Skip to main content
Erschienen in:

18.06.2024 | Connected Automated Vehicles and ITS, Electrical and Electronics, Human Factors and Ergonomics

Harnessing Electrocardiography Signals for Driver State Classification Using Multi-layered Neural Networks

verfasst von: Amir Tjolleng, Kihyo Jung

Erschienen in: International Journal of Automotive Technology | Ausgabe 2/2025

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Driving under conditions of cognitive overload or drowsiness poses serious safety risks and is recognized as a major cause of vehicle collisions. Thus, timely detection of the driver’s state is crucial for preventing accidents. This study proposed the utilization of electrocardiography (ECG) data in conjunction with multi-layered neural network (MNN) models to determine the driver’s state. ECG signals were obtained from 67 participants during simulated driving scenarios that induced either cognitive load or drowsiness. The study considered five driver states: drowsiness, fighting-off drowsiness, normal, medium cognitive load, and high cognitive load. Statistical analysis revealed significant changes in ECG measurements as the driver’s attentiveness levels varied from low (drowsiness) to high (cognitive overload). Multiple MNN models were developed to address individual variations in heart response and achieved classification accuracies exceeding 95%. These findings demonstrated the potential of ECG signal utilization for driver’s state detection to prevent vehicle accidents.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat AAA Foundation for Traffic Safety. (2018). Prevalence of drowsy driving crashes: Estimates from a large-scale naturalistic driving study. Retrieved Jaunary 18, 2023 from http://aaafoundation.org AAA Foundation for Traffic Safety. (2018). Prevalence of drowsy driving crashes: Estimates from a large-scale naturalistic driving study. Retrieved Jaunary 18, 2023 from http://​aaafoundation.​org
Zurück zum Zitat Abtahi, F., Anund, A., Fors, C., Seoane, F., & Lindecrantz, K. (2018). Association of drivers’ sleepiness with heart rate variability: A pilot study with drivers on real roads. In EMBEC & NBC 2017: Joint Conference of the European Medical and Biological Engineering Conference (EMBEC) and the Nordic-Baltic Conference on Biomedical Engineering and Medical Physics (NBC), Tampere, Finland, June 2017 (pp. 149–152). Springer Singapore. Abtahi, F., Anund, A., Fors, C., Seoane, F., & Lindecrantz, K. (2018). Association of drivers’ sleepiness with heart rate variability: A pilot study with drivers on real roads. In EMBEC & NBC 2017: Joint Conference of the European Medical and Biological Engineering Conference (EMBEC) and the Nordic-Baltic Conference on Biomedical Engineering and Medical Physics (NBC), Tampere, Finland, June 2017 (pp. 149–152). Springer Singapore.
Zurück zum Zitat Awais, M., Badruddin, N., & Drieberg, M. (2017). A hybrid approach to detect driver drowsiness utilizing physiological signals to improve system performance and wearability. Sensors, 17(9), 1991.CrossRef Awais, M., Badruddin, N., & Drieberg, M. (2017). A hybrid approach to detect driver drowsiness utilizing physiological signals to improve system performance and wearability. Sensors, 17(9), 1991.CrossRef
Zurück zum Zitat Babaeian, M., Francis, K. A., Dajani, K., & Mozumdar, M. (2019). Real-time driver drowsiness detection using wavelet transform and ensemble logistic regression. International Journal of Intelligent Transportation Systems Research, 17(3), 212–222.MATHCrossRef Babaeian, M., Francis, K. A., Dajani, K., & Mozumdar, M. (2019). Real-time driver drowsiness detection using wavelet transform and ensemble logistic regression. International Journal of Intelligent Transportation Systems Research, 17(3), 212–222.MATHCrossRef
Zurück zum Zitat Berntson, G. G., Bigger, J. T., Jr., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., Nagaraja, H. N., Porges, S. W., Saul, J. P., Stone, P. H., & Van DerMolen, M. W. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34, 623–648.CrossRef Berntson, G. G., Bigger, J. T., Jr., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., Nagaraja, H. N., Porges, S. W., Saul, J. P., Stone, P. H., & Van DerMolen, M. W. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34, 623–648.CrossRef
