrystallographic packing of equal spheres,” Acta Cryst., 15(9), 916 – 918 (1962).CrossRef A. L. Mackay, “A dense noncrystallographic packing of equal spheres,” Acta Cryst., 15(9), 916 – 918 (1962).CrossRef
8.
Zurück zum Zitat D. Hilbert and S. Cohn-Vossen, Geometry and the Imagination, Chelsea, New York (1999), pp. 45 – 53. D. Hilbert and S. Cohn-Vossen, Geometry and the Imagination, Chelsea, New York (1999), pp. 45 – 53.
9.
Zurück zum Zitat H. Steinhaus, Mathematical Snapshots, Dover, New York (1999), pp. 202 – 203. H. Steinhaus, Mathematical Snapshots, Dover, New York (1999), pp. 202 – 203.
10.
Zurück zum Zitat D. Wells, The Penguin Dictionary of Curious and Interesting Geometry, Penguin, London (1991), pp. 237 – 238. D. Wells, The Penguin Dictionary of Curious and Interesting Geometry, Penguin, London (1991), pp. 237 – 238.
11.
Zurück zum Zitat T. Aste, “Circle, sphere, and drop packings,” Phys. Rev. E, 53, 2571 (1996).CrossRef T. Aste, “Circle, sphere, and drop packings,” Phys. Rev. E, 53, 2571 (1996).CrossRef
12.
Zurück zum Zitat G. D. Scott and D. M. Kilgour, “The density of random close packing of spheres,” Brit. J. Appl. Phys., 2(6), 863 (1969). G. D. Scott and D. M. Kilgour, “The density of random close packing of spheres,” Brit. J. Appl. Phys., 2(6), 863 (1969).
13.
Zurück zum Zitat O. Pouliquen, M. Nicolas, and P. D. Weidman, “Crystallization of non-Brownian spheres under horizontal shaking,” Phys. Rev. Lett., 79, 3640 – 3643 (1997).CrossRef O. Pouliquen, M. Nicolas, and P. D. Weidman, “Crystallization of non-Brownian spheres under horizontal shaking,” Phys. Rev. Lett., 79, 3640 – 3643 (1997).CrossRef
14.
Zurück zum Zitat E. E. Lord, A. L. Mackay, and S. Ranganathan, New Geometry for New Materials [Russian translation], Fizmatlit, Moscow (2010). E. E. Lord, A. L. Mackay, and S. Ranganathan, New Geometry for New Materials [Russian translation], Fizmatlit, Moscow (2010).
15.
Zurück zum Zitat J. D. Bernal, “A geometrical approach to the structure of monatomic liquids,” Nature, 183, 141 – 147 (1959).CrossRef J. D. Bernal, “A geometrical approach to the structure of monatomic liquids,” Nature, 183, 141 – 147 (1959).CrossRef
16.
Zurück zum Zitat J. D. Bernal, “Geometry of the structure of monatomic liquids,” Nature A, 185, 68 – 70 (1960).CrossRef J. D. Bernal, “Geometry of the structure of monatomic liquids,” Nature A, 185, 68 – 70 (1960).CrossRef
17.
Zurück zum Zitat J. D. Bernal, “The structure of liquids,” Sci. Am. B, 201, 124 – (1)31 (1960). J. D. Bernal, “The structure of liquids,” Sci. Am. B, 201, 124 – (1)31 (1960).
18.
Zurück zum Zitat J. D. Bernal, “The structure of liquids,” Proc. Roy. Soc. London A, 208, 299 – 322 (1964a). J. D. Bernal, “The structure of liquids,” Proc. Roy. Soc. London A, 208, 299 – 322 (1964a).
19.
Zurück zum Zitat J. D. Bernal, “The structure of liquids” New Sci. B, No. 8, 453 – 435 (1964). J. D. Bernal, “The structure of liquids” New Sci. B, No. 8, 453 – 435 (1964).
20.
Zurück zum Zitat S. Torquato, T. M. Truskett, and P. G. Debenedetti, “Is random close packing of spheres well defined?,” Phys. Rev. Lett., 20(5), 20 (2000). S. Torquato, T. M. Truskett, and P. G. Debenedetti, “Is random close packing of spheres well defined?,” Phys. Rev. Lett., 20(5), 20 (2000).
