Skip to main content

2025 | OriginalPaper | Buchkapitel

Harnessing Generative AI for Sustainable Innovation: A Comparative Study of Prompting Techniques and Integration with Nature-Inspired Principles

verfasst von : Mas’udah, Pavel Livotov, Björn Kokoschko

Erschienen in: World Conference of AI-Powered Innovation and Inventive Design

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Amidst growing environmental challenges and the imperative for sustainable solutions, this study explores how generative artificial intelligence (AI) can drive innovation in process engineering. It investigates the effectiveness of different prompting techniques and their integration with nature-inspired principles (NIP) in fostering sustainable innovation. The study employs a comparative methodology to assess the effectiveness of two distinct prompting techniques: basic and AI-automated prompting. It also examines the influence of integrating NIP derived from various natural ecosystems on the generated solutions. Experiments were conducted using a generative AI model and analysing the output, focusing on the number of unique and overlapping ideas. Furthermore, the quality of AI-generated solution concepts was evaluated using four parameters, such as feasibility, novelty, usefulness, and sustainability, each rated on a scale of 0 to 2. Three case studies within the process engineering domain were used, each representing a different problem-solving scenario. The results showed that the integration of NIP, particularly through the “one by one” strategy in AI-automated prompting, significantly increased the number of unique ideas compared to basic prompting, demonstrating its effectiveness in enhancing idea diversity and quality. Concepts generated through this approach also scored higher in novelty and sustainability, aligning with sustainable innovation goals. These findings have practical implications for developing innovative and sustainable engineering solutions, particularly in the early phases of design, offering insights into effective strategies for leveraging AI in eco-innovation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Livotov, P., Mas’udah, Chandra Sekaran, A.P.: Learning eco-innovation from nature: towards identification of solution principles without secondary eco-problems. In: Cavallucci, D., Brad, S., Livotov, P. (eds.) TFC 2020. IFIP AICT, vol. 597, pp. 172–182. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61295-5_14 Livotov, P., Mas’udah, Chandra Sekaran, A.P.: Learning eco-innovation from nature: towards identification of solution principles without secondary eco-problems. In: Cavallucci, D., Brad, S., Livotov, P. (eds.) TFC 2020. IFIP AICT, vol. 597, pp. 172–182. Springer, Cham (2020). https://​doi.​org/​10.​1007/​978-3-030-61295-5_​14
3.
Zurück zum Zitat Mas’udah, Santosa, S., Livotov, P., Chandra Sekaran, A.P., Rubianto, L.: Nature-inspired principles for sustainable process design in chemical engineering. In: Borgianni, Y., Brad, S., Cavallucci, D., Livotov, P. (eds.) TFC 2021. IFIP Advances in Information and Communication Technology, vol. 635, pp. 30–41. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86614-3_3 Mas’udah, Santosa, S., Livotov, P., Chandra Sekaran, A.P., Rubianto, L.: Nature-inspired principles for sustainable process design in chemical engineering. In: Borgianni, Y., Brad, S., Cavallucci, D., Livotov, P. (eds.) TFC 2021. IFIP Advances in Information and Communication Technology, vol. 635, pp. 30–41. Springer, Cham (2021). https://​doi.​org/​10.​1007/​978-3-030-86614-3_​3
9.
Zurück zum Zitat Zhu, Q., Zhang, X., Luo, J.: Biologically inspired design concept generation using generative pre-trained transformers. J. Mech. Design 145(4), art. 041409 (2023) Zhu, Q., Zhang, X., Luo, J.: Biologically inspired design concept generation using generative pre-trained transformers. J. Mech. Design 145(4), art. 041409 (2023)