Zurück zum Zitat Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., & Babiloni, F. (2014). Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neuroscience & Biobehavioral Reviews, 44, 58–75.MATHCrossRef Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., & Babiloni, F. (2014). Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neuroscience & Biobehavioral Reviews, 44, 58–75.MATHCrossRef
Zurück zum Zitat Brookhuis, K. A., & De Waard, D. (2001). Assessment of drivers’ workload: Performance, subjective and physiological indices. In P. Hancock & P. Desmond (Eds.), Stress, workload and fatigue: Theory, research and practice. New Jersey: Lawrence Erlbaum.MATH Brookhuis, K. A., & De Waard, D. (2001). Assessment of drivers’ workload: Performance, subjective and physiological indices. In P. Hancock & P. Desmond (Eds.), Stress, workload and fatigue: Theory, research and practice. New Jersey: Lawrence Erlbaum.MATH
Zurück zum Zitat Chen, L. L., Zhao, Y., Zhang, J., & Zou, J. Z. (2015). Automatic detection of alertness/drowsiness from physiological signals using wavelet-based nonlinear features and machine learning. Expert Systems with Applications, 42(21), 7344–7355.CrossRef Chen, L. L., Zhao, Y., Zhang, J., & Zou, J. Z. (2015). Automatic detection of alertness/drowsiness from physiological signals using wavelet-based nonlinear features and machine learning. Expert Systems with Applications, 42(21), 7344–7355.CrossRef
Zurück zum Zitat Choi, Y. J., Lee, J. Y., & Kong, S. H. (2018). Driver ECG measuring system with a conductive fabric-based dry electrode. IEEE Access, 6, 415–427.MATHCrossRef Choi, Y. J., Lee, J. Y., & Kong, S. H. (2018). Driver ECG measuring system with a conductive fabric-based dry electrode. IEEE Access, 6, 415–427.MATHCrossRef
Zurück zum Zitat Chowdhury, A., Shankaran, R., Kavakli, M., & Haque, M. M. (2018). Sensor applications and physiological features in drivers’ drowsiness detection: A review. IEEE Sensors Journal, 18(8), 3055–3067.MATHCrossRef Chowdhury, A., Shankaran, R., Kavakli, M., & Haque, M. M. (2018). Sensor applications and physiological features in drivers’ drowsiness detection: A review. IEEE Sensors Journal, 18(8), 3055–3067.MATHCrossRef
Zurück zum Zitat de Naurois, C. J., Bourdin, C., Bougard, C., & Vercher, J. L. (2018). Adapting artificial neural networks to a specific driver enhances detection and prediction of drowsiness. Accident Analysis and Prevention, 121, 118–128.CrossRef de Naurois, C. J., Bourdin, C., Bougard, C., & Vercher, J. L. (2018). Adapting artificial neural networks to a specific driver enhances detection and prediction of drowsiness. Accident Analysis and Prevention, 121, 118–128.CrossRef
Zurück zum Zitat de Naurois, C. J., Bourdin, C., Stratulat, A., Diaz, E., & Vercher, J. L. (2019). Detection and prediction of driver drowsiness using artificial neural network models. Accident Analysis & Prevention, 126, 95–104.CrossRef de Naurois, C. J., Bourdin, C., Stratulat, A., Diaz, E., & Vercher, J. L. (2019). Detection and prediction of driver drowsiness using artificial neural network models. Accident Analysis & Prevention, 126, 95–104.CrossRef
Zurück zum Zitat Dong, Y., Hu, Z., Uchimura, K., & Murayama, N. (2010). Driver inattention monitoring system for intelligent vehicles: A review. IEEE Transactions on Intelligent Transportation Systems, 12(2), 596–614.CrossRef Dong, Y., Hu, Z., Uchimura, K., & Murayama, N. (2010). Driver inattention monitoring system for intelligent vehicles: A review. IEEE Transactions on Intelligent Transportation Systems, 12(2), 596–614.CrossRef
Zurück zum Zitat Gwak, J., Hirao, A., & Shino, M. (2020). An investigation of early detection of driver drowsiness using ensemble machine learning based on hybrid sensing. Applied Sciences, 10(8), 2890.MATHCrossRef Gwak, J., Hirao, A., & Shino, M. (2020). An investigation of early detection of driver drowsiness using ensemble machine learning based on hybrid sensing. Applied Sciences, 10(8), 2890.MATHCrossRef
Zurück zum Zitat Han, H., & Chong, U. (2016). Neural network based detection of drowsiness with eyes open using AR modelling. IETE Technical Review, 33(5), 518–524.MATHCrossRef Han, H., & Chong, U. (2016). Neural network based detection of drowsiness with eyes open using AR modelling. IETE Technical Review, 33(5), 518–524.MATHCrossRef