21.
Zurück zum Zitat J. M. Wills, “A quasicrystalline sphere-packing with unexpected high density,” J. Phys. France, 51, 860 – 864 (1990).CrossRef J. M. Wills, “A quasicrystalline sphere-packing with unexpected high density,” J. Phys. France, 51, 860 – 864 (1990).CrossRef
22.
Zurück zum Zitat K. Gotoh and J. L. Finney, “Statistical geometrical approach to random packing density of equal spheres,” Nature, 252, 202 – 205 (1974).CrossRef K. Gotoh and J. L. Finney, “Statistical geometrical approach to random packing density of equal spheres,” Nature, 252, 202 – 205 (1974).CrossRef
24.
Zurück zum Zitat P. I. O’Toole and T. S. Hudson, “New high-density packings of similarly sized binary spheres,” J. Phys. Chem. C, 115(39), 19037 (2011).CrossRef P. I. O’Toole and T. S. Hudson, “New high-density packings of similarly sized binary spheres,” J. Phys. Chem. C, 115(39), 19037 (2011).CrossRef
26.
Zurück zum Zitat M. Borkovec, W. De Paris, and R. Peikert, “The fractal dimension of the Apollonian sphere packing,” Fractals, 2(4), 521 – 526 (1994).CrossRef M. Borkovec, W. De Paris, and R. Peikert, “The fractal dimension of the Apollonian sphere packing,” Fractals, 2(4), 521 – 526 (1994).CrossRef
27.
Zurück zum Zitat R. Blaak, “Optimal packing of polydisperse hard-sphere fluids, II,” J. Chem. Phys., 112, 9041 (2000).CrossRef R. Blaak, “Optimal packing of polydisperse hard-sphere fluids, II,” J. Chem. Phys., 112, 9041 (2000).CrossRef
28.
Zurück zum Zitat J. Zhang, R. Blaak, E. Trizac, et al., “Optimal packing of polydisperse hard-sphere fluids,” J. Chem. Phys., 110, 5318 (1999).CrossRef J. Zhang, R. Blaak, E. Trizac, et al., “Optimal packing of polydisperse hard-sphere fluids,” J. Chem. Phys., 110, 5318 (1999).CrossRef
29.
Zurück zum Zitat V. Baranau, D. Hlushkou, S. Khirevich, and U. Tallarek, “Pore-size entropy of random hard-sphere packings,” Soft Matter, No. 9, 3361 – 3372 (2013). V. Baranau, D. Hlushkou, S. Khirevich, and U. Tallarek, “Pore-size entropy of random hard-sphere packings,” Soft Matter, No. 9, 3361 – 3372 (2013).
30.
Zurück zum Zitat V. Baranau and U. Tallare, “Random-close packing limits for monodisperse and polydisperse hard spheres,” Soft Matter, No. 10, 3826 – 3841 (2014). V. Baranau and U. Tallare, “Random-close packing limits for monodisperse and polydisperse hard spheres,” Soft Matter, No. 10, 3826 – 3841 (2014).
31.
Zurück zum Zitat V. V. Belov and M. A. Smirnov, Building Composites of Optimized Mineral Mixtures [in Russian], TvGTU, Tver (2012): URL: www.sunspire.ru (appeal date: 11/17/2017). V. V. Belov and M. A. Smirnov, Building Composites of Optimized Mineral Mixtures [in Russian], TvGTU, Tver (2012): URL: www.​sunspire.​ru (appeal date: 11/17/2017).
32.
Zurück zum Zitat A. R. Kansai, S. Torquato, and F. H. Stillinger, “Computer generation of dense polydisperse sphere packings,” J. Chem. Phys., ll7, 8212 (2002).CrossRef A. R. Kansai, S. Torquato, and F. H. Stillinger, “Computer generation of dense polydisperse sphere packings,” J. Chem. Phys., ll7, 8212 (2002).CrossRef
33.
