Skip to main content
Erschienen in: Journal of Electronic Testing 3/2021

19.06.2021

Hardware Trojan Free Netlist Identification: A Clustering Approach

verfasst von: Anindan Mondal, Rajesh Kumar Biswal, Mahabub Hasan Mahalat, Suchismita Roy, Bibhash Sen

Erschienen in: Journal of Electronic Testing | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hardware Trojans (HT) have emerged as a significant threat to both the IC industry and the military due to their stealthy nature and destructive capabilities. An HT is a small piece of hardware (circuit) embedded by an adversary to disrupt the victim circuit’s regular operation. As a result, it becomes an utmost necessity to distinguish standard signals from them. The detection of HT has become critical due to the presence of enormous search space combined with its small size. A clustering-based approach is proposed to identify benign signals in this work. The proposed approach combines both transition probability and combinational controllability to generate an effective HT free whitelist. It reduces the overhead of search space for HT detection. The clusters generated (whitelist) are analyzed in the presence of several ultra-small triggers which advocates the efficacy of the proposed solution. Simulation results on various ISCAS benchmark circuits validate the significance and quality of such clusters in terms of observed transition. Experimental results also underpin the proposed methodology’s superiority over existing techniques by identifying proper whitelist easily.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Adee S (2008) The hunt for the kill switch. IEEE Spectr 45(5):34–39CrossRef Adee S (2008) The hunt for the kill switch. IEEE Spectr 45(5):34–39CrossRef
2.
Zurück zum Zitat Bazzazi A, Shalmani MTM, Hemmatyar AMA (2017) Hardware trojan detection based on logical testing. J Electron Test 33(4):381–395CrossRef Bazzazi A, Shalmani MTM, Hemmatyar AMA (2017) Hardware trojan detection based on logical testing. J Electron Test 33(4):381–395CrossRef
3.
Zurück zum Zitat Chakraborty RS, Pagliarini S, Mathew J, Rajendran SR, Devi MN (2017) A flexible online checking technique to enhance hardware trojan horse detectability by reliability analysis. IEEE Trans Emerg Top Comput 5(2):260–270CrossRef Chakraborty RS, Pagliarini S, Mathew J, Rajendran SR, Devi MN (2017) A flexible online checking technique to enhance hardware trojan horse detectability by reliability analysis. IEEE Trans Emerg Top Comput 5(2):260–270CrossRef
4.
Zurück zum Zitat Chakraborty RS, Wolff F, Paul S, Papachristou C, Bhunia S (2009) Mero: A statistical approach for hardware trojan detection. In C. Clavier and K. Gaj, editors, Cryptographic Hardware and Embedded Systems - CHES 2009, pp 396–410 Springer Berlin Heidelberg Chakraborty RS, Wolff F, Paul S, Papachristou C, Bhunia S (2009) Mero: A statistical approach for hardware trojan detection. In C. Clavier and K. Gaj, editors, Cryptographic Hardware and Embedded Systems - CHES 2009, pp 396–410 Springer Berlin Heidelberg
5.
Zurück zum Zitat Dong C, He G, Liu X, Yang Y, Guo W (2019) A multi-layer hardware trojan protection framework for iot chips. IEEE Access 7:23628–23639CrossRef Dong C, He G, Liu X, Yang Y, Guo W (2019) A multi-layer hardware trojan protection framework for iot chips. IEEE Access 7:23628–23639CrossRef
6.
Zurück zum Zitat Dupuis S, Flottes M, Di Natale G, Rouzeyre B (2018) Protection against hardware trojans with logic testing: Proposed solutions and challenges ahead. IEEE Design Test 35(2):73–90CrossRef Dupuis S, Flottes M, Di Natale G, Rouzeyre B (2018) Protection against hardware trojans with logic testing: Proposed solutions and challenges ahead. IEEE Design Test 35(2):73–90CrossRef
7.
Zurück zum Zitat Francq J, Frick F (2015) Introduction to hardware trojan detection methods. In 2015 Design, Automation Test in Europe Conference Exhibition (DATE) pp. 770–775 Francq J, Frick F (2015) Introduction to hardware trojan detection methods. In 2015 Design, Automation Test in Europe Conference Exhibition (DATE) pp. 770–775
8.