Zurück zum Zitat He, D., Donmez, B., Liu, C. C., & Plataniotis, K. N. (2019). High cognitive load assessment in drivers through wireless electroencephalography and the validation of a modified N-back task. IEEE Transactions on Human-Machine Systems, 49(4), 362–371.CrossRef He, D., Donmez, B., Liu, C. C., & Plataniotis, K. N. (2019). High cognitive load assessment in drivers through wireless electroencephalography and the validation of a modified N-back task. IEEE Transactions on Human-Machine Systems, 49(4), 362–371.CrossRef
Zurück zum Zitat Hong, W., Lee, W., Jung, K., Lee, B., Park, J., Park, S., Park, Y., Son, J., Park, S., & You, H. (2014). Development of an ECG-based assessment method for a driver’s cognitive workload. Journal of the Korean Institute of Industrial Engineers, 40(3), 325–332.MATHCrossRef Hong, W., Lee, W., Jung, K., Lee, B., Park, J., Park, S., Park, Y., Son, J., Park, S., & You, H. (2014). Development of an ECG-based assessment method for a driver’s cognitive workload. Journal of the Korean Institute of Industrial Engineers, 40(3), 325–332.MATHCrossRef
Zurück zum Zitat Hu, S., & Zheng, G. (2009). Driver drowsiness detection with eyelid related parameters by support vector machine. Expert Systems with Applications, 36(4), 7651–7658.MATHCrossRef Hu, S., & Zheng, G. (2009). Driver drowsiness detection with eyelid related parameters by support vector machine. Expert Systems with Applications, 36(4), 7651–7658.MATHCrossRef
Zurück zum Zitat Huang, J., Luo, X., & Peng, X. (2020). A Novel classification method for a driver’s cognitive stress level by transferring interbeat intervals of the ECG signal to pictures. Sensors, 20(5), 1340.MATHCrossRef Huang, J., Luo, X., & Peng, X. (2020). A Novel classification method for a driver’s cognitive stress level by transferring interbeat intervals of the ECG signal to pictures. Sensors, 20(5), 1340.MATHCrossRef
Zurück zum Zitat Jagannath, M., & Balasubramanian, B. (2014). Assessment of early onset of driver fatigue using multimodal fatigue measures in a static simulator. Applied Ergonomics, 45, 1140–1147.MATHCrossRef Jagannath, M., & Balasubramanian, B. (2014). Assessment of early onset of driver fatigue using multimodal fatigue measures in a static simulator. Applied Ergonomics, 45, 1140–1147.MATHCrossRef
Zurück zum Zitat Jung, S. J., Shin, H. S., & Chung, W. Y. (2014). Driver fatigue and drowsiness monitoring system with embedded electrocardiogram sensor on steering wheel. IET Intelligent Transport Systems, 8(1), 43–50.MATHCrossRef Jung, S. J., Shin, H. S., & Chung, W. Y. (2014). Driver fatigue and drowsiness monitoring system with embedded electrocardiogram sensor on steering wheel. IET Intelligent Transport Systems, 8(1), 43–50.MATHCrossRef
Zurück zum Zitat Kundinger, T., Sofra, N., & Riener, A. (2020). Assessment of the potential of wrist-worn wearable sensors for driver drowsiness detection. Sensors, 20(4), 1029.CrossRef Kundinger, T., Sofra, N., & Riener, A. (2020). Assessment of the potential of wrist-worn wearable sensors for driver drowsiness detection. Sensors, 20(4), 1029.CrossRef
Zurück zum Zitat Kurt, M. B., Sezgin, N., Akin, M., Kirbas, G., & Bayram, M. (2009). The ANN-based computing of drowsy level. Expert Systems with Applications, 36(2), 2534–2542.MATHCrossRef Kurt, M. B., Sezgin, N., Akin, M., Kirbas, G., & Bayram, M. (2009). The ANN-based computing of drowsy level. Expert Systems with Applications, 36(2), 2534–2542.MATHCrossRef
Zurück zum Zitat Lal, S. K. L., & Craig, A. (2001). A critical review of the psychophysiology of driver fatigue. Biological Psychology, 55, 173–194.MATHCrossRef Lal, S. K. L., & Craig, A. (2001). A critical review of the psychophysiology of driver fatigue. Biological Psychology, 55, 173–194.MATHCrossRef
Zurück zum Zitat Lee, W., Jung, K., Hong, W., Park, S., Park, Y., Son, J., Park, S., & Kim, K. (2010). Analysis of drivers’ ECG biological signal under different levels of cognitive workload for intelligent vehicle. In Proceedings of the 2010 fall conference of ergonomics society of Korea. Lee, W., Jung, K., Hong, W., Park, S., Park, Y., Son, J., Park, S., & Kim, K. (2010). Analysis of drivers’ ECG biological signal under different levels of cognitive workload for intelligent vehicle. In Proceedings of the 2010 fall conference of ergonomics society of Korea.
