Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

04.07.2022

Harvesting RF Energy Using Slotted Tri-Stepped Rectangular Monopole Antenna

verfasst von: Mamta Kurvey, Ashwini Kunte

Erschienen in: Wireless Personal Communications

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

The reported Tri-Stepped Rectangular Monopole Antenna (TSRMA), for RF harvesting, can be further improvised in terms of performance. This can be achieved by optimizing the design parameters. In the current study, we report the design parameters which will help to create a better RF harvesting module. In the present manuscript, we show the effect of slot created on TSRMA in terms of gain. The TSRMA with and without slot are compared to show the differences. The effect of different types of rectifiers and the number of stages for harvester is also shown. It is found that Slotted TSRMA is better in performance than TSRMA. More than 50% improvement in the harvested energy is observed. Choice of rectifier and stages therein also found to be influencing the performance. Dickson rectifier has slight improvement (~ 8%) in the harvested energy over Villard rectifier. There is no significant improvement in 4–stage rectification over 2–stage rectification; we recommend 2–stage rectification in RF energy harvesters. This work focuses on the design and fabrication of an RF energy harvesting system which consists of an antenna having wide bandwidth (LTE850 (band 5), GSM900, GSM1800, 3G, 4G, and ISM 2.4 GHz) and high gain. The work also focuses on the comparative study of different rectifiers connected to a designed antenna to maximize the output DC energy. The harvested energy can be used for the charging of low-power devices. The work presented in the current manuscript can be directly applied to WSN sensor nodes used with smart watches for heart rate and blood pressure monitoring.
Literatur
1.
Zurück zum Zitat Stoopman, M., Keyrouz, S., Visser, H. J., et al. (2014). Co–design of a CMOS rectifier and small loop antenna for highly sensitive RF energy harvesters. IEEE Journal of Solid-State Circuits, 49(3), 622–634. CrossRef Stoopman, M., Keyrouz, S., Visser, H. J., et al. (2014). Co–design of a CMOS rectifier and small loop antenna for highly sensitive RF energy harvesters. IEEE Journal of Solid-State Circuits, 49(3), 622–634. CrossRef
2.
Zurück zum Zitat Vullers, R. J. M., Schaijk, R. V., Visser, H. J., Penders, J., & Hoof, C. V. (2010). Energy harvesting for autonomous wireless sensor networks. IEEE Solid-State Circuits Magazine, 2(2), 29–38. CrossRef Vullers, R. J. M., Schaijk, R. V., Visser, H. J., Penders, J., & Hoof, C. V. (2010). Energy harvesting for autonomous wireless sensor networks. IEEE Solid-State Circuits Magazine, 2(2), 29–38. CrossRef
3.
Zurück zum Zitat Roundy, S., Leland, E. S., Baker, J., Carleton, E., Reilly, E., Lai, E., Otis, B., Rabaey, J. M., Wright, P. K., & Sundararajan, V. (2005). Improving power output for vibration–based energy scavengers. IEEE Pervasive Computing, 4, 28–36. CrossRef Roundy, S., Leland, E. S., Baker, J., Carleton, E., Reilly, E., Lai, E., Otis, B., Rabaey, J. M., Wright, P. K., & Sundararajan, V. (2005). Improving power output for vibration–based energy scavengers. IEEE Pervasive Computing, 4, 28–36. CrossRef
5.
Zurück zum Zitat Naidu, P. V., & Kumar, A. (2017). Design and development of triple band ACS fed antenna with M and rectangular shaped radiating branches for 2.45/5 GHz wireless applications. Microsystem Technologies, 23(12), 5841–5848. CrossRef Naidu, P. V., & Kumar, A. (2017). Design and development of triple band ACS fed antenna with M and rectangular shaped radiating branches for 2.45/5 GHz wireless applications. Microsystem Technologies, 23(12), 5841–5848. CrossRef