Zurück zum Zitat Fyrbiak M, Wallat S, Swierczynski P, Hoffmann M, Hoppach S, Wilhelm M, Weidlich T, Tessier R, Paar C (2019) Hal-the missing piece of the puzzle for hardware reverse engineering, trojan detection and insertion. IEEE Trans Dependable Secure Comput 16(3):498–510CrossRef Fyrbiak M, Wallat S, Swierczynski P, Hoffmann M, Hoppach S, Wilhelm M, Weidlich T, Tessier R, Paar C (2019) Hal-the missing piece of the puzzle for hardware reverse engineering, trojan detection and insertion. IEEE Trans Dependable Secure Comput 16(3):498–510CrossRef
9.
Zurück zum Zitat Goldstein L (1979) Controllability/observability analysis of digital circuits. IEEE Transactions on Circuits and Systems 26(9):685–693CrossRef Goldstein L (1979) Controllability/observability analysis of digital circuits. IEEE Transactions on Circuits and Systems 26(9):685–693CrossRef
10.
Zurück zum Zitat Govindan V, Chakraborty RS, Santikellur P, Chaudhary AK (2018) A hardware trojan attack on fpga-based cryptographic key generation: Impact and detection. Journal of Hardware and Systems Security 2(3):225–239CrossRef Govindan V, Chakraborty RS, Santikellur P, Chaudhary AK (2018) A hardware trojan attack on fpga-based cryptographic key generation: Impact and detection. Journal of Hardware and Systems Security 2(3):225–239CrossRef
11.
Zurück zum Zitat Hasegawa K, Oya M, Yanagisawa M, Togawa N (2016) Hardware trojans classification for gate-level netlists based on machine learning. In 2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS), pp. 203–206 Hasegawa K, Oya M, Yanagisawa M, Togawa N (2016) Hardware trojans classification for gate-level netlists based on machine learning. In 2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS), pp. 203–206
12.
Zurück zum Zitat Hasegawa K, Yanagisawa M, Togawa N (2018) A hardware-trojan classification method utilizing boundary net structures. In 2018 IEEE International Conference on Consumer Electronics (ICCE), pp 1–4 Hasegawa K, Yanagisawa M, Togawa N (2018) A hardware-trojan classification method utilizing boundary net structures. In 2018 IEEE International Conference on Consumer Electronics (ICCE), pp 1–4
13.
Zurück zum Zitat He Y, Huang K (2019) Trigger identification using difference-amplified controllability and dynamic transition probability for hardware trojan detection. IEEE Trans Inf Forensics Secur He Y, Huang K (2019) Trigger identification using difference-amplified controllability and dynamic transition probability for hardware trojan detection. IEEE Trans Inf Forensics Secur
14.
Zurück zum Zitat Ismari D, Plusquellic J, Lamech C, Bhunia S, Saqib F (2016) On detecting delay anomalies introduced by hardware trojans. In 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp 1–7 Ismari D, Plusquellic J, Lamech C, Bhunia S, Saqib F (2016) On detecting delay anomalies introduced by hardware trojans. In 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp 1–7
15.
Zurück zum Zitat Karri R, Rajendran J, Rosenfeld K, Tehranipoor M (2010) Trustworthy hardware: Identifying and classifying hardware trojans. Computer 43(10):39–46CrossRef Karri R, Rajendran J, Rosenfeld K, Tehranipoor M (2010) Trustworthy hardware: Identifying and classifying hardware trojans. Computer 43(10):39–46CrossRef
16.
Zurück zum Zitat Lee H, Ha D (1993) Atalanta: An efficient atpg for combinational circuits. Technical Report, 93-12, Dept of Electrical Engineering, Virginia Polytechnic Lee H, Ha D (1993) Atalanta: An efficient atpg for combinational circuits. Technical Report, 93-12, Dept of Electrical Engineering, Virginia Polytechnic
17.
Zurück zum Zitat Liu Y, He J, Ma H, Zhao Y (2019) Hardware trojan detection leveraging a novel golden layout model towards practical applications. J Electron Test 35(4):529–541CrossRef Liu Y, He J, Ma H, Zhao Y (2019) Hardware trojan detection leveraging a novel golden layout model towards practical applications. J Electron Test 35(4):529–541CrossRef
18.
Zurück zum Zitat Macqueen J (1967) Some methods for classification and analysis of multivariate observations. In 5-th Berkeley Symposium on Mathematical Statistics and Probability, pp 281–297 Macqueen J (1967) Some methods for classification and analysis of multivariate observations. In 5-th Berkeley Symposium on Mathematical Statistics and Probability, pp 281–297
19.