Zurück zum Zitat Lee, H., Lee, J., & Shin, M. (2019). Using wearable ECG/PPG sensors for driver drowsiness detection based on distinguishable pattern of recurrence plots. Electronics, 8(2), 192.MATHCrossRef Lee, H., Lee, J., & Shin, M. (2019). Using wearable ECG/PPG sensors for driver drowsiness detection based on distinguishable pattern of recurrence plots. Electronics, 8(2), 192.MATHCrossRef
Zurück zum Zitat Leonhardt, S., Leicht, L., & Teichmann, D. (2018). Unobtrusive vital sign monitoring in automotive environments—A review. Sensors, 18(9), 3080.MATHCrossRef Leonhardt, S., Leicht, L., & Teichmann, D. (2018). Unobtrusive vital sign monitoring in automotive environments—A review. Sensors, 18(9), 3080.MATHCrossRef
Zurück zum Zitat Li, G., & Chung, W. Y. (2013). Detection of driver drowsiness using wavelet analysis of heart rate variability and a support vector machine classifier. Sensors, 13(12), 16494–16511.CrossRef Li, G., & Chung, W. Y. (2013). Detection of driver drowsiness using wavelet analysis of heart rate variability and a support vector machine classifier. Sensors, 13(12), 16494–16511.CrossRef
Zurück zum Zitat Li, G., Lee, B. L., & Chung, W. Y. (2015). Smartwatch-based wearable EEG system for driver drowsiness detection. IEEE Sensors Journal, 15(12), 7169–7180.MATHCrossRef Li, G., Lee, B. L., & Chung, W. Y. (2015). Smartwatch-based wearable EEG system for driver drowsiness detection. IEEE Sensors Journal, 15(12), 7169–7180.MATHCrossRef
Zurück zum Zitat Li, T., & Zhou, M. (2016). ECG classification using wavelet packet entropy and random forests. Entropy, 18(8), 285.MATHCrossRef Li, T., & Zhou, M. (2016). ECG classification using wavelet packet entropy and random forests. Entropy, 18(8), 285.MATHCrossRef
Zurück zum Zitat Malik, M., Camm, A. J., Bigger, J. T. G., Breithardt, G., Cerutti, S., Cohen, R. J., Coumel, P., Fallen, E. L., Kennedy, H. L., Kleiger, R. E., Lombardi, F., Malliani, A., Moss, A. J., Rottman, J. N., Schmidt, G., Schwartz, P. J., & Singer, D. H. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17, 354–381.CrossRef Malik, M., Camm, A. J., Bigger, J. T. G., Breithardt, G., Cerutti, S., Cohen, R. J., Coumel, P., Fallen, E. L., Kennedy, H. L., Kleiger, R. E., Lombardi, F., Malliani, A., Moss, A. J., Rottman, J. N., Schmidt, G., Schwartz, P. J., & Singer, D. H. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17, 354–381.CrossRef
Zurück zum Zitat Mayser, C., Piechulla, W., Weiss, K.-E., & König, W. (2003). Driver workload monitoring. In H. Strasser, K. Kluth, H. Rausch, & H. Bubb (Eds.), Quality of work and products in enterprises of the future. Proceedings of the 50th anniversary conference of the GfA and the XVII annual ISOES conference in Munich. Mayser, C., Piechulla, W., Weiss, K.-E., & König, W. (2003). Driver workload monitoring. In H. Strasser, K. Kluth, H. Rausch, & H. Bubb (Eds.), Quality of work and products in enterprises of the future. Proceedings of the 50th anniversary conference of the GfA and the XVII annual ISOES conference in Munich.