6.
Zurück zum Zitat Lee, Y., Bang, S., Lee, I., Kim, Y., Kim, G., Gaed, M. H., Pannuto, P., Dutta, P., Sylvester, D., & Blaauw, D. (2013). A Modular 1 mm die-stacked sensing platform with low power I C inter-die communication and multi-modal energy harvesting. IEEE Journal of Solid State Circuits, 48(1), 229–243. CrossRef Lee, Y., Bang, S., Lee, I., Kim, Y., Kim, G., Gaed, M. H., Pannuto, P., Dutta, P., Sylvester, D., & Blaauw, D. (2013). A Modular 1 mm die-stacked sensing platform with low power I C inter-die communication and multi-modal energy harvesting. IEEE Journal of Solid State Circuits, 48(1), 229–243. CrossRef
7.
Zurück zum Zitat Kurvey, M., & Kunte, A. (2018). Tri-stepped rectangular antenna for efficient RF energy harvesting. Journal of Communications and Information Networks, 3(3), 86–90. CrossRef Kurvey, M., & Kunte, A. (2018). Tri-stepped rectangular antenna for efficient RF energy harvesting. Journal of Communications and Information Networks, 3(3), 86–90. CrossRef
9.
Zurück zum Zitat Chong, G., Ramiah, H., Yin, J., Rajendran, J., Wong, W. R., Mak, P. I., & Martins, R. P. (2018). Ambient RF energy harvesting system: a review on integrated circuit design. Analog Integrated Circuits and Signal Processing, 97(3), 515–531. CrossRef Chong, G., Ramiah, H., Yin, J., Rajendran, J., Wong, W. R., Mak, P. I., & Martins, R. P. (2018). Ambient RF energy harvesting system: a review on integrated circuit design. Analog Integrated Circuits and Signal Processing, 97(3), 515–531. CrossRef
10.
Zurück zum Zitat Zhang, Y., et al. (2012). Batteryless 19 lW MICS/ISM–band energy harvesting body sensor node SoC for ExG applications. IEEE Journal of Solid-State Circuits, 48(1), 199–213. CrossRef Zhang, Y., et al. (2012). Batteryless 19 lW MICS/ISM–band energy harvesting body sensor node SoC for ExG applications. IEEE Journal of Solid-State Circuits, 48(1), 199–213. CrossRef
11.
Zurück zum Zitat Mansano, A. L., Li, Y., Bagga, S., & Serdijn, W. A. (2016). An autonomous wireless sensor node with asynchronous ECG monitoring in 0.18 lm CMOS. IEEE Transactions on Biomedical Circuits and Systems, 10(3), 602–611. CrossRef Mansano, A. L., Li, Y., Bagga, S., & Serdijn, W. A. (2016). An autonomous wireless sensor node with asynchronous ECG monitoring in 0.18 lm CMOS. IEEE Transactions on Biomedical Circuits and Systems, 10(3), 602–611. CrossRef
12.
Zurück zum Zitat Kim, Y. J., Bhamra, H. S., Joseph, J., & Irazoqui, P. P. (2015). An ultra–low–power RF energy–harvesting transceiver for multiple–node sensor application. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(11), 1028–1032. Kim, Y. J., Bhamra, H. S., Joseph, J., & Irazoqui, P. P. (2015). An ultra–low–power RF energy–harvesting transceiver for multiple–node sensor application. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(11), 1028–1032.
13.
Zurück zum Zitat Rajavi, Y., Taghivand, M., Aggarwal, K., Ma, A., & Poon, A. S. Y. (2017). An RF–powered FDD radio for neural microimplants. IEEE Journal of Solid-State Circuits, 52(5), 1221–1229. CrossRef Rajavi, Y., Taghivand, M., Aggarwal, K., Ma, A., & Poon, A. S. Y. (2017). An RF–powered FDD radio for neural microimplants. IEEE Journal of Solid-State Circuits, 52(5), 1221–1229. CrossRef
14.