Zurück zum Zitat Mahajan YS, Fu Z, Malik S (2004) An efficient sat solver. In International Conference on Theory and Applications of Satisfiability Testing, pp 360–375. Springer Mahajan YS, Fu Z, Malik S (2004) An efficient sat solver. In International Conference on Theory and Applications of Satisfiability Testing, pp 360–375. Springer
20.
Zurück zum Zitat Manivannan S, Kuppusamy L, Babu NSC (2020) Trap-gate: A probabilistic approach to enhance hardware trojan detection and its game theoretic analysis. J Electron Test 36(5):607–616CrossRef Manivannan S, Kuppusamy L, Babu NSC (2020) Trap-gate: A probabilistic approach to enhance hardware trojan detection and its game theoretic analysis. J Electron Test 36(5):607–616CrossRef
21.
Zurück zum Zitat Mondal A, Mahalat MH, Mandal S, Roy S, Sen B (2019) A novel test vector generation method for hardware trojan detection. In 2019 32nd IEEE International System-on-Chip Conference (SOCC) (SOCC 2019), Singapore Mondal A, Mahalat MH, Mandal S, Roy S, Sen B (2019) A novel test vector generation method for hardware trojan detection. In 2019 32nd IEEE International System-on-Chip Conference (SOCC) (SOCC 2019), Singapore
22.
Zurück zum Zitat Narasimhan S, Du D, Chakraborty RS, Paul S, Wolff FG, Papachristou CA, Roy K, Bhunia S (2013) Hardware trojan detection by multiple-parameter side-channel analysis. IEEE Trans Comput 62(11):2183–2195MathSciNetCrossRef Narasimhan S, Du D, Chakraborty RS, Paul S, Wolff FG, Papachristou CA, Roy K, Bhunia S (2013) Hardware trojan detection by multiple-parameter side-channel analysis. IEEE Trans Comput 62(11):2183–2195MathSciNetCrossRef
23.
Zurück zum Zitat Nigh C, Orailoglu A (2021) Adatrust: Combinational hardware trojan detection through adaptive test pattern construction. IEEE Trans Very Large Scale Integr VLSI Syst pp 1–14 Nigh C, Orailoglu A (2021) Adatrust: Combinational hardware trojan detection through adaptive test pattern construction. IEEE Trans Very Large Scale Integr VLSI Syst pp 1–14
24.
Zurück zum Zitat Nourian M, Fazeli M, Hély D (2018) Hardware trojan detection using an advised genetic algorithm based logic testing. J Electron Test 34(4):461–470CrossRef Nourian M, Fazeli M, Hély D (2018) Hardware trojan detection using an advised genetic algorithm based logic testing. J Electron Test 34(4):461–470CrossRef
25.
Zurück zum Zitat Pan Z, Mishra P (2021) Automated test generation for hardware trojan detection using reinforcement learning. In Proceedings of the 26th Asia and South Pacific Design Automation Conference, ASPDAC ’21, pp 408–413 Association for Computing Machinery, New York, NY, USA Pan Z, Mishra P (2021) Automated test generation for hardware trojan detection using reinforcement learning. In Proceedings of the 26th Asia and South Pacific Design Automation Conference, ASPDAC ’21, pp 408–413 Association for Computing Machinery, New York, NY, USA
26.
Zurück zum Zitat Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: Machine learning in Python. J Mach Learn Res 12:2825–2830MathSciNetMATH Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: Machine learning in Python. J Mach Learn Res 12:2825–2830MathSciNetMATH
27.
Zurück zum Zitat Saha S, Chakraborty RS, Nuthakki SS, Mukhopadhyay D (2015) Improved test pattern generation for hardware trojan detection using genetic algorithm and boolean satisfiability. In T. Güneysu and H. Handschuh, editors, Cryptographic Hardware and Embedded Systems – CHES 2015, pp 577–596 Springer Berlin Heidelberg Saha S, Chakraborty RS, Nuthakki SS, Mukhopadhyay D (2015) Improved test pattern generation for hardware trojan detection using genetic algorithm and boolean satisfiability. In T. Güneysu and H. Handschuh, editors, Cryptographic Hardware and Embedded Systems – CHES 2015, pp 577–596 Springer Berlin Heidelberg
28.
Zurück zum Zitat Salmani H (2017) Cotd: Reference-free hardware trojan detection and recovery based on controllability and observability in gate-level netlist. IEEE Trans Inf Forensics Secur 12(2):338–350CrossRef Salmani H (2017) Cotd: Reference-free hardware trojan detection and recovery based on controllability and observability in gate-level netlist. IEEE Trans Inf Forensics Secur 12(2):338–350CrossRef
29.