Zurück zum Zitat Mehler, B., Reimer, B., & Coughlin, J. F. (2012). Sensitivity of physiological measures for detecting systematic variations in cognitive demand from a working memory task: An on-road study across three age groups. Human Factors, 54(3), 396–412.CrossRef Mehler, B., Reimer, B., & Coughlin, J. F. (2012). Sensitivity of physiological measures for detecting systematic variations in cognitive demand from a working memory task: An on-road study across three age groups. Human Factors, 54(3), 396–412.CrossRef
Zurück zum Zitat Mehler, B., Reimer, B., Coughlin, J. F., & Dusek, J. A. (2009). Impact of incremental increases in cognitive workload on physiological arousal and performance in young adult drivers. Transportation Research Record, 2138(1), 6–12.CrossRef Mehler, B., Reimer, B., Coughlin, J. F., & Dusek, J. A. (2009). Impact of incremental increases in cognitive workload on physiological arousal and performance in young adult drivers. Transportation Research Record, 2138(1), 6–12.CrossRef
Zurück zum Zitat Mehler, B., Reimer, B., & Wang, Y. (2011). A comparison of heart rate and heart rate variability indices in distinguishing single task driving and driving under secondary cognitive workload. In Proceedings of the sixth international driving symposium on human factors in driver assessment, learning, and vehicle design, Lake Tahoe, California (pp. 590–597). Mehler, B., Reimer, B., & Wang, Y. (2011). A comparison of heart rate and heart rate variability indices in distinguishing single task driving and driving under secondary cognitive workload. In Proceedings of the sixth international driving symposium on human factors in driver assessment, learning, and vehicle design, Lake Tahoe, California (pp. 590–597).
Zurück zum Zitat Miyaji, M. (2014). Method of drowsy state detection for driver monitoring function. International Journal of Information and Electronics Engineering, 4(4), 264–268.MATHCrossRef Miyaji, M. (2014). Method of drowsy state detection for driver monitoring function. International Journal of Information and Electronics Engineering, 4(4), 264–268.MATHCrossRef
Zurück zum Zitat Murugan, S., Selvaraj, J., & Sahayadhas, A. (2020). Detection and analysis: driver state with electrocardiogram (ECG). Physical and Engineering Sciences in Medicine, 43(2), 525–537.MATHCrossRef Murugan, S., Selvaraj, J., & Sahayadhas, A. (2020). Detection and analysis: driver state with electrocardiogram (ECG). Physical and Engineering Sciences in Medicine, 43(2), 525–537.MATHCrossRef
Zurück zum Zitat Nam, D. H., Kim, G. P., Baek, K. H., Lee, D. S., Lee, H. Y., & Suh, M. W. (2022). Prediction of driver’s drowsiness using machine learning algorithms for minimal risk condition. International Journal of Automotive Technology, 23(4), 917–926.MATHCrossRef Nam, D. H., Kim, G. P., Baek, K. H., Lee, D. S., Lee, H. Y., & Suh, M. W. (2022). Prediction of driver’s drowsiness using machine learning algorithms for minimal risk condition. International Journal of Automotive Technology, 23(4), 917–926.MATHCrossRef
Zurück zum Zitat National Safety Council (NSC). (2012). Understanding the distracted brain: Why driving while using hands-free cell phones is risky behavior. White Paper (April 2012). http://www.nsc.org National Safety Council (NSC). (2012). Understanding the distracted brain: Why driving while using hands-free cell phones is risky behavior. White Paper (April 2012). http://​www.​nsc.​org
Zurück zum Zitat Nguyen, T., Ahn, S., Jang, H., Jun, S. C., & Kim, J. G. (2017). Utilization of a combined EEG/NIRS system to predict driver drowsiness. Scientific Reports, 7, 43933.CrossRef Nguyen, T., Ahn, S., Jang, H., Jun, S. C., & Kim, J. G. (2017). Utilization of a combined EEG/NIRS system to predict driver drowsiness. Scientific Reports, 7, 43933.CrossRef
Zurück zum Zitat Nilsson, E., Ahlström, C., Barua, S., Fors, C., Lindén, P., Svanberg, B., Begum, S., Ahmed. M. U., & Anund, A. (2017). Vehicle driver monitoring: Sleepiness and cognitive load. Swedish National Road and Transport Research Institute (VTI) (VTI rapport 937A). Nilsson, E., Ahlström, C., Barua, S., Fors, C., Lindén, P., Svanberg, B., Begum, S., Ahmed. M. U., & Anund, A. (2017). Vehicle driver monitoring: Sleepiness and cognitive load. Swedish National Road and Transport Research Institute (VTI) (VTI rapport 937A).