Zurück zum Zitat R. M. Baram and H. J. Herrmann, “Self-similar space – filling packings in three dimensions,” Fractals, 12(3), 293 (2004).CrossRef R. M. Baram and H. J. Herrmann, “Self-similar space – filling packings in three dimensions,” Fractals, 12(3), 293 (2004).CrossRef
34.
Zurück zum Zitat R. G. Eromasov, Composite Ceramic Materials Based on Coarse-Grained Technogenic Filler, Author’s Abstract of Candidate’s Thesis [in Russian], Krasnoyarsk (2014). R. G. Eromasov, Composite Ceramic Materials Based on Coarse-Grained Technogenic Filler, Author’s Abstract of Candidate’s Thesis [in Russian], Krasnoyarsk (2014).
35.
Zurück zum Zitat V. V. Belov, M. A. Smirnov, and I. V. Obraztsov, “Theoretical foundations of the method of optimizing the particle size composition of compositions for producing non-firing construction conglomerates,” Stroit. Mater., Oborud., Tekhnol. XXI Veka, No. 6 (2012); URL: www.sunspire.ru (appeal date: 11/17/2017). V. V. Belov, M. A. Smirnov, and I. V. Obraztsov, “Theoretical foundations of the method of optimizing the particle size composition of compositions for producing non-firing construction conglomerates,” Stroit. Mater., Oborud., Tekhnol. XXI Veka, No. 6 (2012); URL: www.​sunspire.​ru (appeal date: 11/17/2017).
36.
Zurück zum Zitat I. I. Loktev, K. Yu. Vergazov, V. A. Vlasov, and I. A. Tikhomirov, “On modeling some technological properties of dispersed materials,” Izv. TPU, 308(6), 85 – 89 (2005). I. I. Loktev, K. Yu. Vergazov, V. A. Vlasov, and I. A. Tikhomirov, “On modeling some technological properties of dispersed materials,” Izv. TPU, 308(6), 85 – 89 (2005).
37.
Zurück zum Zitat V. V. Belov, I. V. Obraztsov, V. K. Ivanov, and E. N. Konoplev, Computer Implementation of the Solution of Scientific, Technical and Educational Problems [in Russian], TvGTU, Tver (2015); URL: www.sunspire.ru (appeal date: 11/17/2017). V. V. Belov, I. V. Obraztsov, V. K. Ivanov, and E. N. Konoplev, Computer Implementation of the Solution of Scientific, Technical and Educational Problems [in Russian], TvGTU, Tver (2015); URL: www.​sunspire.​ru (appeal date: 11/17/2017).
38.
Zurück zum Zitat Yu. E. Pivinskii, Theoretical Aspects of the Technology of Ceramics and Refractories: Selected Works, Vol. 1 [in Russian], St. Petersburg (2003). Yu. E. Pivinskii, Theoretical Aspects of the Technology of Ceramics and Refractories: Selected Works, Vol. 1 [in Russian], St. Petersburg (2003).
39.
Zurück zum Zitat G. D. Scott, “Radial distribution of the random close packing of equal spheres,” Nature, 192, 956 – 957 (1962).CrossRef G. D. Scott, “Radial distribution of the random close packing of equal spheres,” Nature, 192, 956 – 957 (1962).CrossRef
40.
Zurück zum Zitat A. G. Aslamazov and A. A. Varlamov, Amazing Physics, Dobrosvet, Moscow (2002). A. G. Aslamazov and A. A. Varlamov, Amazing Physics, Dobrosvet, Moscow (2002).
41.
Zurück zum Zitat G. A. Tingate, “Some geometrical properties of packings of equal spheres in cylindrical vessels,” Nuclear Eng. Design, 24, 153 – 179 (1973).CrossRef G. A. Tingate, “Some geometrical properties of packings of equal spheres in cylindrical vessels,” Nuclear Eng. Design, 24, 153 – 179 (1973).CrossRef
42.
Zurück zum Zitat G. E. Mueller, “Radial void fraction distributions in randomly packed fixed beds of uniformly sized spheres in cylindrical containers,” Powder Technol., 72, 269 – 275 (1992).CrossRef G. E. Mueller, “Radial void fraction distributions in randomly packed fixed beds of uniformly sized spheres in cylindrical containers,” Powder Technol., 72, 269 – 275 (1992).CrossRef
43.