Zurück zum Zitat Salmani H, Tehranipoor M, Plusquellic J (2012) A novel technique for improving hardware trojan detection and reducing trojan activation time. IEEE Trans. Very Large Scale Integr VLSI Syst 20(1):112–125 Salmani H, Tehranipoor M, Plusquellic J (2012) A novel technique for improving hardware trojan detection and reducing trojan activation time. IEEE Trans. Very Large Scale Integr VLSI Syst 20(1):112–125 
30.
Zurück zum Zitat Sebt SM, Patooghy A, Beitollahi H, Kinsy M (2018) Circuit enclaves susceptible to hardware trojans insertion at gate-level designs. IET Comput Digit Tech 12(6):251–257CrossRef Sebt SM, Patooghy A, Beitollahi H, Kinsy M (2018) Circuit enclaves susceptible to hardware trojans insertion at gate-level designs. IET Comput Digit Tech 12(6):251–257CrossRef
31.
Zurück zum Zitat Shabani A, Alizadeh B (2020) Pmtp: A max-sat-based approach to detect hardware trojan using propagation of maximum transition probability. IEEE Trans Comput Aided Des Integr Circuits Syst 39(1):25–33CrossRef Shabani A, Alizadeh B (2020) Pmtp: A max-sat-based approach to detect hardware trojan using propagation of maximum transition probability. IEEE Trans Comput Aided Des Integr Circuits Syst 39(1):25–33CrossRef
32.
Zurück zum Zitat Shakya B, He T, Salmani H, Forte D, Bhunia S, Tehranipoor M (2017) Benchmarking of hardware trojans and maliciously affected circuits. Journal of Hardware and Systems Security 1(1):85–102CrossRef Shakya B, He T, Salmani H, Forte D, Bhunia S, Tehranipoor M (2017) Benchmarking of hardware trojans and maliciously affected circuits. Journal of Hardware and Systems Security 1(1):85–102CrossRef
34.
Zurück zum Zitat Venugopalan V, Patterson CD (2018) Surveying the hardware trojan threat landscape for the internet-of-things. Journal of Hardware and Systems Security 2(2):131–141CrossRef Venugopalan V, Patterson CD (2018) Surveying the hardware trojan threat landscape for the internet-of-things. Journal of Hardware and Systems Security 2(2):131–141CrossRef
35.
Zurück zum Zitat Wolff F, Papachristou C, Bhunia S, Chakraborty RS (2008) Towards trojan-free trusted ics: Problem analysis and detection scheme. In 2008 Design, Automation and Test in Europe, pp 1362–1365 Wolff F, Papachristou C, Bhunia S, Chakraborty RS (2008) Towards trojan-free trusted ics: Problem analysis and detection scheme. In 2008 Design, Automation and Test in Europe, pp 1362–1365
36.
Zurück zum Zitat Xiao K, Forte D, Jin Y, Karri R, Bhunia S, Tehranipoor M (2016) Hardware trojans: Lessons learned after one decade of research. ACM Trans Des Autom Electron Syst 22:1–23 Xiao K, Forte D, Jin Y, Karri R, Bhunia S, Tehranipoor M (2016) Hardware trojans: Lessons learned after one decade of research. ACM Trans Des Autom Electron Syst 22:1–23
37.
Zurück zum Zitat Zhou B, Zhang W, Thambipillai S, Teo JKJ (2014) A low cost acceleration method for hardware trojan detection based on fan-out cone analysis. In 2014 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp 1–10 Zhou B, Zhang W, Thambipillai S, Teo JKJ (2014) A low cost acceleration method for hardware trojan detection based on fan-out cone analysis. In 2014 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp 1–10
38.
Zurück zum Zitat Zhou B, Zhang W, Thambipillai S, Jin JT, Chaturvedi V, Luo T (2016) Cost-efficient acceleration of hardware trojan detection through fan-out cone analysis and weighted random pattern technique. IEEE Trans Comput Aided Des Integr Circuits Syst 35(5):792–805 Zhou B, Zhang W, Thambipillai S, Jin JT, Chaturvedi V, Luo T (2016) Cost-efficient acceleration of hardware trojan detection through fan-out cone analysis and weighted random pattern technique. IEEE Trans Comput Aided Des Integr Circuits Syst 35(5):792–805
Metadaten
Titel
Hardware Trojan Free Netlist Identification: A Clustering Approach
verfasst von
Anindan Mondal
Rajesh Kumar Biswal
Mahabub Hasan Mahalat
Suchismita Roy
Bibhash Sen
Publikationsdatum
19.06.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Testing / Ausgabe 3/2021
Print ISSN: 0923-8174
Elektronische ISSN: 1573-0727
DOI
https://doi.org/10.1007/s10836-021-05953-1

Weitere Artikel der Ausgabe 3/2021

Journal of Electronic Testing 3/2021 Zur Ausgabe

EditorialNotes

Editorial

Neuer Inhalt