Zurück zum Zitat Noh, Y., Kim, S., Jang, Y. J., & Yoon, Y. (2021). Modeling individual differences in driver workload inference using physiological data. International Journal of Automotive Technology, 22(1), 201–212.MATHCrossRef Noh, Y., Kim, S., Jang, Y. J., & Yoon, Y. (2021). Modeling individual differences in driver workload inference using physiological data. International Journal of Automotive Technology, 22(1), 201–212.MATHCrossRef
Zurück zum Zitat Patel, M., Lal, S. K., Kavanagh, D., & Rossiter, P. (2011). Applying neural network analysis on heart rate variability data to assess driver fatigue. Expert Systems with Applications, 38(6), 7235–7242.CrossRef Patel, M., Lal, S. K., Kavanagh, D., & Rossiter, P. (2011). Applying neural network analysis on heart rate variability data to assess driver fatigue. Expert Systems with Applications, 38(6), 7235–7242.CrossRef
Zurück zum Zitat Persson, A., Jonasson, H., Fredriksson, I., Wiklund, U., & Ahlström, C. (2020). Heart rate variability for classification of alert versus sleep deprived drivers in real road driving conditions. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3316–3325.MATHCrossRef Persson, A., Jonasson, H., Fredriksson, I., Wiklund, U., & Ahlström, C. (2020). Heart rate variability for classification of alert versus sleep deprived drivers in real road driving conditions. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3316–3325.MATHCrossRef
Zurück zum Zitat Piotrowski, Z., & Szypulska, M. (2017). Classification of falling asleep states using HRV analysis. Biocybernetics and Biomedical Engineering, 37(2), 290–301.MATHCrossRef Piotrowski, Z., & Szypulska, M. (2017). Classification of falling asleep states using HRV analysis. Biocybernetics and Biomedical Engineering, 37(2), 290–301.MATHCrossRef
Zurück zum Zitat Ranney, T. A., Garrott, W. R., & Goodman, M. J. (2001). NHTSA driver distraction research: Past, present, and future (No. 2001-06-0177). SAE Technical Paper. Ranney, T. A., Garrott, W. R., & Goodman, M. J. (2001). NHTSA driver distraction research: Past, present, and future (No. 2001-06-0177). SAE Technical Paper.
Zurück zum Zitat Rodriguez-Ibañez, N., Garcia-Gonzales, M. A., Cruz, M. A. F., Fernadez-Chimeno, M., & Ramos-Castro, J. (2012). Changes in heart rate variability indexes due to drowsiness in professional drivers measured in a real environment. Computers in Cardiology, 39, 913–916. Rodriguez-Ibañez, N., Garcia-Gonzales, M. A., Cruz, M. A. F., Fernadez-Chimeno, M., & Ramos-Castro, J. (2012). Changes in heart rate variability indexes due to drowsiness in professional drivers measured in a real environment. Computers in Cardiology, 39, 913–916.
Zurück zum Zitat Sahayadhas, A., Sundaraj, K., & Murugappan, M. (2012). Detecting driver drowsiness based on sensors: A review. Sensors, 12(12), 16937–16953.MATHCrossRef Sahayadhas, A., Sundaraj, K., & Murugappan, M. (2012). Detecting driver drowsiness based on sensors: A review. Sensors, 12(12), 16937–16953.MATHCrossRef
Zurück zum Zitat Sahayadhas, A., Sundaraj, K., & Murugappan, M. (2013). Drowsiness detection during different times of day using multiple features. Australasian Physical and Engineering Sciences in Medicine, 36(2), 243–250.CrossRef Sahayadhas, A., Sundaraj, K., & Murugappan, M. (2013). Drowsiness detection during different times of day using multiple features. Australasian Physical and Engineering Sciences in Medicine, 36(2), 243–250.CrossRef
Zurück zum Zitat Sakai, H., Shin, D., Uchiyama, Y., Terashima, R., & Wakita, T. (2011). Slow eye movement as a possible predictor of reaction delays to auditory warning alarms in a drowsy state. Ergonomics, 54(2), 146–153.CrossRef Sakai, H., Shin, D., Uchiyama, Y., Terashima, R., & Wakita, T. (2011). Slow eye movement as a possible predictor of reaction delays to auditory warning alarms in a drowsy state. Ergonomics, 54(2), 146–153.CrossRef
Zurück zum Zitat Schumann, A., Ebel, J., & Bär, K. J. (2017). Forecasting transient sleep episodes by pupil size variability. Current Directions in Biomedical Engineering, 3(2), 58.CrossRef Schumann, A., Ebel, J., & Bär, K. J. (2017). Forecasting transient sleep episodes by pupil size variability. Current Directions in Biomedical Engineering, 3(2), 58.CrossRef
Zurück zum Zitat Singh, R. K., Sarkar, A., & Anoop, C. S. (2016). A health monitoring system using multiple noncontact ECG sensors for automotive drivers. In Instrumentation and measurement technology conference proceedings (I2MTC), 2016 IEEE International (pp. 1–6). IEEE. Singh, R. K., Sarkar, A., & Anoop, C. S. (2016). A health monitoring system using multiple noncontact ECG sensors for automotive drivers. In Instrumentation and measurement technology conference proceedings (I2MTC), 2016 IEEE International (pp. 1–6). IEEE.