Zurück zum Zitat Yi. Gan, M. Kamlah, and J. Reimann, “Computer simulation of packing structure in pebble beds,” Fusion Eng. Design, 85, 1782 – 1787 (2010).CrossRef Yi. Gan, M. Kamlah, and J. Reimann, “Computer simulation of packing structure in pebble beds,” Fusion Eng. Design, 85, 1782 – 1787 (2010).CrossRef
44.
Zurück zum Zitat R. P. Zou and A. B. Yu, “The packing of spheres in a cylindrical container: The thickness effect,” Chem. Eng. Sci., 50, 1504 – 1507 (1995).CrossRef R. P. Zou and A. B. Yu, “The packing of spheres in a cylindrical container: The thickness effect,” Chem. Eng. Sci., 50, 1504 – 1507 (1995).CrossRef
45.
Zurück zum Zitat R. M. German, Particle Packing Characteristics, Metal Powder Industries Federation, Princeton, New Jersey (1989). R. M. German, Particle Packing Characteristics, Metal Powder Industries Federation, Princeton, New Jersey (1989).
46.
Zurück zum Zitat R. K. McGeary, “Mechanical packing of spherical particles,” J. Am. Ceram. Soc., 44, 513 – 522 (1961).CrossRef R. K. McGeary, “Mechanical packing of spherical particles,” J. Am. Ceram. Soc., 44, 513 – 522 (1961).CrossRef
47.
Zurück zum Zitat R. Lakes, “Materials with structural hierarchy,” Nature, 361, 511 – 515 (1993).CrossRef R. Lakes, “Materials with structural hierarchy,” Nature, 361, 511 – 515 (1993).CrossRef
48.
Zurück zum Zitat R. Fratzl and R. Weinkamer, “Nature’s hierarchical materials,” Progr. Mater. Sci., 52, 1263 – 1334 (2007).CrossRef R. Fratzl and R. Weinkamer, “Nature’s hierarchical materials,” Progr. Mater. Sci., 52, 1263 – 1334 (2007).CrossRef
49.
Zurück zum Zitat E. Olevsky, “Theory of sintering: from discrete to continuum,” Mater. Sci. Eng., R23, 41 – 100 (1998).CrossRef E. Olevsky, “Theory of sintering: from discrete to continuum,” Mater. Sci. Eng., R23, 41 – 100 (1998).CrossRef
50.
Zurück zum Zitat V. Tikare, M. Braginsky, and E. A. Olevsky, “Numerical simulation of solid-state sintering: I, Sintering of three particles,” J. Am. Ceram. Soc., 86(1), 49 – 53 (2003).CrossRef V. Tikare, M. Braginsky, and E. A. Olevsky, “Numerical simulation of solid-state sintering: I, Sintering of three particles,” J. Am. Ceram. Soc., 86(1), 49 – 53 (2003).CrossRef
51.
Zurück zum Zitat M. Braginsky, V. Tikare, and E. Olevsky, “Numerical simulation of solid state sintering,” Int. J. Solids Struct., 42, 621 – 636 (2005).CrossRef M. Braginsky, V. Tikare, and E. Olevsky, “Numerical simulation of solid state sintering,” Int. J. Solids Struct., 42, 621 – 636 (2005).CrossRef
Metadaten
Titel
Hard-Sphere Close-Packing Models: Possible Applications for Developing Promising Ceramic and Refractory Materials (Review)
verfasst von
A. V. Smirnov
S. G. Ponomarev
V. P. Tarasovskii
V. V. Rybal’chenko
A. A. Vasin
V. V. Belov
Publikationsdatum
28.01.2019
Verlag
Springer US
Erschienen in
Glass and Ceramics / Ausgabe 9-10/2019
Print ISSN: 0361-7610
Elektronische ISSN: 1573-8515
DOI
https://doi.org/10.1007/s10717-019-00083-9

Weitere Artikel der Ausgabe 9-10/2019

Glass and Ceramics 9-10/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.