12.
Zurück zum Zitat Ma, K., Grandi, D., McComb, C., Goucher-Lambert, K.: Conceptual design generation using large language models. In: Proceedings of the ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 6. Boston, Massachusetts, USA (2023). https://doi.org/10.1115/DETC2023-116838 Ma, K., Grandi, D., McComb, C., Goucher-Lambert, K.: Conceptual design generation using large language models. In: Proceedings of the ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 6. Boston, Massachusetts, USA (2023). https://​doi.​org/​10.​1115/​DETC2023-116838
16.
Zurück zum Zitat Mas’udah, Livotov, P., Santosa, S., Sekaran, A.P.C., Takwanto, A., Pachulska, A.M.: Eco-feasibility study and application of natural inventive principles in chemical engineering design. In: Nowak, R., Chrząszcz, J., Brad, S. (eds.) TFC 2022. IFIP AICT, vol. 655, pp. 382–394. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17288-5_32 Mas’udah, Livotov, P., Santosa, S., Sekaran, A.P.C., Takwanto, A., Pachulska, A.M.: Eco-feasibility study and application of natural inventive principles in chemical engineering design. In: Nowak, R., Chrząszcz, J., Brad, S. (eds.) TFC 2022. IFIP AICT, vol. 655, pp. 382–394. Springer, Cham (2022). https://​doi.​org/​10.​1007/​978-3-031-17288-5_​32
17.
Zurück zum Zitat Altshuller, G.S.: Creativity as an Exact Science. The Theory of the Solution of Inventive Problems. Gordon & Breach Science Publishers, New York (1984) Altshuller, G.S.: Creativity as an Exact Science. The Theory of the Solution of Inventive Problems. Gordon & Breach Science Publishers, New York (1984)
18.
Zurück zum Zitat Savelli, S., Abramov, O.Y.: Nature as a source of function-leading areas for FOS-derived solutions. TRIZ Rev. J. Int. TRIZ Assoc. MATRIZ 1(1), 86–98 (2019) Savelli, S., Abramov, O.Y.: Nature as a source of function-leading areas for FOS-derived solutions. TRIZ Rev. J. Int. TRIZ Assoc. MATRIZ 1(1), 86–98 (2019)
20.
Zurück zum Zitat Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)
21.
Zurück zum Zitat Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., et al.: Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. Comput. Surv. 55(9), 1–35 (2023)CrossRef Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., et al.: Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. Comput. Surv. 55(9), 1–35 (2023)CrossRef
22.
Zurück zum Zitat Mas’udah, Livotov, P., Santosa, S., Suryadi, A.: Classification of nature-inspired inventive principles for eco-innovation and their assignment to environmental problems in chemical industry. In: Cavallucci, D., Livotov, P., Brad, S. (eds.) TFC 2023. IFIP Advances in Information and Communication Technology, vol. 682, pp. 211–225. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-42532-5_16 Mas’udah, Livotov, P., Santosa, S., Suryadi, A.: Classification of nature-inspired inventive principles for eco-innovation and their assignment to environmental problems in chemical industry. In: Cavallucci, D., Livotov, P., Brad, S. (eds.) TFC 2023. IFIP Advances in Information and Communication Technology, vol. 682, pp. 211–225. Springer, Cham (2023). https://​doi.​org/​10.​1007/​978-3-031-42532-5_​16
23.
Zurück zum Zitat Shah, J.J., Kulkarni, S.V., Vargas-Hernandez, N.: Evaluation of idea generation methods for conceptual design: effectiveness metrics and design of experiments. J. Mech. Des. 122(4), 377–384 (2000)CrossRef Shah, J.J., Kulkarni, S.V., Vargas-Hernandez, N.: Evaluation of idea generation methods for conceptual design: effectiveness metrics and design of experiments. J. Mech. Des. 122(4), 377–384 (2000)CrossRef
Metadaten
Titel
Harnessing Generative AI for Sustainable Innovation: A Comparative Study of Prompting Techniques and Integration with Nature-Inspired Principles
verfasst von
Mas’udah
Pavel Livotov
Björn Kokoschko
Copyright-Jahr
2025
DOI
https://doi.org/10.1007/978-3-031-75919-2_4