Zurück zum Zitat Soares, S., Ferreira, S., & Couto, A. (2020). Drowsiness and distraction while driving: A study based on smartphone app data. Journal of Safety Research, 72, 279–285.CrossRef Soares, S., Ferreira, S., & Couto, A. (2020). Drowsiness and distraction while driving: A study based on smartphone app data. Journal of Safety Research, 72, 279–285.CrossRef
Zurück zum Zitat Son, J., Oh, H., & Park, M. (2013). Identification of driver cognitive workload using support vector machines with driving performance, physiology and eye movement in a driving simulator. International Journal of Precision Engineering and Manufacturing, 14(8), 1321–1327.MATHCrossRef Son, J., Oh, H., & Park, M. (2013). Identification of driver cognitive workload using support vector machines with driving performance, physiology and eye movement in a driving simulator. International Journal of Precision Engineering and Manufacturing, 14(8), 1321–1327.MATHCrossRef
Zurück zum Zitat Stutts, J. C., Reinfurt, D. W., Staplin, L., & Rodgman, E. (2001). The role of driver distraction in traffic crashes. AAA Found. Traffic Safety, Washington, DC, Tech. Rep., 2001. Stutts, J. C., Reinfurt, D. W., Staplin, L., & Rodgman, E. (2001). The role of driver distraction in traffic crashes. AAA Found. Traffic Safety, Washington, DC, Tech. Rep., 2001.
Zurück zum Zitat Sunagawa, M., Shikii, S. I., Nakai, W., Mochizuki, M., Kusukame, K., & Kitajima, H. (2019). Comprehensive drowsiness level detection model combining multimodal information. IEEE Sensors Journal, 20(7), 3709–3717.CrossRef Sunagawa, M., Shikii, S. I., Nakai, W., Mochizuki, M., Kusukame, K., & Kitajima, H. (2019). Comprehensive drowsiness level detection model combining multimodal information. IEEE Sensors Journal, 20(7), 3709–3717.CrossRef
Zurück zum Zitat Takahashi, N., Kuriyama, A., Kanazawa, H., Takahashi, Y., & Nakayama, T. (2017). Validity of spectral analysis based on heart rate variability from 1-minute or less ECG recordings. Pacing and Clinical Electrophysiology, 40(9), 1004–1009.MATHCrossRef Takahashi, N., Kuriyama, A., Kanazawa, H., Takahashi, Y., & Nakayama, T. (2017). Validity of spectral analysis based on heart rate variability from 1-minute or less ECG recordings. Pacing and Clinical Electrophysiology, 40(9), 1004–1009.MATHCrossRef
Zurück zum Zitat Tarafder, S., Badruddin, N., Yahya, N., & Nasution, A. H. (2022). Drowsiness detection using ocular indices from EEG signal. Sensors, 22(13), 4764.MATHCrossRef Tarafder, S., Badruddin, N., Yahya, N., & Nasution, A. H. (2022). Drowsiness detection using ocular indices from EEG signal. Sensors, 22(13), 4764.MATHCrossRef
Zurück zum Zitat Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-Aho, P. O., & Karjalainen, P. A. (2014). Kubios HRV–heart rate variability analysis software. Computer Methods and Programs in Biomedicine, 113(1), 210–220.MATHCrossRef Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-Aho, P. O., & Karjalainen, P. A. (2014). Kubios HRV–heart rate variability analysis software. Computer Methods and Programs in Biomedicine, 113(1), 210–220.MATHCrossRef
Zurück zum Zitat Tasaki, M., Wang, H., Sakai, M., Watanabe, M., Jin, Q., & Wei, D. (2010). Evaluation of drowsiness during driving based on heart rate analysis—A driving simulation study. In IEEE international conference on bioinformatics and biomedicine workshops (pp. 411–416). Tasaki, M., Wang, H., Sakai, M., Watanabe, M., Jin, Q., & Wei, D. (2010). Evaluation of drowsiness during driving based on heart rate analysis—A driving simulation study. In IEEE international conference on bioinformatics and biomedicine workshops (pp. 411–416).