Zurück zum Zitat Liu, J., Xiong, K., Fan, P., & Zhong, Z. (2017). RF energy harvesting wireless powered sensor networks for smart cities. IEEE Access, 5, 9348–9358. CrossRef Liu, J., Xiong, K., Fan, P., & Zhong, Z. (2017). RF energy harvesting wireless powered sensor networks for smart cities. IEEE Access, 5, 9348–9358. CrossRef
15.
Zurück zum Zitat Kumar, A., & Hancke, G. P. (2014). An energy–efficient smart comfort sensing system based on the IEEE 1451 standard for green buildings. IEEE Sensors Journal, 14(12), 4245–4252. CrossRef Kumar, A., & Hancke, G. P. (2014). An energy–efficient smart comfort sensing system based on the IEEE 1451 standard for green buildings. IEEE Sensors Journal, 14(12), 4245–4252. CrossRef
16.
Zurück zum Zitat Stoopman, M., Philips, K., & Serdijn, W. A. (2017). An RF powered DLL–based 2.4–GHz transmitter for autonomous wireless sensor nodes. IEEE Transactions on Microwave Theory and Techniques, 65(7), 2399–2408. CrossRef Stoopman, M., Philips, K., & Serdijn, W. A. (2017). An RF powered DLL–based 2.4–GHz transmitter for autonomous wireless sensor nodes. IEEE Transactions on Microwave Theory and Techniques, 65(7), 2399–2408. CrossRef
17.
Zurück zum Zitat K. P. Ray, S. S. Thakur, R. A. Deshmukh. (2009). Broadbanding a printed rectangular monopole antenna [C]//IEEE Applied Electromagnetics Conference (AEMC), Kolkata, pp. 1–4. K. P. Ray, S. S. Thakur, R. A. Deshmukh. (2009). Broadbanding a printed rectangular monopole antenna [C]//IEEE Applied Electromagnetics Conference (AEMC), Kolkata, pp. 1–4.
18.
Zurück zum Zitat Sizing Solar Energy Harvesters for Wireless Sensor Networks Application Note M1002, RF Monolithics, Inc, 2010. Sizing Solar Energy Harvesters for Wireless Sensor Networks Application Note M1002, RF Monolithics, Inc, 2010.
19.
Zurück zum Zitat Jain, J. and Sharma, A., (2018). Dual-band rectangular microstrip patch antenna design for RF energy harvesting. In Optical and Wireless Technologies (pp. 599–605). Springer Jain, J. and Sharma, A., (2018). Dual-band rectangular microstrip patch antenna design for RF energy harvesting. In Optical and Wireless Technologies (pp. 599–605). Springer
20.
Zurück zum Zitat Singh, N., Kanaujia, B. K., Beg, M. T., Kumar, S., & Khandelwal, M. K. (2018). A dual band rectifying antenna for RF energy harvesting. Journal of Computational Electronics, 17(4), 1748–1755. CrossRef Singh, N., Kanaujia, B. K., Beg, M. T., Kumar, S., & Khandelwal, M. K. (2018). A dual band rectifying antenna for RF energy harvesting. Journal of Computational Electronics, 17(4), 1748–1755. CrossRef
21.
Zurück zum Zitat Paul, S., Ravichandran, A., Varshney, M. and Pandey, S. (2019). A Novel Multi-patch Triangular Antenna for Energy Harvesting. In Smart Innovations in Communication and Computational Sciences (pp. 209–218). Springer Paul, S., Ravichandran, A., Varshney, M. and Pandey, S. (2019). A Novel Multi-patch Triangular Antenna for Energy Harvesting. In Smart Innovations in Communication and Computational Sciences (pp. 209–218). Springer
23.
Zurück zum Zitat Shi, Y., Jing, J., Fan, Y., Yang, L., Li, Y., & Wang, M. (2018). A novel compact broadband rectenna for ambient RF energy harvesting. AEU-International Journal of Electronics and Communications, 95, 264–270. Shi, Y., Jing, J., Fan, Y., Yang, L., Li, Y., & Wang, M. (2018). A novel compact broadband rectenna for ambient RF energy harvesting. AEU-International Journal of Electronics and Communications, 95, 264–270.
Metadaten
Titel
Harvesting RF Energy Using Slotted Tri-Stepped Rectangular Monopole Antenna
verfasst von
Mamta Kurvey
Ashwini Kunte
Publikationsdatum
04.07.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09874-w