Zurück zum Zitat Tjolleng, A., & Jung, K. (2022). Detecting early signs of drowsy driving using an artificial neural network on electrocardiography signals. Journal of Ergonomics Society of Korea, 41(1), 15–29.CrossRef Tjolleng, A., & Jung, K. (2022). Detecting early signs of drowsy driving using an artificial neural network on electrocardiography signals. Journal of Ergonomics Society of Korea, 41(1), 15–29.CrossRef
Zurück zum Zitat Tjolleng, A., Jung, K., Hong, W., Lee, W., Lee, B., You, H., Son, J., & Park, S. (2017). Classification of a driver’s cognitive workload levels using artificial neural network on ECG signals. Applied Ergonomics, 59, 326–332.MATHCrossRef Tjolleng, A., Jung, K., Hong, W., Lee, W., Lee, B., You, H., Son, J., & Park, S. (2017). Classification of a driver’s cognitive workload levels using artificial neural network on ECG signals. Applied Ergonomics, 59, 326–332.MATHCrossRef
Zurück zum Zitat Vicente, J., Laguna, P., Bartra, A., & Bailon, R. (2011). Detection of driver’s drowsiness by means of HRV analysis. Computing in Cardiology (CinC), 38, 89–92. Vicente, J., Laguna, P., Bartra, A., & Bailon, R. (2011). Detection of driver’s drowsiness by means of HRV analysis. Computing in Cardiology (CinC), 38, 89–92.
Zurück zum Zitat Wang, F., Wang, H., & Fu, R. (2018). Real-time ECG-based detection of fatigue driving using sample entropy. Entropy, 20(3), 196.MATHCrossRef Wang, F., Wang, H., & Fu, R. (2018). Real-time ECG-based detection of fatigue driving using sample entropy. Entropy, 20(3), 196.MATHCrossRef
Zurück zum Zitat Wang, J., Sun, S., Fang, S., Fu, T., & Stipancic, J. (2017). Predicting drowsy driving in real-time situations: Using an advanced driving simulator, accelerated failure time model, and virtual location-based services. Accident Analysis and Prevention, 99, 321–329.CrossRef Wang, J., Sun, S., Fang, S., Fu, T., & Stipancic, J. (2017). Predicting drowsy driving in real-time situations: Using an advanced driving simulator, accelerated failure time model, and virtual location-based services. Accident Analysis and Prevention, 99, 321–329.CrossRef
Zurück zum Zitat Wang, X., & Xu, C. (2016). Driver drowsiness detection based on non-intrusive metrics considering individual specifics. Accident Analysis & Prevention, 95, 350–357.MATHCrossRef Wang, X., & Xu, C. (2016). Driver drowsiness detection based on non-intrusive metrics considering individual specifics. Accident Analysis & Prevention, 95, 350–357.MATHCrossRef
Zurück zum Zitat Wierwille, W. W., & Ellsworth, L. A. (1994). Evaluation of driver drowsiness by trained raters. Accident Analysis and Prevention, 26(5), 571–581.MATHCrossRef Wierwille, W. W., & Ellsworth, L. A. (1994). Evaluation of driver drowsiness by trained raters. Accident Analysis and Prevention, 26(5), 571–581.MATHCrossRef
Zurück zum Zitat Yang, G., Lin, Y., & Bhattacharya, P. (2010). A driver fatigue recognition model based on information fusion and dynamic Bayesian network. Information Sciences, 180, 1942–1954.MATHCrossRef Yang, G., Lin, Y., & Bhattacharya, P. (2010). A driver fatigue recognition model based on information fusion and dynamic Bayesian network. Information Sciences, 180, 1942–1954.MATHCrossRef
Metadaten
Titel
Harnessing Electrocardiography Signals for Driver State Classification Using Multi-layered Neural Networks
verfasst von
Amir Tjolleng
Kihyo Jung
Publikationsdatum
18.06.2024
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology / Ausgabe 2/2025
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-024-00109-4